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INTRODUCTION

Heterojunction resonant interband tunneling diodes

(RITD) make use of interband resonant tunneling

through potential barriers. When computing the

current flowing through these devices, the multi-

band structure has to be taken into account in the

transport model [1][4].

A simple multi-band model was introduced by Kane

in the early 60’s; it describes the behaviour of the

charge carriers in a system with two allowed energy

bands separated by a forbidden region. It provides

the simplest framework for including one conduc-

tion band and one valence band (light hole) in each

material of a heterogeneous structure.

A new two-band formulation of the Kane model,

based on the Wigner-function approach, was re-

cently introduced. Here, we outline the model and

show some numerical results concerning the two-

band thermal equilibrium for a sample heterostruc-

ture.



THE TWO-BAND KANE MODEL

The two-band Schrödinger-Kane system, in the framework
of the k · P theory [2], is given by


ih̄
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4Ψ1 + (Ec + V )Ψ1 −

P h̄

m
∇Ψ2
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where Ψ1 and Ψ2 are the Luttinger-Kohn envelope functions
of the two bands (e.g., valence and conduction bands), de-
fined by

Ψn(x) =

∫
dk

∑
m

am(k)Cm,n(k)e
ikx (1)

with am(k) =< ψm(k), ψ > Cm,n(k) =< um(0), un(k) >.
Here, ψ(x) is the single-electron wave function,
ψn(k, x) = un(k, x)eikx is the Bloch function of the n−th band
and un(0, x) ≡ un(x) are the Luttinger-Kohn eigenfunctions.
The scalar product is defined by

< f, g >=

∫
u−cell

f(x)g(x)dx .

In matrix form:

H =

 −
h̄2

2m
∇2 + Vc −

P h̄

m
∇

P h̄

m
∇ −

h̄2

2m
∇2 + Vv


where P = h̄

∫ π/a
−π/a uc(x)

∂uc(x)
∂x

dx. is the Kane momentum.



PHYSICAL MEANING OF ENVELOPE

FUNCTION

The Schrödinger wave function can be written in the form
(called envelope functions expansion):

ψ(x) = Ψ1(x)u1(x) + Ψ2(x)u2(x) . (2)

The electronic density is n(x) = |ψ(x)|2. If we integrate (2)
over a unit cell, we have:

< n(x) >= |Ψ1(x)|2 + |Ψ2(x)|2 ≡ n1(x) + n2(x)

where < n > is the average of the electronic density over a
unit cell.

The electronic current inside the device is:

J =
h̄

m
=

(
ψ
∂ψ

∂x

)
After integration over the unit cell,

< J >= J1,1 + J2,2 + 2
P

m
=(Ψ1Ψ2) ,

where

Ji,i ≡
h̄

m
=

(
Ψi
∂Ψi

∂x

)
. (3)

Finally,

∂

∂t
(n1 + n2) = −∇

(
J1,1 + J2,2 + 2

P

m
=(Ψ1Ψ2)

)
. (4)

is the envelope function version of the continuity equation.



ENERGY BAND STRUCTURE OF THE

KANE MODEL

The diagonalization of the Kane-Hamiltonian gives the Kane
approximation to the energy bands and to the Bloch eigen-
functions near k = 0. The dispersion relation for the energy
bands is given by

Ec,v(k) = Ec +
Eg

2
+
h̄2k2

2m
±
√
η

2
(5)

where Ec is the edge of the conduction band, Eg is the en-

ergy gap, η = E2
g +4

h̄2k2P 2

m2
and the upper sign refers to the

conduction band and the lower to the valence band.

This gives for the effective masses at the band edge:

1

mc
=

2P 2

m2Eg
+

1

m
;

1

mv
=

2P 2

m2Eg
−

1

m
.

and the Kane momentum P can be expressed in terms of
mc,v:

P =
m

2

√
mc +mv

2mcmv

The eigenfunctions which diagonalize the Kane Hamiltonian
are given by

Ψc =

(
A(k)
B(k)

)
Ψv =

(
B(k)
−A(k)

)



where A(k), B(k) are given by
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Ψc and Ψv are the envelope functions of an electron belonging
to the conduction or the valence band, respectively.

It is easy to verify that the electron current related to the
eigenfunction is:

< J >= J1,1 + J2,2 + 2
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which is equal to
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1
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∂E

∂k


k∈cond.band
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1

h̄

∂E
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k∈val.band



DIRECT INTERBAND TUNNELING,

PHYSICAL PICTURE

We can outline an intuitive picture of interband tunneling ac-
cording to the Kane model. The following argument follows
a semiclassical reasoning, very similar to the WKB method,
and remains valid for weak external fields.

From the dispersion curve, we see that the solutions of the
system imply imaginary values for k in the forbidden gap and
real values in the allowed energy bands. We deduce that

• in the allowed bands the wave function is a travelling
wave, written as the sum of two waves which propagate
along the x axis with oppisite wave numbers;

• in the forbidden bands the solution suffers exponential
decay.

If we consider an electron in the conduction band, with en-
ergy EA (Figure 1) and we add to the flat bands a constant
electric field, according to the WKB approximation the elec-
tron energy decreases during its propagation E = E0 − Fx
and the electron will move towards point C on the curve.
between point A and point C, all values of k are real, and
thus correspond to propagating modes. When the electron
reaches A, it is eitherreflected or it enters the forbidden re-
gion, thus making and indirect interband transition. In this
case, the transition is from the lower edge of the conduction
band to the upper edge of the valence band, with the wave
number becoming imaginary. The electron thus reaches the
upper edge of the valence band in point V, and then con-
tinues propagating into the valence band. The situation is
illustrated in Figure 2, where the 3-d dispersion diagrams are
shown.



