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Summary. — We consider Kane’s quantum model for two-band charged particles,
composed of two Schrödinger-like equations coupled by a k · p term which describes
interband tunneling. Using the WKB method we derive the hydrodynamic equa-
tions both for a zero-temperature and for a nonzero-temperature two-band quantum
fluid. In the latter case, we introduce a family of closure relations and write in full
details the simplest two-band, isentropic, fluid-dynamical model. Finally, introduc-
ing appropriate relaxation terms and performing drift-diffusive limits, we obtain
the corresponding quantum drift-diffusion models for zero and nonzero-temperature
quantum fluids.

PACS 72.10.Bg – General formulation of transport theory.
PACS 85.30.De – Semiconductor-device characterization, design, and modeling.

1. – Introduction

In recent years, much effort has been devoted to the study of hydrodynamic equations
for new generations of semiconductor devices, for which quantum effects have to be taken
into account. It is well known that fluid-dynamical models of semiconductors begin to
fail when quantum phenomena become not negligible or even predominant. Nevertheless,
the hydrodynamic approach presents notable advantages from the computational point
of view.

In the classical framework, the literature on hydrodynamic models both from the
theoretical and the numerical point of view is very wide. We refer the interested reader
to one of the many review articles on the subject (see Anile et al. [1]).

Some very interesting results are present in literature, proposing quantum hydrody-
namic equations, able to describe the behaviour of nanometric devices like resonant
tunneling diodes. We recall here the “smooth” quantum hydrodynamic model proposed
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by Gardner and Ringhofer [2], where the fluid-dynamical formulation is attained from
moment expansion of a Wigner-Boltzmann equation and the approach by Jüngel [3],
whose starting point is an appropriate representation of the solutions to the Schrödinger
equation. A new derivation of quantum hydrodynamic models starting from first princi-
ples can be found in [4], where moments of the density matrix equation are considered
and the resulting system is closed by an equilibrium density matrix.

The major part of published results is devoted to single-band problems. In the recent
past new families of diodes, like Resonant Interband Tunneling Diodes (RITDs), have
been produced, where the electrons in the valence band play an important role in the
control of the current flow [5].

For such devices, we must consider the multi-band structure in the transport com-
putation of the current. In this context, a simple model introduced by Kane [6] in the
early 60’s describes the electron behaviour in a system equipped with two allowed energy
bands separated by a forbidden region. The Kane model is a simple two-band model
capable of including one conduction band and one valence band in the device material
and it is formulated as the coupling of two Schrödinger-like equations for the conduction
and the valence band wave (envelope) functions [7]. The typical band diagram structure
of a tunneling diode is characterized by a band alignment such that the valence band
at the positive side of the semiconductor device lies above the conduction band at the
negative one. The coupling term arises by the k · p perturbation method [8] using the
fact that it is sufficient to obtain solutions of the single electron Schrödinger equation in
the neighbourhood of the bottom of the conduction and the top of the valence bands,
where the major part of electrons and holes, respectively, are concentrated. Such model
is of great importance for RITD, and is widely used in literature [9, 10].

The Kane model in the Schrödinger-like form has been recently studied by Kefi [11].
An alternative approach to study this model is the Wigner formulation of the Kane
system [7]. Moreover the Kane model in his Wigner formulation can be used to obtain
hydrodynamic models in terms of macroscopic quantities [12,13].

As we have said, the above-mentioned multiband models are based on the single
electron Schrödinger equation, and the resulting equations are essentially linear. By
applying the WKB method, it is possible to derive a zero-temperature hydrodynamic
version of the Schrödinger Kane model. Although application of this method leads to
nonlinear equations, for regular solutions the resulting quantum hydrodynamic equations
are basically equivalent to the original linear quantum equations. However, when it is
desirable to model the dynamics of a family of electrons, the quantum description requires
the introduction of a sequence of mixed states, with attached a probability measure. In
this case, the WKB method leads to a sequence of hydrodynamic equations, which are
not satisfactory in real application. Anyway, it is possible to derive a set of equations for
a finite number of macroscopic averaged quantities, with hydrodynamic character. These
hydrodynamic equations share a similar structure with the analogous equation for a single
electron, the only difference being the appearance of terms that can be interpreted as
thermal tensors, and of additional source terms. These new terms depend on all states, so
the system is not closed unless appropriate closure conditions are provided. It is clear that
the final hydrodynamic model with temperature is by no means equivalent to the original
quantum model. We could say that the nonlinearity of the resulting hydrodynamic model
is “genuine” and is the price to pay for keeping only a finite number of equations.

