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Motivation

• Goal: provide macroscopic models for semiconductor nanodevice simulation.

• Many devices work at high-field regimes: Drift-Diffusion models fail. Huge literature about

“corrected” models (F. Poupaud, P. Degond, N. Ben Abdallah, I.M. Gamba, A. Jüngel and

many others).

Common point: semi-classical approach, i.e. Boltzmann equation for semiconductors.

• Boltzmann equation has proved suitable for including diverse mechanisms, physical regimes,. . . .

BUT advance in semiconductor technology requires to consider quantum effects at quasi-

ballistic regimes

=⇒ quantum macroscopic models.
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Wigner-BGK equation

w = w(x, v, t), (x, v) ∈ R2d, t ≥ 0 quasi-distribution function for an electron ensemble with

d degrees of freedom. 1/kβ phonon temperature, V applied potential (also self-consistent).

∂tw + v · ∇xw − Θ[V ]w = −ν(w − weq) , t > 0 , w(t = 0) = w0 ,

Θ[V ]w(x, v) := iF−1
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with ν inverse relaxation-time, m effective mass, and F = Fv→η Fourier transform.

weq(x, v, t), O(~2)-accurate local thermal equilibrium distribution function (with β, V assigned),∫
weq(x, v, t) dv = n(x, t) :=

∫
w(x, v, t) dv , electron position density.
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Wigner equation: semiclassical limit
In the Fourier space (η dual variable)

F (Θ[V ]w(x, v)) :=
i
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(
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then

Θ[V ]w
~→0−→ −

1

m
∇xV (x)· ∇vw Vlasov operator.

Θ[V ]w = −
1

m
∇xV (x)· ∇vw +O(~2

) .

Fact: the v-moments of Θ[V ] and of −(1/m)∇xV (x)· ∇v coincide up to 2nd-order moments.

Instead, ∫
v

3
Θ[V ]w dv = −

1

m

∫
v

3∇xV (x)· ∇vw dv +
~2

4m3
n∇x∆xV .
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Derivation of quantum macroscopic models

Questions:

• what are the differences in using −(1/m)∇xV (x)· ∇v in spite of Θ[V ] for the derivation of

quantum macroscopic models?

Remark: quantum corrections due to weq, which isO(~2)-accurate, appear already in 2nd-order

moments: ∫
v ⊗ v weq dv =

nI

βm
+

β~2

12m2
n∇x ⊗∇xV .

• And in high-field regimes?
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High-field Wigner-BGK equation

ε
α

wt + ε v · ∇xw −Θ[V ]w = −ν(w − weq) , t > 0 , w(t = 0) = w0 ,

with α = 1, 2. α = 2 is the diffusive scaling.

tV

t0

≈
tC

t0

≈ ε

with tV , tC, t0 characteristic times, is the high-field scaling (cf. [Poupaud 91], semiclassical case).

External potential and interaction with phonons are the dominant mechanisms in the evolution and

balance each other.

At the leading order, ε = 0, the solution of (ν −Θ[V ])w = νweq is

w
(0)

:= (νI −Θ[V ])
−1

νweq = νF−1

( Fweq

ν − i δV

)
by using the Vlasov operator, the solution of (ν +∇xV/m· ∇v)f = νweq is

f
(0)

:=

(
νI +

∇xV

m
· ∇v

)−1

νweq = νF−1

( Fweq

ν + i η· ∇xV/m

)
.
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High-field Wigner-BGK: leading order

• the moments up to 2nd-order of w(0) and of f (0) are equal,

• the macroscopic velocity at the leading order is

1

n

∫
v w

(0)
dv =

1

n

∫
v f

(0)
dv = −

∇xV

νm
,

i.e., is determined by the field (assigned),

• both quantum and high-field corrections appear in the 2nd-moment tensor∫
v ⊗ v w

(0)
dv =

∫
v ⊗ v f

(0)
dv =

∫
v ⊗ v weq dv + 2 n

∇xV

νm
⊗
∇xV

νm
,

where ∫
v ⊗ v weq dv =

nI

βν
+

β~2

12m2ν
n∇x ⊗∇xV .

Remark: both with Θ[V ] and when substituting it with −(1/m)∇xV · ∇v !!
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High-field Quantum Drift-Diffusion [Manzini, Frosali 06]

ε wt + ε v · ∇xw −Θ[V ]w = −ν(w − weq) , t > 0 , w(t = 0) = w0 ,

• by a “modified” Chapman-Enskog expansion [Mika, Banasiak] up to 1st-order in ε, obtain a

Quantum Drift-Diffusion equation with unknown n and field-dependent corrections,

• prove rigorously high-field QDD is O(ε2)-accurate approximation of high-field Wigner-BGK,

• treat at the same time the initial layer part that provides initial datum for high-field QDD.

