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1 Introduction

In the recent past, the interest in quantum hydrodynamic models for semicon-
ductors has increased considerably. In fact, classical fluid dynamical models
fail to be adequate for new generations of semiconductor devices, where quan-
tum effects tend to become not negligible or even dominant (see [6] and the
references therein). This paper is particularly devoted to multi-band quan-
tum models, introduced to describe the Resonant Interband Tunneling Diode
(RITD) [5, 11]. In section 2 we review briefly two-band quantum models for
semiconductors arising from the Bloch envelope theory [7, 10]. In section 3
we present a new Madelung-like hydrodynamical formulation for the previous
models, based on a suitable definition of osmotic and current velocities. This
method has been applied in [1] to the Kane model. We conclude this paper
with a thorough physical discussion of the models, with some numerical exper-
iments showing the different description of the interband resonant tunneling
of the previous models.

2 The envelope function models

In quantum mechanics the motion of an electron is described by a quan-
tum Hamiltonian operator, which governs the evolution of a wave function
Ψ , whose modulus n(x, t) := |Ψ(x, t)|2 represents the probability density of
finding the electron at the position x and time t. Since we are interested
in modeling multi-band quantum effects, it is necessary to introduce quan-
tum densities for each band, with a possibly clear physical meaning. Then,
the tunneling process will be described by an operator which is non-diagonal
with respect to the band index. In view of this, the effective mass formalism,



2 Giuseppe Al̀ı, Giovanni Frosali, and Omar Morandi

and in particular the k·p envelope function method, seems to be the natural
framework for multi-band analysis [12].

The basic idea behind k ·p theory is that we do not need to calculate
the evolution of the full wave function to obtain the trajectory of an electron
through the crystal but it is sufficient to calculate the evolution of the so-
called envelope function, a smooth function which is obtained by replacing Ψ
by its average in each primitive cell. So, the microscopic structure of the full
wave function is not relevant.

The application of the k ·p theory gives rise to models which differ both
by the choice of the set of basis functions, and by the approximation procedure.
Generally speaking, k ·p models arise from perturbative methods where the
crystal momentum k is considered a “small” quantity. Typically, this analysis
applies when k = 0 is a stationary point (the Γ point) for the dispersion
relation of the band, since the momentum of the electron is localized around
this point. Different sets of basis functions are generated by using suitable
projection operators on the Bloch basis in such a way that the new basis
elements “approach” the original Bloch waves as |k| tends to zero. The most
common choice of k ·p basis was proposed by Kane (in its pioneering paper
of 1956 [7]) with the aim of approximating the periodic part of each Bloch
function by its value at the Γ point. In spite of its simplicity, this choice
fails to give an adequate physical interpretation of tunneling phenomena. To
overcome this difficulty, other choices have been proposed in literature [9].
In particular, in this paper, we refer to the Multi-band Envelope Function
(MEF) model [10].

Since every k ·p model involves a full coupling among all unperturbed
bands, to retain only those terms which are well localized into the bands of
interest, a cutoff is employed in the expansion of the solution Ψ . In semi-
conductor devices, the current is mainly generated by transport of electrons
in conduction band and in light hole valence band, thus it is customary to
approximate the wave function Ψ solely by its conduction and valence com-
ponents, denoted here ψc and ψv, respectively.

Irrespectively of the choice of the basis, the conduction and valence com-
ponents are determined by solving a Schrödinger-like equation of the form

i~
d

dt

(

ψc

ψv

)

= H

(

ψc

ψv

)

, (1)

where H is an approximation of a full-band Hamiltonian. Its diagonal compo-
nents correspond to uncoupled bands, and the off-diagonal terms account for
interband effects. This type of approximation can be performed in different
ways [4], and the method of approximating the Bloch basis affects the spe-
cific form of H deeply, not only from a formal point of view, but also from a
physical one.