In this paper, we describe in details this approach, by applying it to the Schrödinger
Kane model for mixed states. The issues of closure relations is not discussed in full extent
here, as it deserves an independent exposition. We limit ourselves to present the simplest
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class of closure relations, based on some analogy with classical hydrodynamic models.
The paper is organized as follows. In sect. 2, we review the Kane model and write

it in nondimensional form. Then we introduce the hydrodynamic quantities needed to
study a two-band quantum system. In sect. 4, we obtain a system for the densities and
the currents and we show how this system can be closed by a new equation for the phase
difference. Such a system can be considered as the Madelung system for a two-band
zero-temperature quantum fluid. Section 5 is devoted to the derivation of a nonzero-
temperature model for the Kane system, by considering an electron ensemble represented
by a mixed quantum-mechanical state. Then, in sect. 6, introducing a relaxation time
term, we perform the drift-diffusive limit, obtaining the corresponding quantum drift-
diffusion system. Finally, a short discussion on this model and on related problems, such
as closure and numerical implementation, is proposed.

2. – Physical description of the Kane model

The Kane model consists of a couple of Schrödinger-like equations for the conduction
and the valence band envelope functions. It is used to describe the electron behaviour
in a system equipped with two allowed energy bands separated by a forbidden region as
a tunnel diode. The model is derived in the framework of the envelope function theory.
In this approach the envelope function is a smooth function which can be obtained by
replacing the wave function by its average in each primitive cell, since it is not necessary
to find the exact evolution of the full wave equation.

Let ψc(x, t) be the conduction band electron envelope function and ψv(x, t) be the
valence band electron envelope function, where x ∈ R

3 is the space variable, and t ∈ R

is the time. The Kane model reads as follows [6]:

(2.1)



i�
∂ψc

∂t
= − �

2

2m
∆ψc + Vcψc − �

2

m
P · ∇ψv,

i�
∂ψv

∂t
= − �

2

2m
∆ψv + Vvψv +

�
2

m
P · ∇ψv.

Here, i is the imaginary unit, � is the Planck constant scaled by 2π, m is the bare mass
of the carriers, Vc and Vv are the minimum of the conduction band energy and maximum
of the valence band energy, respectively, and P is the coupling coefficient between the
two bands. The coupling coefficient P is the matrix element of the gradient operator
between the Bloch functions. It can be assumed to be real, and is given by

(2.2) P =
∫

u−cell

uc
0(r)∇uv

0(r)dr ,

where u-cell is the unitary cell and uc
0 and uv

0 are the basis of the Bloch functions for
the conduction and valence bands, respectively, evaluated at the wave vector k = 0.
In the Kane model the coupling parameter has to be considered constant. In realistic
heterostructure semiconductor devices, the parameter P , approximatively expressed in
terms of the effective electron mass and the energy gap, depends on the layer composition
through the spatial coordinates.

In order to rewrite system (2.1) in a dimensionless form, we introduce the rescaled
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Planck constant

ε =
�

α
,

where the dimensional parameter α is given by α = mx2
R/tR, by using xR and tR as

characteristic (scalar) length and time variables. We rescale system (2.1) to dimensionless
units by introducing the scaled coordinates

t′ =
t

tR
, x′ =

x

xR
,

and leaving the mass m unchanged. The band energy can be rescaled, taking new
potential units V0 = mx2

R/t
2
R. A dimensional argument shows that the original coupling

coefficient (2.2) is a reciprocal of a characteristic lenght, thus we define a scaled coefficient
by P ′ = PxR.

Hence, dropping the primes and without changing the name of the variables, we get
the following scaled Kane system, which will be the object of our study:

(2.3)



iε
∂ψc

∂t
= −ε

2

2
∆ψc + Vcψc − ε2P · ∇ψv ,

iε
∂ψv

∂t
= −ε

2

2
∆ψv + Vvψv + ε2P · ∇ψc .

3. – The hydrodynamic quantities

The first aim of this paper is to derive the hydrodynamic version of system (2.3)
using the WKB method. This is the classical approach to put the Schrödinger equation
in hydrodynamic form [14]. It consists in characterizing the wave function by a quasi-
classical limit expression a exp [iS/ε], where a is called the amplitude and S/ε the phase
of the wave. Using this approach the hydrodynamic limit is valid only for pure states,
and in this sense, we say that the hydrodynamic limit is valid for a quantum system at
zero temperature.

In the case under consideration of a two-band model, we look for solutions of the
rescaled system (2.3) in the form

(3.1)
ψc(x, t) =

√
nc(x, t) exp

[
iSc(x,t)

ε

]
,

ψv(x, t) =
√
nv(x, t) exp

[
iSv(x,t)

ε

]
.

In the framework of the two-band Kane model, we introduce the particle densities

nab = ψaψb,

where ψa, with a = c, v, is the envelope function for the conduction and the valence
band, respectively.

When a = b, the quantities nab = na = |ψa|2 are real and represent the quantum
probability densities for the position of conduction band and valence band electrons only
in an approximate sense, because ψa are envelope functions which mix the Bloch states.
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Nevertheless, n = ψcψc + ψvψv is exactly the total electron density in conduction and
valence band, and, as expected, satisfies a continuity equation.

When a �= b, the density ψaψb is a complex quantity, which does not have a precise
physical meaning. Despite of this, as it will become clear in the next section, the complex
quantities ψaψb appear explicitly in the evolution equation for the total density n.