THE WIGNER-KANE MODEL

The Wigner function is defined as:

fw(x, v, t) =
1

2π

∫ ∞

−∞
ρ

(
x+

h̄

2m
η, x−

h̄

2m
η

)
ei vηdη

where ρ(x, x′) is the density matrix in the space representa-
tion.

In the Kane model, the Wigner transformation is carried out
separately on each combination of the envelope functions,
thus defining four Wigner-like functions [4]:
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with f2,1 = f1,2.



By using the evolution equations for the envelope functions
given by the Kane model, we obtain the evolution equations
for the four Wigner-Kane functions introduced above [3]:

∂f1,1

∂t
= −v

∂f1,1

∂x
+ iθc,cf1,1 −
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m
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where
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1

2π

∫
η
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v′

Vi
(
x+ h̄
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η
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− Vj
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η
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h̄
ei(v−v
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is the usual pseudo-differential operator.

The densities and currents defined in the usual way by the
integrals of the Wigner-Kane functions over the momentum
space,

n1,1 =

∫ ∞

−∞
f1,1dv n2,2 =

∫ ∞

−∞
f2,2dv

n1,2 =

∫ ∞

−∞
f1,2dv n2,1 =

∫ ∞

−∞
f2,1dv = n1,2

J1,1 =
1

m

∫ ∞

−∞
f1,1vdv J2,2 =

1

m

∫ ∞

−∞
f1,1vdv

are the averages over the unit cell of the true densities and
currents.



A PARTICULAR SOLUTION OF THE
STATIONARY WIGNER-KANE SYSTEM

We have obtained a steady-state solution of the Wigner-Kane
system for the particular case of flat band edges, i.e. no
external potential and no doping are presentand therefore
Vc(x) = Vc and Vv(x) = Vc + Eg. In this case we have for
the the pseudodifferential operators: θccf = θvvf = 0 and
θvcf = −θcvf = Egf and the steady-state Wigner-Kane system
becomes
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P h̄
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By using the traslational symmetry of the problem, we obtain space ho-
mogeneous solutions:

f1,1 =

√
η(k) + Eg

2
√
η(k)

δ(p/h̄− k)

f2,2 =

√
η(k)− Eg

2
√
η(k)

δ(p/h̄− k)

f1,2 = −i
k2P√
η(k)

δ(p/h̄− k)

These solutions represent momentum eigenstates in the single-
electron Wigner picture.



BLOCH EQUATION AND BOUNDARY

CONDITIONS

For the numerical simulation of real devices we have to im-
pose suitable boundary conditions.

Such conditions can be built thinking the anion and the cation
of IRTD diodes in thermal contact with a reservoir. In the
Wigner formalism this boundary conditions are easily inserted
with the inflow conditions in the phase plane.

To obtain the Wigner distribution function of the thermal
equilibrium we have to solve the following Bloch-Kane system
[5].
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∫
r

∫
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V
(
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2

)
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(
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2
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2

ei(p−p
′) r
h̄f(x, p′) dp′dr (10)

Here we report the thermal equilibrium Wigner funtion for the device
under test.



NUMERICAL TECHNIQUE OF SOLUTION

To solve the Wigner-Kane system we discretize the simula-
tion domain and, accordingly, the equations. The simulation
domain is discretized as follows:

xi = i4x con i = 1,2, . . . , Nx

vj = π
4xm

[
−(j−1/2)

Nv
+ 1

2

]
con j = 1,2, · · · , Nv

Using a second-order upwind differential scheme to discrete
the position derivative, we can define the following “Trans-
lation operator”

(T fw)i,j = −
vj

4x
×

{
+1

2 [−3fi + 4fi+1 − fi+2] vj < 0
−1

2 [−3fi + 4fi−1 − fi−2] vj > 0

and the “Gradient operator”

(Gfw)i,j = −
P h̄

4x
×

{
+1

2 [−3fi + 4fi+1 − fi+2] vj < 0
−1

2 [−3fi + 4fi−1 − fi−2] vj > 0

Then we define the “Potential operator”

(Pf)i,j = −
1

h̄

Nv∑
j ′=1

Ui,j−j ′fi,j ′

Ui,j =
2

Nv

Nx/2∑
i′=1

sin

(
2j4vi′4x

h̄

)
(Vi+i′ − Vi−i′)



and fi,j the real column vector of Nx×Nv components. Now
we can write the Wigner-Kane system in the following matrix
form:



(T + P1,1 − I 2
4t

)F1,1 = −G=(f1,2)−M<(f1,2)

(T + P2,2 − I 2
4t

)F1,1 = −G=(f1,2) + M<(f1,2)

(T + P1,2 − I 2
4t

)F1,2 = − i
2
G(f1,1 + f2,2) + M(f1,1 − f2,2)

We consider the following cases:

Transient solution: We use the Cayley discretization scheme
for the time derivative:

Fi,j = fn+1
i,j + fni,j;

fni,j is the Wigner function to n-ieme temporal step.

Stationary solution: We use

Fi,j = 2fi,j .

Numerical aspects of realistic semiconductor devices will be
object of a future work.
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