Using the classical Kane basis, Ψ can be approximated by

Ψ(x, t) ' ψK
c (x, t)uK

c (x) + ψK
v (x, t)uK

v (x). (2)
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Here, uK
a is the periodic part of the Bloch function ba(k, x), a = c, v, evaluated

at k = 0. Instead, the MEF model uses an expansion in the Wannier basis,
approximating the conduction and valence components up to the first order
in |k| [10]. Then, Ψ can be approximated by

Ψ(x, t) ' ψM
c (x, t)uM

c (x) + ψM
v (x, t)uM

v (x). (3)

It is well known that each Wannier basis element arises from applying the
Fourier transform to the Bloch functions related to the same band index n.
The envelope functions ψM

c and ψM
v are the projections of Ψ on the Wannier

basis, and therefore the corresponding multi-band densities represent the (cell-
averaged) probability amplitude of finding an electron on the conduction or
valence bands, respectively.

This simple picture does not apply to the Kane model. In fact, in the
Kane approach, the periodic part un(k, x) of each element of the Bloch
basis, bn(k, x) = eikxun(k, x), is projected on the same basis but calcu-
lated for k = 0. Thus, the generic element of the Kane basis, defined by
bKn (k, x) = eikxuK

n (0, x), is no more linked to the Bloch basis by a diago-
nal transformation. This fact can be simply verified by introducing a unitary
operator Θn,n′ such that un(k, x) =

∑

n′ Θn,n′(k)uK
n′(0, x). Then, we have

bn(k, x) = eikxun(k, x) =
∑

n′

eikxΘn,n′(k)uk
n′(0, x) =

∑

n′

Θn,n′(k)bKn′(k, x).

Θn,n′ written for two bands and approximated up to the first order in |k| is

Θn,n′(k) = δn,n′ +
~

2

m0

∑

n6=n′

Pn,n′

En − En′

k. (4)

At the envelope function level, (4) implies that Kane envelope functions
and MEF envelope functions are connected by the relation ψK

a =
∑

bΘb,aψ
M
b .

Using transformation (4) at the first order in |k|, we can write explicitly [10]

ψK
a = ψM

a + i
~

2

m0

∑

b6=a

Pa,b

Ea − Eb
∇ψM

b . (5)

Going back to (1), for the Kane model the Hamiltonian takes the form

H = HK :=











− ~
2

2m0

∆+ Ec + V − ~
2

m0

P · ∇

~
2

m0

P · ∇ − ~
2

2m0

∆+ Ev + V











, (6)

where Ec is the minimum of the conduction band energy, Ev is the maximum
of the valence band energy, m0 is the bare electron mass and P := Pc,v is the
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coupling coefficient between the two bands given by the matrix element of the
gradient operator between uK

c and uK
v [7, 3].

For the MEF model in a semiconductor with isotropic effective mass tensor,
the Hamiltonian is

H = HM :=













− ~
2

2m∗
c

∆+Ec + V −~
2P · ∇V
m0Eg

−~
2P · ∇V
m0Eg

~
2

2m∗
v

∆+ Ev + V













, (7)

where Eg = Ec − Ev and m∗
c , m

∗
v are the effective masses for the conduction

and valence bands, respectively. In the following we will assume m∗
c = m∗

v =
m∗ and, for simplicity, we will focus on one-dimensional systems.

3 Hydrodynamic models

In this section, following the technical procedure proposed in [1], we compare
the hydrodynamic formulations of the Kane and MEF models.

In general, we expect a straightforward extension of the hydrodynamical
formalism for a single-band semiconductor to multi-band framework, provided
that each component of the wave function behaves like the electron wave
function in a single-band whenever no interband effects are present.