Looking for solutions in the form (3.1), it is natural to write the coupling terms in a
more manageable way, by introducing the complex quantity

(3.2) ncv := ψcψv =
√
nc

√
nv e

iσ,

where σ is the phase difference defined by

(3.3) σ :=
Sv − Sc

ε
.

Now, it is apparent that, in order to study a zero-temperature quantum hydrodynamic
model, we need to use only the three quantities nc, nv and σ to characterize the zero
order moments (the “particle” densities).

The situation is more involved for the current densities. In analogy to the one-band
case, we define quantum-mechanical electron current densities

Jab = ε Im
(
ψa∇ψb

)
.

When a = b, using again the form (3.1), we recover the classical current densities

(3.4) Jc := Im
(
εψc∇ψc

)
= nc∇Sc, Jv := Im

(
εψv∇ψv

)
= nv∇Sv ,

whose physical meaning has to be interpreted similarly as for the particle densities. It is
easy to get the identity

(3.5) εψa∇ψb =
√
na

√
nb exp

[
i
Sb − Sa

ε

] (
ε
∇√

nb√
nb

+ i∇Sb

)
.

Also, we introduce the complex velocities uc and uv, with

(3.6) uc :=
ε∇ψc

ψc
=
ε∇√

nc√
nc

+ i∇Sc, uv :=
ε∇ψv

ψv
=
ε∇√

nv√
nv

+ i∇Sv.

We note that

(3.7) ε∇ncv = ncv(uc + uv).

The real and imaginary parts of uc are called osmotic velocity and current velocity,
respectively, and will be denoted by uos,c and the uel,c. Explicitly we have

(3.8) uos,c :=
ε∇√

nc√
nc

, uel,c := ∇Sc =
Jc

nc
.
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Analogous definitions hold for uos,v and uel,v, so that

(3.9) uc = uos,c + iuel,c, uv = uos,v + iuel,v.

Hence osmotic velocity and current velocity can be expressed solely in terms of nc, nv,
Jc and Jv.

Coming back to the choice of the hydrodynamic quantities, we can maintain that
for a zero-temperature quantum hydrodynamic system it is sufficient to take the usual
quantities nc, nv, Jc and Jv, plus the phase difference σ. This will be verified in the next
section.

4. – Hydrodynamic formulation of the Kane model

Taking into account the wave form (3.1) and using the first equation of the Kane
system (2.3), we find

∂nc

∂t
= ψc

∂ψc

∂t
+ ψc

∂ψc

∂t
=
iε

2
(
ψc∆ψc − ψc∆ψc

)
+ iP ·(εψc∇ψv − εψc∇ψv

)
= −∇· Im

(
εψc∇ψc

) − 2P · Im
(
εψc∇ψv

)
.

In a similar way, we get

∂nv

∂t
= −∇· Im

(
εψv∇ψv

)
+ 2P · Im

(
εψv∇ψc

)
.

Using the definition of the particle densities and of the complex velocities, we find

(4.1) εψc∇ψv = ncvuv, εψv∇ψc = ncvuc,

and then, recalling the definitions (3.4) of Jc and Jv, the previous equations become

(4.2)



∂nc

∂t
+ ∇·Jc = −2P · Im (ncvuv) ,

∂nv

∂t
+ ∇·Jv = 2P · Im (ncvuc) .

Explicitly, in terms of osmotic and current velocities, we can write

{
ncvuv =

√
nc

√
nv (cosσ + i sinσ)(uos,v + iuel,v),

ncvuc =
√
nc

√
nv (cosσ − i sinσ)(uos,c + iuel,c).

Summing the equations in (4.2) and using the identity Im (εψc∇ψv) − Im (εψv∇ψc) =
ε∇ Imncv, we obtain the balance law for the total density,

(4.3)
∂

∂t
(nc + nv) + ∇·(Jc + Jv) = −2 ε P ·∇ Imncv.
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It is convenient to write eq. (4.3) in divergence form, in order to derive the conservation
of total density. Using the fact that ∇·P = 0, (4.3) gives

∂

∂t
(nc + nv) + ∇·(Jc + Jv + 2εP Imncv) = 2 ε Imncv∇·P = 0 ,

which is just the quantum counterpart of the classical continuity equation.
We remark that ∇·P = 0 is obviously verified following the assumptions under which

the Kane model is derived. On the other hand, the k · p approximation [8] which leads
to the Kane model is performed under the assumption of null divergence. It is inter-
esting to note that this assumption ensures the self-adjointness of the k · p Hamiltonian
corresponding to the Schrödinger-type system (2.3).

Next, we derive equations for the phases Sc, Sv. Using (2.3) and (4.2), we have

∂Sc

∂t
= −iε ∂

∂t
ln

(
ψc√
nc

)

=
ε2

2nc

(
ψc∆ψc − i∇· Im (ψc∇ψc)

) − Vc +
ε2

nc
P ·(ψc∇ψv − i Im (ψc∇ψv)

)
=
ε2

2nc

(∇· Re (ψc∇ψc) −∇ψc ·∇ψc

) − Vc +
ε2

nc
P · Re (ψc∇ψv).