Remark: coincides with [Poupaud 91], apart from quantum correction: depends on the use of

O(~2)-accurate equilibrium function weq

∂n

∂t
−∇ · ∇(Dn)−∇ · (E n) = 0 ,

D :=
ε

ν

(
I

βm
+
∇V

mν
⊗
∇V

mν
+

β~2

12m2
∇⊗∇V

)
,
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∇V

mν

(
I +

ε

ν

∇⊗∇V

mν

)
.
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Derivation of quantum macroscopic models (continued)

Questions and Answers:

• what are the differences in using −(1/m)∇xV (x)· ∇v in spite of Θ[V ] for the derivation of

quantum macroscopic models? And in high-field regimes?

In macroscopic models that involve only 2nd-order moments, there is NO difference, also in the

high-field regime.

New goal: derivation of macroscopic models involving higher order moments with high-field and

quantum corrections.

Since at the leading order in ε holds

1

n

∫
v w

(0)
dv = −

∇xV

νm
,

i.e., the fluid velocity is determined by the (high) field, we consider as fluid unknown functions

position density n and energy W .
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High-field Quantum Fluid-dynamical model (in progress)

ε
2
wt + ε v ·∇xw + ε ν1(w−weq)−Θ[V ]w = −ν2(w−weq) , t > 0 , w(t = 0) = w0 .

We add an unbalanced BGK term with inverse relaxation-time ν1 and set in weq

1/kβ =: T (x, t) .

Via a Chapman-Enskog expansion up to the 1st-order in ε, we write w = w(0) + εw(1) with

w
(0)

:= (ν2I −Θ[V ])
−1

ν2 weq = ν2F−1

( Fweq

ν2 − i δV

)
w

(1)
:= (ν2I −Θ[V ])

−1
(
−v · ∇xw

(0) − ν1(w
(0) − weq)

)
.

We recover evolution equations for the fluid unknown n,W , defined by

n(x, t) :=

∫
w

(0)
dv ,

W(x, t) :=

∫
v2

2
w

(0)
dv =

d k nT

2ν2

+
~2

24m2ν2kT
n ∆xV + n

|∇xV |2

(ν2m)2
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High-field Quantum Fluid-dynamical model (continued)

∂n

∂t
−

1

ν2

∇·
(
∇
∫

v ⊗ v w
(0)

dv −
∇xV

mν2

∇·
∫

v w
(0)

dv + 2ν1

∫
v w

(0)
dv

)
= 0 ,

∂n

∂t
−∇ · ∇(D1n)−∇ · (E1 n) = 0 ,

D1 :=
1

ν2

(
kT

m
I + 3

∇V

mν2

⊗
∇V

mν2

+
~2

12m2kT
∇⊗∇V

)
,

E1 :=
1

ν2

(
2 ν1 I +

∇⊗∇V

mν2

)(
−
∇V

mν2

)
.

Remarks:

• the first equation contains moments up to the 2nd-order of w(0), thus the Vlasov operator can

substitute Θ[V ],

• high-field tensor differs from QDD model by D1 = D + 2
∇V

mν2

⊗
∇V

mν2

.
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High-field Quantum Fluid-dynamical model (continued)

∂W
∂t

+∇·
∫

v
v2

2
w

(1)
dv + ν1

∫
v2

2
w

(1)
dv = 0 ,

∂n

∂t
−∇ · Jn = 0 , Jn := ∇(D1n) + (E1 n)

∂W
∂t

− ν1Jn·
(
−
∇V

mν2

)
− ν1∇ · J3

w −∇ · J
4
w = 0

J
3
w := 2

(
W
(
−
∇V

mν2

)
+

(
D1n + 2

∇V

mν2

⊗
∇V

mν2

n

)(
−
∇V

mν2

)
+ 2

~2

8m3
n∇x∆xV

)

Remarks:

• J3
w contains moments up to the 3rd-order of w(0), thus the Vlasov operator can NOT substitute

Θ[V ] in the derivation,

11



High-field Quantum Fluid-dynamical model (continued)

• J4
w contains moments up to the 4th-order of w(0) and also the energy flux, defined by

J
4
w :=

∫
v ⊗ v v

2
weq dv+

∇·∇
((

W + D1n + 3
∇V

mν2

⊗
∇V

mν2

n

)(∇V

mν2

⊗
∇V

mν2

n

)
+ 2

~2

8m3
n∇x∆xV

∇xV

ν2m

)
+ . . .
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Conclusions

• goal:derive macroscopic models for electron transport in semiconductor nanodevices,

• required feature of the model: capture quantum effects and high-field ones,

• in the derivation of drift-diffusion model the Vlasov operator can substitute Θ[V ],

• in the derivation of of more accurate models (Energy-Transport, e.g.), Θ[V ] is necessary to

picture all the quantum effects.
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