In this work we apply the WKB method, which is a standard way to write
the Schrödinger equation in hydrodynamic form [6]. Extending this approach
to two-band models, we look for solutions to the system (1), written with
H = HA, A = K,M (see (6) and (7)), of the form

ψA
a (x, t) :=

√

nA
a (x, t) exp

(

imA

~
SA

a (x, t)

)

, a = c, v , (8)

with mK = m0, m
M = m∗. In the following, we will not specify the attribu-

tions of the indices a and A. The squared amplitude nA
a can be immediately

regarded as a probability density of the electron in the band a, and the gradi-
ent of the phase corresponds to the velocity of the electron in the same band.
We remark that both nM

c +nM
v = |ψM

c |2+|ψM
v |2 and nK

c +nK
v = |ψK

c |2+|ψK
v |2

can be interpreted as approximations of the true total density number of elec-
trons, which in principle are different, due to the different type of expansion
used in the Kane and MEF approaches. Using (8), we can transform system
(1), written with H = HA, for the variables ψA

a , to a formally equivalent
system for the variables nA

a , SA
a . To derive a hydrodynamical formulation of

(1), we introduce the complex velocities uA
a := ~

mA ∇ logψA
a , and write

uA
a = uA

os,a + iuA
el,a :=

~

mA

∇
√

nA
a

√

nA
a

+ i∇SA
a . (9)
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The real and imaginary parts of uA
a are named osmotic velocities and

current velocities, respectively. Also, we introduce the electron current den-
sities JA

a := ~

mA Im (ψA
a ∇ψA

a ) = nA
a u

A
el,a and the interband particle densities

nA
cv = nA

vc = ψA
c ψ

A
v =

√

nA
c

√

nA
v e

iσA

, with σA := mA

~
(SA

v − SA
c ).

Using the above definitions in (1), we can derive equations for the particle
densities nA

c , nA
v , and the currents JA

c , JA
v ,

∂nA
c

∂t
+ ∇·JA

c = SA
cv ,

∂nA
v

∂t
+ α∇·JA

v = SA
vc , (10)

∂JA
c

∂t
+ div

(

JA
c ⊗ JA

c

nA
c

)

+
nA

c

mA
∇

(

Ec + V + V A
c + V A

cv

)

= SA
cv

JA
c

nA
c

, (11)

∂JA
v

∂t
+ α div

(

JA
v ⊗ JA

v

nA
v

)

+
nA

v

mA
∇

(

Ev + V + αV A
v + V A

vc

)

= SA
vc

JA
v

nA
v

, (12)

with α = 1 for the Kane model and −1 for the MEF model. Here, V A
a =

− ~
2∆

√
nA

a

2mA
√

nA
a

are the Bohm potentials for each band, the interband potentials

V A
ab are given by

V K
cv = −~ Re

(

nK
cvP ·uK

v

nK
c

)

, V K
vc = ~ Re

(

nK
vcP ·uK

c

nK
v

)

,

V M
cv = V M

vc = − ~
2P ·∇V
m0EgnM

c

Re nM
cv ,

and we have introduced

SK
cv = −2 Im

(

nK
cvP ·uK

v

)

, SK
vc = 2 Im

(

nK
vcP ·uK

c

)

,

SM
cv = −SM

vc = −2~P ·∇V
m0Eg

Im nM
cv .

In order to close the system and obtain an extension of the classical
Madelung fluid equations, we need to add an equation for σA,

~

mA
∇σA =

JA
v

nA
v

− JA
c

nA
c

. (13)

Summing the equations for the densities, we obtain the balance law for
the total density (continuity equation). We see that for the MEF model, the
total current is the sum of the currents for valence and conduction band. In
the Kane model, the continuity equation reads

∂

∂t
(nK

c + nK
v ) + ∇·(JK

c + JK
v + 2

~

m0

P ImnK
cv) = 0.

The appearance of an additional interband term for the current is an indica-
tion of the inadequacy of the Kane-based hydrodynamical model. This topic
will be discussed in details in the following section.
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Fig. 1. Band diagram of the simulated
heterostructure. The dotted line de-
notes the energy of the resonant state
in the valence quantum well.