It is possible to rewrite the previous equation as

∂Sc

∂t
= −1

2
|∇Sc|2 +

ε2∆
√
nc

2
√
nc

− Vc +
ε

nc
P · Re (εψc∇ψv).

A similar equation can be derived for Sv. Then, using (4.1), the resulting equations are

(4.4)




∂Sc

∂t
+

1
2
|∇Sc|2 − ε2∆

√
nc

2
√
nc

+ Vc =
ε

nc
P · Re (ncvuv),

∂Sv

∂t
+

1
2
|∇Sv|2 − ε2∆

√
nv

2
√
nv

+ Vv = − ε

nv
P · Re (ncvuc).

Equations (4.2) and (4.4) are equivalent to the coupled Schrödinger equations (2.3).
We would like to replace (4.4) with a system of coupled equations for the currents.

Using the definitions (3.4), we can evaluate

∂Jc

∂t
=

∑
j

ε2

2
∂

∂xj
Re

(
ψc∇

∂ψc

∂xj
−∇ψc

∂ψc

∂xj

)
− ψcψc∇Vc +(4.5)

+ ε2 Re
[
ψc∇(P ·∇ψv) −∇ψc(P ·∇ψv)

]
.

To write this equation in terms of hydrodynamic quantities, we use the identities

ψc∇
∂ψc

∂xj
−∇ψc

∂ψc

∂xj
= ∇

(
ψc

∂ψc

∂xj

)
− 2∇√

nc
∂
√
nc

∂xj
− 2nc

ε2
∇Sc

∂Sc

∂xj
,

Re∇
(
ψc

∂ψc

∂xj

)
=

1
2
∇∂nc

∂xj
,
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with j = 1, 2, 3, which yield

∑
j

∂

∂xj
Re

(
ψc∇

∂ψc

∂xj
−∇ψc

∂ψc

∂xj

)
=

=
∑

j

∂

∂xj

[
1
2
∇∂nc

∂xj
− 2∇√

nc
∂
√
nc

∂xj
− 2nc

ε2
∇Sc

∂Sc

∂xj

]
.

Then, using

Re
[
ψc∇(P ·∇ψv) −∇ψc(P ·∇ψv)

]
= Re

[∇(ψc(P ·∇ψv)) − 2∇ψc(P ·∇ψv)
]
,

and the previous identities, eq. (4.5) becomes

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ε2∇√

nc ⊗∇√
nc − ε2

4
∇⊗∇nc

)
+(4.6)

+nc∇Vc = ε2 Re
[∇(ψc(P ·∇ψv)) − 2∇ψc(P ·∇ψv)

]
.

A similar equation can be written for Jv.

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ ε2∇√

nv ⊗∇√
nv − ε2

4
∇⊗∇nv

)
+(4.7)

+nv∇Vv = − ε2 Re
[∇(ψv(P ·∇ψc)) − 2∇ψv(P ·∇ψc)

]
.

The left-hand sides of the equations for the currents can be put in a more familiar
form by using the identity

div
(
∇√

na ⊗∇√
na − 1

4
∇⊗∇na

)
= −na

2
∇

[
∆
√
na√
na

]
, a = c, v.

The correction terms

ε2

2
∆
√
na√
na

, a = c, v ,

can be identified with the quantum Bohm potentials for each band, in analogy with the
single-band case. Moreover, using (4.1) and the identity

ε2∇ψa(P ·∇ψb) = nab P ·ub ua , a, b = c, v,

the right-hand sides of eqs. (4.6) and (4.7) can be expressed in terms of the hydrodynamic
quantities.
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The resulting system takes the following form:

(4.8)




∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= −ε∇ Re (ncvP ·uv) − 2 Re (ncvP ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε∇ Re (ncvP ·uc) + 2 Re (ncvP ·ucuv) .

For the reader’s convenience, we express the right-hand sides of (4.8) in terms of
osmotic and current velocities:



Re (ncvP ·uv) =
√
nc

√
nv P ·(uos,v cosσ − uel,v sinσ) ,

Re (ncvP ·uc) =
√
nc

√
nv P ·(uos,c cosσ + uel,c sinσ) ,

Re (ncvP ·uvuc) =
√
nc

√
nv [P ·(uos,c cosσ + uel,c sinσ)uos,v−
− P ·(uos,c sinσ − uel,c cosσ)uel,v] ,

Re (ncvP ·ucuv) =
√
nc

√
nv [P ·(uos,v cosσ − uel,v sinσ)uos,c+

+ P ·(uos,v sinσ + uel,v cosσ)uel,c] .

It is important to notice that, at variance with the uncoupled model, (4.2) and (4.8)
are not equivalent to the original equation (2.3), due to the presence of σ. There are many
ways to “close” the system, in order to obtain an extension of the classical Madelung
fluid equations to a two-band quantum fluid. One possibility is to use (4.4) to derive an
evolution equation for σ = (Sv − Sc)/ε,

ε
∂σ

∂t
− 1

2

∣∣∣∣Jc

nc

∣∣∣∣
2

+
1
2

∣∣∣∣Jv

nv

∣∣∣∣
2

+
ε2∆

√
nc

2
√
nc

− ε2∆
√
nv

2
√
nv

−(4.9)

−Vc + Vv = − ε

nv
P · Re (ncvuc) − ε

nc
P · Re (ncvuv).

