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Simulation of the Rashba Effect in a Multiband Quantum Structure
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Abstract. The aim of this work is to present an extension of the “kp” multiband model derived in [4], to include
the description of the degenerate bands and the spin-orbit coupling, and its application to some spin-sensitive
devices. The model is derived within the usual Bloch-Wannier formalism by a k-expansion, and it is applied to
calculate the spin dependent transmission coefficients for an asymmetric resonant interband diode.
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1. Introduction

In recent years, much interest has been devoted to the
investigation of spin phenomena in semiconductors.
Various devices containing asymmetric quantum wells,
where quantized states are spin-split by the Rashba
effect, have already been proposed and the properties
of such devices have been analyzed from a theoretical
point of view [1, 2]. The mixing of valence and conduc-
tion bands at the interfaces makes a many-band treat-
ment necessary and, in particular, requires a realistic
description of the degenerate valence-band edge.

In this work we propose a new model derived within
the usual Bloch-Wannier formalism by a k-expansion.
The effective-mass equations are based on an invariant
expansion of the valence-band Hamiltonian, which is
intimately related to the symmetry of the diamond lat-
tice [3]. We present the six-band version of our model,
which gives a full description of the coupling between
the conduction and the valence band for the most com-
mon semiconductors. In particular, this model gener-
alizes the model derived in [4] to include the descrip-
tion of the degenerate bands and the spin-orbit cou-

pling.
The paper is organized as follows. In Section 2 we

discuss the derivation of the model and the approxi-
mations employed; Section 3 describes the transpar-
ent boundary conditions and in Section 4 we present
our numerical results for an asymmetric resonant in-
terband tunneling diode.

2. Multiband envelope function model

We consider an electron of massm0 moving in a peri-
odic potential VL and subject to an additional external
potential U which is treated as a perturbation. The
Hamiltonian which governs the motion of the electron
is given by

H = H0 + U(r) − iζ (∇U(r) ∧∇) · σ (1)

where

H0 = − ~
2

2m0

∇2 + VL(r) − iζ (∇VL(r) ∧∇) · σ, (2)

ζ = ~
2/(4m2

0c
2), and σ is a vector of matrices whose

components are the Pauli spin matrices.
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It is well know that the eigenfunctions of the un-
perturbed Hamiltonian H0 are the Bloch functions
ψα

n(k, σ, r), which can be written as ψα
n (k, σ, r) =

eik·ruα
n(k, σ, r), where the uα

n(k, σ, r) have the same
periodicity properties of the crystal lattice and form a
complete set with respect to periodic functions. Also,
with Eσ

n(k) we indicate the energy bands, with the
index n denoting the bands and α running over the
possible nα degenerate states related to the eigenvalue
En. Finally, the index σ labels the spin of the elec-
tron, with σ = +,− for the spin up and spin down
components respectively.

The aim of the “kp” approach is to separate the
fast oscillating contribution to the Hamiltonian, given
by the periodic potential VL, from the slower contri-
bution, which models the lattice stress, the variabile
chemical composition of the alloy and other factors,
and which is represented in our model by the external
potential U . This is achieved by a suitable averaging
procedure of the equations of motion over each lattice
cell. More specifically, we assume that U(r) is almost
constant on a lattice cell; this is equivalent to the ap-
proximation [4, 5]

〈

ψα,σ
n,k |U |ψα′,σ′

n′,k′

〉

' Ũ(k − k′)
〈

uα,σ
n,k

∣

∣ uα′,σ′

n′,k′

〉

,(3)

where is the Fourier transform of U(r).

The evolution of the electron wave function Ψ(r, t)
is determined by the Schrödinger equation with the
perturbed Hamiltonian H. By expanding the wave
function in the Bloch basis,

Ψ(r) =
∑

n,α,σ

∫

B

ϕα
n(k, σ)ψα

n (k, σ, r) dk, (4)

where B indicates the first Brillouin zone, the follow-
ing equation is obtained for the expansion coefficients:

i~
∂ϕα

n(k, σ)

∂t
= Eσ

n(k)ϕα
n(k, σ) (5)

+
∑

n′ 6= n,
α′, σ′

∫

B

{〈

ψα,σ
n,k |U |ψα′,σ′

n′,k′

〉

ϕα′

n′ (k
′, σ′)

−iζ
〈

ψα,σ
n,k | (∇U ∧∇) · σ |ψα′,σ′

n′,k′

〉

ϕα′

n′ (k′, σ′)
}

dk′ .

By using equation (3), and by following [4] in order to
evaluate the scalar products between Bloch functions,

we obtain [7]

i~
∂ϕα

n(k, σ)

∂t
= Eσ

n(k)ϕα
n(k, σ) (6)

+
~

m0

∑

n′ 6= n,
α′, σ′

∫

B

Ũ(k − k′)(k−k′) · Q ϕα′

n′ (k′, σ′) dk,

where

Q =
π

α,α′

n,n′ (k,k
′, σ, σ′)

∆Eσ,σ′

nn′ (k,k′)
+ iζk′ ∧

〈

uα,σ
n,k

∣

∣

∣

∣

σ

∣

∣

∣

∣

uα′,σ′

n′,k′

〉

+ i
ζ

~

〈

uα,σ
n,k

∣

∣

∣

∣

p̂ ∧ σ

∣

∣

∣

∣

uα′,σ′

n′,k′

〉

,

with

π
α,α′

n,n′ (k,k
′, σ, σ′) = (7)

〈

uα,σ
n,k

∣

∣

∣

∣

p̂ +
~

4m0c2
(σ ∧∇VL)

∣

∣

∣

∣

uα′,σ′

n′,k′

〉

and

∆Eσ,σ′

nn′ (k,k′) = Eσ
n(k) − Eσ′

n′ (k′) − ~
2

2m0

(

k2−k′2
)

.