Fig. 2. Plot of the transmission coeffi-
cient of the heterostructure as a func-
tion of the Einc

4 Numerical results

In this section we show some numerical results arising from the two proposed
approaches. Our aim is to show that a more direct physical meaning can be
ascribed to the hydrodynamical variables derived from the MEF approach.

We consider a heterostructure which consists of two homogeneous regions
separated by a potential barrier and which realizes a single quantum well
in valence band. In figure 1 we have marked the energy of resonant state
Eris = 0.066 eV , which is given by the solution of an eigenvalue problem
for the Hamiltonian operator. In our simulation, we have used the following
parameters: Eg = Ec − Ev = 0.16 eV , m∗ = 0.023 m0, P = 5 · 109m−1.

A conduction electron beam (i.e. a plane wave envelope function with posi-
tive momentum k and energy ~

2k2/2m∗+Ec) is injected in the heterostructure
from the left. Then, the analytical solution for eq. (1) in the regions x < 0
and x > L is explicitly given by ψ = e−iEinct/~ψA were

ψA =







eA
c

{

eikx + rc e
−ikx

}

+ eA
v rv e

ikrvx , x ∈ (−∞, 0]
A = M,K

eA
c tc e

ikx + eA
v tv e

−ikrvx , x ∈ [L,∞)

where ψA =

(

ψA
c

ψA
v

)

, krv = − i
~

√

2m∗(Einc −Ev), and eA
c , eA

v are unitary

vectors defined as follows: eM
c =

(

1
0

)

, eM
v =

(

0
1

)

for the MEF model, and

eK
c =





√√
η+Eg

2
√

η

i
√√

η−Eg

2
√

η



, eK
v =





√√
η−Eg

2
√

η

−i
√√

η+Eg

2
√

η



, with η = E2
g +4

~
2k2P 2

m2
0

, for the

Kane model. Furthermore, rc(tc) and rv(tv) are the reflection (transmission)
coefficients in the conduction and valence bands, respectively. They depend
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on the detailed shape of the heterostructure, and are numerically evaluated by
a Runge-Kutta scheme which solves directly the eigenvalue problem related
to eq. (1), obtained, as usual, by formally replacing i~ d

dt with E [8] .

Fig. 3. MEF model: Einc = 0.028 eV Fig. 4. Kane model: Einc = 0.028 eV

Fig. 5. MEF model: Einc = 0.046 eV Fig. 6. Kane model: Einc = 0.046eV

Fig. 7. MEF model: Einc = 0.066 eV Fig. 8. Kane model: Einc = 0.066 eV
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We calculate the envelope function solution in the region 0 < x < L for
incremental values of the electron beam energy. The results are plotted in
figures 3-8 (left-hand side for the MEF model, and right-hand side for the
Kane model).

When the electron energy is well below of the resonant energy Eris (fig. 3-
4) the incident conduction plane wave is reflected: rc approaches 1 and, con-
sequently, the transmission coefficient tc tends to 0. In this case the valence
states are almost unexcited and a small amount of charge cumulates in the
valence quantum well. Instead, when the electron energy approaches the res-
onant level, the transmission coefficient enhances and the electron can travel
from the left to the right of the heterostructure by using the bounded valence
resonant state as a “bridge” state. Identifying ψM

c and ψM
v with the com-

ponents of the electron wave function in conduction and valence band, it is
immediate to verify how their behaviour reflects the previous considerations.

Further, since in the MEF model the coupling coefficient of conduction
and valence band is proportional to ∇V , interband current flow arises only in
proximity of the interfaces, when both ψM

c and ψM
v are not vanishing.

On the other hand, even in absence of an external potential, when no
interband transition can occur, the Kane model exhibits a coupling of all the
envelope functions. Then, the naive interpretation of the envelope functions
which we have ascertained for the MEF model, cannot be directly extended
to the Kane model.
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2001.

7. E. O. Kane, Energy band structure in p-type Germanium and Silicon, J. Phys.

Chem. Solids 1, 82–89 (1956).
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