Equation (4.9) must be supplemented with the constraint

(4.10) ε∇σ =
Jv

nv
− Jc

nc
.

Using (4.2) and (4.8), it is possible to prove that (4.9) and (4.10) are equivalent, in the
following sense: (4.9) implies that (4.10) is satisfied at all times if it holds at the initial
time; (4.10) implies that (4.9) is satisfied (up to a constant).

To see the truth of the above statement, it is sufficient to take the gradient of (4.4)
and, afterwards, account that

(4.11) ∇Sc =
Jc

nc
, ∇Sv =

Jv

nv
.
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Then, noting that (4.9) was derived from the same equation (4.4), it is simple to see that
(4.9) implies

∂

∂t

(
ε∇σ − Jv

nv
+
Jc

nc

)
= 0,

which yields the first part of the statement. Similarly, taking the time derivative of (4.10)
and using again (4.11), we can recover the gradient of equation (4.9), which implies the
second part of the statement.

The equivalence of (4.10) and (4.9) suggests that we can discard (4.9), and recover σ
as a function of the other variables by solving the elliptic equation

(4.12) ε∆σ = ∇·
(
Jv

nv
− Jc

nc

)
,

which can be obtained immediately after derivation of the constraint (4.10).
Another possibility is to regard ncv as an independent variable, rather than σ. Re-

calling the definition (3.2) and Kane’s system (2.3), we find

∂ncv

∂t
=
iε

2
∇·(ψc∇ψv − ψv∇ψc

)
+
i

ε
(Vc − Vv)ψcψv − iεP · (ψc∇ψc + ψv∇ψv

)
,

which, using (3.5) and the definitions of osmotic and current velocities, leads to

(4.13) ε
∂ncv

∂t
=
iε

2
∇·(ncv(uv − uc)) + i ncv(Vc − Vv) − iεP ·(ncuc + nvuv) .

In addition to (4.13), the complex function ncv must satisfy the constraints

ncvncv = ncnv,(4.14)
ε∇ncv = (uc + uv)ncv.(4.15)

Alternatively, we can use the identity (4.15) to derive a nonlinear elliptic equation
for ncv,

(4.16) div
(
ε∇ncv

ncv

)
= div(uc + uv),

which must be solved together with the constraint (4.14).
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Now we are in position to rewrite the hydrodynamic system as follows:

(4.17)




∂nc

∂t
+ divJc = −2P · Im (ncvuv),

∂nv

∂t
+ divJv = 2P · Im (ncvuc),

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε∇Re (ncvP ·uv) − 2 Re (ncvP ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε∇Re (ncvP ·uc) + 2 Re (ncvP ·ucuv) ,

ε∇σ =
Jv

nv
− Jc

nc
,

where ncv, uv, and uv are expressed in the terms of the hydrodynamic quantities nc, nv,
Jc, Jv, and σ by (3.2) and (3.9).

5. – Nonzero-temperature hydrodynamic model

In this section we extend the considerations of the previous sections to an ensemble
of electrons, in order to obtain a nonzero-temperature model for the Kane system. An
ensemble of electrons is represented by a mixed quantum-mechanical state, which is
a sequence of single states with occupation probabilities λk for the k-th single state,
k = 0, 1, 2, . . . , described by the envelope function in the conduction band, ψk

c , and by
the envelope function in the valence band, ψk

v . The occupation probabilities are such
that

∑∞
k=0 λk = 1.

The k-th state for the Kane system is described by the solutions of the system

(5.1)




iε
∂ψk

c

∂t
= −ε

2

2
∆ψk

c + Vcψ
k
c − ε2P ·∇ψk

v ,

iε
∂ψk

v

∂t
= −ε

2

2
∆ψk

v + Vvψ
k
v + ε2P ·∇ψk

c .

Using the Madelung-type transforms, under the assumption of positivity of the densities
nk

c and nk
v ,

ψk
c =

√
nk

c exp
[
iSk

c /ε
]
, ψk

v =
√
nk

v exp
[
iSk

v /ε
]
,
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the previous system is equivalent to

(5.2)




∂nk
c

∂t
+ divJk

c = − 2P · Im (nk
cvu

k
v),

∂nk
v

∂t
+ divJk

v = 2P · Im (nk
cvu

k
c ),

∂Jk
c

∂t
+ div

(
Jk

c ⊗ Jk
c

nk
c

)
− nk

c∇
(
ε2∆

√
nk

c

2
√
nk

c

)
+ nk

c∇Vc =

= ε∇Re (nk
cvP ·uk

v) − 2 Re
(
nk

cvP ·uk
vu

k
c

)
,

∂Jk
v

∂t
+ div

(
Jk

v ⊗ Jk
v

nk
v

)
− nk

v∇
(
ε2∆

√
nk

v

2
√
nk

v

)
+ nk

v∇Vv =

= − ε∇Re (nk
cvP ·uk

c ) + 2 Re
(
nk

cvP ·uk
cu

k
v

)
,

ε∆σk = ∇
(
Jk

v

nk
v

− Jk
c

nk
c

)
,

with

Jk
c = nk

c∇Sk
c , Jk

v = nk
v∇Sk

v , σk =
Sk

v − Sk
c

ε
,

nk
cv =

√
nk

c

√
nk

v exp
[
iσk

]
,

uk
c =

ε∇
√
nk

c√
nk

c

+ i
Jk

c

nk
c

, uk
v =

ε∇
√
nk

v√
nk

v

+ i
Jk

v

nk
v

.

The densities and the currents corresponding to the two mixed states for conduction and
valence electrons can be defined as

nc :=
∞∑

k=0

λkn
k
c , nv :=

∞∑
k=0

λkn
k
v ,

Jc :=
∞∑

k=0

λkJ
k
c , Jv :=

∞∑
k=0

λkJ
k
v .

We also define

σ :=
∞∑

k=0

λkσ
k, ncv :=

√
nc

√
nv exp[iσ],

uc :=
ε∇√

nc√
nc

+ i
Jc

nc
, uv :=

ε∇√
nv√
nv

+ i
Jv

nv
.
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Multiplying (5.2) by λk and summing over k, we find

(5.3)




∂nc

∂t
+ divJc = −2P · ImRc,

∂nv

∂t
+ divJv = 2P · ImRv,

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε∇(P · ReRc) − 2P · Re Qcv,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ nvθv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= − ε∇(P · ReRv) + 2P · Re Qvc,

ε∆σ = ∇
( ∞∑

k=0

λk

(
Jk

v

nk
v

− Jk
c

nk
c

))
,

with

Rc =
∞∑

k=0

λkn
k
cvu

k
v , Rv =

∞∑
k=0

λknk
cvu

k
c ,

Qcv =
∞∑

k=0

λkn
k
cvu

k
v ⊗ uk

c , Qvc =
∞∑

k=0

λknk
cvu

k
c ⊗ uk

v .

Analogously to the one-band case [15], new terms containing the total temperature θc
and θv, for each band, appear in the current equations. The temperature tensors θc =
θos,c +θel,c and θv = θos,v +θel,v are the sum of osmotic temperature and electron current
temperature, given by

θos,c =
∞∑

k=0

λk
nk

c

nc
(uk

os,c − uos,c) ⊗ (uk
os,c − uos,c),

θel,c =
∞∑

k=0

λk
nk

c

nc
(uk

el,c − uel,c) ⊗ (uk
el,c − uel,c).

We can write

(5.4) Rc = ncv (αuv + βv), Rv = ncv (αuc + βc),

with

α :=
∞∑

k=0

λk
nk

cv

ncv
, βv :=

∞∑
k=0

λk
nk

cv

ncv
(uk

v − uv), βc :=
∞∑

k=0

λk
nk

cv

ncv
(uk

c − uc).
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These quantities are not independent, due to (3.7). By taking the gradient of α, we find

(5.5) ε∇α− βv − βc = −α
(
ε∇ncv

ncv
− uv − uc

)
,

and using this identity, it is possible to show that Rc +Rv = ε∇(αncv).
Moreover, recalling the definition of ncv, uc and uv, we find

(5.6)
ε∇ncv

ncv
− uv − uc = i

(
ε∇σ − Jv

nv
+
Jc

nc

)
.

Using this identity in (5.5), we get

1
iα

(
ε∇α− βv − βc

)
= −ε∇σ +

Jv

nv
− Jc

nc
,

which implies

Re
{

1
α

(
ε∇α− βv − βc

)}
= 0,

Im
{

1
α

(
ε∇α− βv − βc

)}
= −ε∇σ +

Jv

nv
− Jc

nc
.

Next, in order to obtain an expression of the coupling terms between the two bands
by a sort of temperature tensors, we write

Qcv = ncv (αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv) ,
Qvc = ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc) ,

with

θcv :=
∞∑

k=0

λk
nk

cv

ncv
(uk

v − uv) ⊗ (uk
c − uc),

θvc :=
∞∑

k=0

λk
nk

cv

ncv
(uk

c − uc) ⊗ (uk
v − uv).
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In conclusion, using the new quantities defined above, system (5.3) becomes

(5.7)




∂nc

∂t
+ divJc = − 2P · Im [ncv (αuv + βv)],

∂nv

∂t
+ divJv = 2P · Im [ncv (αuc + βc)],

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε P ·∇ Re (ncv(αuv + βv))−
− 2P · Re

(
ncv(αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv)

)
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ nvθv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε P ·∇ Re (ncv (αuc + βc)) +

+ 2P · Re
(
ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc)

)
,

ε∇σ − Jv

nv
+
Jc

nc
= − Im

{
1
α

(
ε∇α− βv − βc

)}
.

Unlike system (4.17), this system, which can be considered as a nonzero-temperature
quantum fluid model, is not closed. The quantities ncv, uc, and uv, already present in
(4.17), are expressed in terms of nc, nv, Jc, Jv, and σ, while the new quantities α, βc,
and βv are linked between them by

Re
{

1
α

(
ε∇α− βv − βc

)}
= 0.

and need appropriate closure relations. Moreover, we must assign constitutive relations
for the tensors θc, θv, θcv and θvc, the first ones formally analogous to the temperature
tensor of kinetic theory.

A simple class of closure conditions can be obtained by assigning a function α =
α(nc, nv, σ) and taking

(5.8) βc = 2nc
∂ᾱ

∂nc
uos,c − ∂ᾱ

∂σ
uel,c, βv = 2nv

∂α

∂nv
uos,v +

∂α

∂σ
uel,v.

Then, we have

ε∇α− βv − βc = 0,

which implies

ε∇σ − Jv

nv
+
Jc

nc
= 0.

In particular, it is possible to choose

(5.9) α = 1, βc = βv = 0.
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We still need to consider the temperature tensors θc, θv, θcv and θvc. Heuristically,
following the analogy with the single-band fluid-dynamical model [3], the simplest closure
relation is

(5.10) θc =
1
nc
pc(nc)I, θv =

1
nv
pv(nv)I, θcv = θvc = 0,

where I is the identity tensor and the functions pc and pv can be interpreted as pressures.
In this way we obtain the simplest two-band, isentropic, fluid-dynamical model:

(5.11)




∂nc

∂t
+ divJc = − 2P · Im (ncv uv),

∂nv

∂t
+ divJv = 2P · Im (ncv uc),

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ pc(nc)I

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε P ·∇ Re (ncvuv) − 2P · Re (ncvuv ⊗ uc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ pv(nv)I

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε P ·∇ Re (ncv uc) + 2P · Re (ncv uc ⊗ uv) ,

ε∇σ − Jv

nv
+
Jc

nc
= 0.

We remark that if the (classical) pressures are linear functions of nc and nv, respectively,
then we reduce to the so-called isothermal case.

6. – The drift-diffusive scaling

In kinetic theory of gases, it is customary to introduce a relaxation-time term in order
to simulate the mechanisms which force the system towards the statistical mechanical
equilibrium. In semiconductor physics, the collisional mechanisms are more intricate and
difficult to simulate by simple phenomenological models. Anyway, also in this case, it is
classical to introduce momentum and energy relaxation times.

First, we consider a modified version of the single state system (4.17), with additional
relaxation terms for the currents, by rewriting the current equations as

(6.1)




∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε∇Re (ncvP ·uv) − 2 Re (ncvP ·uvuc) − Jc

τ
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε∇Re (ncvP ·uc) + 2 Re (ncvP ·ucuv) − Jv

τ
.

Here τ is a relaxation time, which we assume equal for the two bands.
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In analogy with the classical diffusive limit for a one-band system [3], we introduce
the following (diffusive) scaling:

(6.2) t→ t

τ
, Jc → τJc, Jv → τJv .

Consequently, from definition (3.3), the phase difference has to be rescaled in such a way
that

ε∇σ =
Jv

nv
− Jc

nc
→ τ

Jv

nv
− τ Jc

nc
= τε∇σ .

This simple consideration leads to the ansatz

σ → σ0 + τσ ,

where σ0 is a constant phase to be determined. Then, we have

ncv → √
nc

√
nv e

iσ0 + i
√
nc

√
nv e

iσ0στ +O(τ2),

uc → ε∇√nc√
nc

+ i
τJc

nc
,

uv → ε∇√nv√
nv

+ i
τJv

nv
.

Using these relations, for the coupling terms we find

ncvuv → √
nc

√
nv e

iσ0uos,v + i
√
nc

√
nv e

iσ0 (σuos,v + uel,v) τ +O(τ2) ,
ncvuc → √

nc
√
nv e

−iσ0uos,c − i√nc
√
nv e

−iσ0 (σuos,c − uel,c) τ +O(τ2) .

According to the previous scaling, up to the first order in τ , the balance equations for
the densities become

(6.3)




τ
{∂nc

∂t
+ divJc

}
= −2

√
nc

√
nv sinσ0P ·uos,v−

−τ
{

2
√
nc

√
nv cosσ0 (σP ·uos,v + P ·uel,v)

}
+O(τ2),

τ
{∂nv

∂t
+ divJv

}
= −2

√
nc

√
nv sinσ0P ·uos,c−

−τ
{

2
√
nc

√
nv cosσ0 (σP ·uos,c − P ·uel,c)

}
.

Formally, as τ tends to zero, the previous equations give sinσ0 = 0, that is, σ0 = 0.
Using this value, as τ tends to zero, the limit equations of (6.3) take the form

(6.4)



∂nc

∂t
+ divJc = −2

√
nc

√
nv (σP ·uos,v + P ·uel,v) ,

∂nv

∂t
+ divJv = −2

√
nc

√
nv (σP ·uos,c − P ·uel,c) .
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Finally, performing the previous scaling on the current equations and expressing the
osmotic and current velocities in terms of the other hydrodynamic quantities, the hydro-
dynamic system will be formally reduced to

(6.5)




∂nc

∂t
+ divJc = −2εσ

√
nc P ·∇√nv − 2

√
nc√
nv
P ·Jv,

∂nv

∂t
+ divJv = −2εσ

√
nv P ·∇√nc + 2

√
nv√
nc
P ·Jc,

Jc = nc ∇
(
ε2∆

√
nc

2
√
nc

)
− nc∇Vc+

+ ε2∇ (
√
nc P ·∇√nv) − 2ε2P ·∇√nv ∇√nc ,

Jv = nv∇
(
ε2∆

√
nv

2
√
nv

)
− nv∇Vv−

− ε2∇ (
√
nv P ·∇√nc) + 2ε2P ·∇√nc ∇√nv ,

ε∇σ =
Jv

nv
− Jc

nc
.

This system represents the analog of the zero-temperature quantum drift-diffusion model
for the Kane system.

We can use the same procedure to perform the diffusive limit of the non-zero temper-
ature system (5.7). As before, we consider a modified version of system (5.7), with addi-
tional relaxation terms for the currents. Using the closure relation (5.8), we rewrite (5.7)
as

(6.6)




∂nc

∂t
+ divJc = − 2P · Im [ncv (αuv + βv)],

∂nv

∂t
+ divJv = 2P · Im [ncv (αuc + βc)],

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc =

= ε P ·∇ Re (ncv(αuv + βv))−

− 2P · Re
(
ncv(αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv)

) − Jc

τ
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ nvθv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv =

= −ε P ·∇ Re (ncv (αuc + βc)) +

+ 2P · Re
(
ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc)

) − Jv

τ
,

ε∇σ − Jv

nv
+
Jc

nc
= 0.

As done for the zero-temperature system, we introduce the (diffusive) scaling (6.2)
which again leads to the ansatz σ → σ0 + τσ , where σ0 is a constant phase to be
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determined. Moreover, we assume that

α→ α0 + τα, α0 = α0.

A justification of this ansatz can be found by inspecting the definition of α in terms of
the mixed densities of the simple states nk

cv. Basically, we are assuming that for all k we
have σk → σ0 + τσk, for the same σ0. As a result, the first term of the expansion of α
around τ = 0 is real.

Then, proceeding as for the zero-temperature system, we find σ0 = 0 and

(6.7)




∂nc

∂t
+ divJc = − 2

√
nc

√
nv (αvσP ·uos,v + α0P ·uel,v) ,

∂nv

∂t
+ divJv = − 2

√
nc

√
nv (αcσP ·uos,c − α0P ·uel,c) ,

Jc = − div (ncθc) + nc∇
(
ε2∆

√
nc

2
√
nc

)
− nc∇Vc+

+ ε P ·∇ (
√
nc

√
nvαvuos,v) − 2

√
nc

√
nv (αcvP ·uos,vuos,c + P · Re θcv) ,

Jv = − div (nvθv) + nv∇
(
ε2∆

√
nv

2
√
nv

)
− nv∇Vv−

− ε P ·∇ (
√
nc

√
nvαcuos,c) + 2

√
nc

√
nv (αcvP ·uos,cuos,v + P · Re θvc) ,

ε∇σ − Jv

nv
+
Jc

nc
= 0,

with

αc := α0 + 2nc
∂α0

∂nc
, αv := α0 + 2nv

∂α0

∂nv
, αcv := α0 + 2nc

∂α0

∂nc
+ 2nv

∂α0

∂nv
.

7. – Concluding remarks

In this paper we have applied the WKB method in order to rewrite the two-band,
Schrödinger-like, Kane’s system in terms of conduction and valence band electron den-
sities and currents nc, nv, Jc and Jv. The strict analogies with the single-band case have
allowed us to define the osmotic and current velocities as complex quantities which can
be expressed solely by means of nc, nv, Jc and Jv. In addition, the coupling term ncv has
been defined by introducing the phase difference σ. Then, we have obtained the hydro-
dynamic equations for a zero-temperature two-band quantum fluid in the form (4.17),
using the usual quantities nc, nv, Jc and Jv, plus the phase difference σ.

The extension to mixed quantum-mechanical state has given rise to the nonzero-
temperature quantum hydrodynamic system (5.7), which is not closed. The closure of
this system can be achieved by different methods: in this paper we have limited ourselves
to recall the isentropic and the isothermal assumptions.

As we have already said in the introduction, quantum hydrodynamic models can be
derived using different approaches, but the classical WKB method has the advantage of
handling directly mathematical quantities, which can be easily extended to the two-band
case, still keeping a specific physical meaning.
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The results presented in this work are only formal and the mathematical analysis
needs further investigations. In particular existence, uniqueness or non-uniqueness of
the solutions to such models need to be studied.

In this paper we have also performed the diffusive limit and we have deduced the
corresponding quantum drift-diffusion system.

The future research is oriented towards a physically-based closure of the hydrodynamic
system and towards the numerical validation of the drift-diffusion model.
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