(8)
At this point, we introduce the approximations of

the “kp” theory, in which the quasi-momentum k acts
as a smallness parameter [6]. For the sake of simplicity,
we assume that all energy bands attain their maximum
or their minimum at k0 = 0. By expanding equation
(6) to first order with respect to |k| and by taking the
Fourier transform, we obtain [7]

i~
∂ϕα

n(r, σ)

∂t
= Eσ

n(−i~∇)ϕα
n(r, σ) (9)

−i~Ω

m0

∑

n′ 6= n,
α′, σ′

∇U(r) ·
π

α,α′

n,n′ (0,0, σ, σ′)

∆Eσ,σ′

n,n′(0,0)
ϕα′

n′ (r, σ′)

−iζ
∑

n′ 6= n,
α′, σ′

∇U(r) ·
〈

uα,σ
n,0

∣

∣

∣

∣

σ

∣

∣

∣

∣

uα′,σ′

n′,0

〉

∧∇ϕα′

n′ (r, σ′)

+
ζ

~

∑

n′ 6= n,
α′, σ′

∇U(r) ·
〈

uα,σ
n,0

∣

∣

∣

∣

p̂ ∧ σ

∣

∣

∣

∣

uα′,σ′

n′,0

〉

ϕα′

n′ (r, σ′).

For the corrections of higher order in k we refer to
[4]. The numerical results presented in Section 4.
show that this approximation is well suited to treat the
Rashba effect and interband tunneling phenomena.
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The symmetry properties of the crystal lattice con-
siderably reduce the number of independent parame-
ters in the previous expressions. Hereafter, we shall
refer to semiconductors belonging to the tetrahedral
point group symmetry Oh. In particular, we consider
the six-band model including the conduction and the
light and heavy holes valence bands. The basis ele-
ments belong to the irreducible representation of the
point groups Γ6 and Γ8 for the conduction and valence
band respectively. The matrix elements of equation (9)
can be easily evaluated by using the Wigner-Eckart
theorem (see [3]).

We want to apply our model to layered heterostruc-
tures, where the relevant quantum effects act only
along the growth axis; by taking the y coordinate
along the growth axis, we have U(r) = U(y) and
ϕ(r) = ϕ(y)eik⊥·r, where k⊥ is the trasverse momen-
tum, which is conserved. Furthermore, we choose the
spin axis on the transverse plane and orthogonal to
the transverse momentum k⊥. It has been proved that
this is the direction where the spin splitting is more ev-
ident. For sake of simplicity, we take k⊥ = (kx, 0, 0).
Because of the cylindrical symmetry of the problem,
the results depend only upon |k⊥| and not upon its
orientation.

By introducing the vectors

ϕh(r) =
(

ϕ
3/2

h , ϕ
1/2

h , ϕ
−1/2

h , ϕ
−3/2

h

)T

ϕc(r) =
(

ϕ+
c , ϕ−

c

)T

and the matrices

Hcc = I2×2

(

Ec − E + U − ε
m0

2mc

d2

dy2

)

+ ζkx
∂U

∂y
σz

Hvv = I6×6 (Ev − E + U) + Ih
ε

2

d2

dy2
+ kxζ

∂U

∂y

1

3
J3/2

z

Hcv = λ
∂U

∂y
Ty,

where with In×n we indicate the n× n unit matrix,

Ih = diag

(

1

mhh
,

1

mlh
,

1

mlh
,

1

mhh

)

J3/2
z = diag (3, 1, −1, −3)

Ty = − i

3
√

2

( √
3 0 1 0

0 1 0
√

3

)

,

we finally obtain

i~
∂

∂t

(

ϕc

ϕh

)

=

(

Hcc Hcv

H†
cv Hvv

)(

ϕc

ϕh

)

(10)

The other parameters are defined in Table 1

Symbol Physical Meaning
mc Effective mass in

conduction band
mlh, mhh Light, Heavy holes

effective masses

λ = ζ
√

3

~
P + ~

m0

πK Interband

coupling coefficient

πK = 3√
2
ez · π+,1/2

c,h Kane momentum

P = −i ~
2

m0

〈

ψS

∣

∣

∣

∂
∂z

∣

∣

∣
ψZ

〉

Kane momentum

without spin

Table 1: Physical meaning of symbols defined in this paper.

3. Boundary conditions

We consider the case of an electron beam injected
from the left and impacting into the simulations do-
main. We assume that the incoming electrons are lo-
calized in the conduction band and we assume that
both spin-up and spin-down directions are present.
We also assume that U(0) = U(L) = 0 and E > Ev.
The extension to more general cases is straightforward.
With these assumptions, the transparent boundary
conditions for the multiband Hamiltonian are (see [8]
for the details)

d

dy
ϕ(0) = −i Kiϕ(0) + ι (11)

d

dy
ϕ(L) = −i Ktϕ(L), (12)

where

Kr = diag (qc, qc, iphh, iplh, iplh, iphh)

Kt = −diag (qc, qc, iphh, iplh, iplh, iphh)

qc =
√

2mc (E − Ec)

pj =
√

2mj (E − Ev) j = hh, lh,

and we have defined ϕ = (ϕc, ϕh)
T
, ι = (ιc, 0)

T
and

ιc = (1, 0)T for the spin-up direction and ιc = (0, 1)T

for the spin-down direction.
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4. Numerical results

We have solved the equations of our multiband en-
velope function model by using a Runge-Kutta scheme
for an asymmetric resonant interband tunneling diode
(a-RITD).
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Figure 1: Band alignments of the double barrier structure
used in the simulations.

Figure 1 shows the band alignments of the
InAs/AlSb/GaSb/AlSb/InAs double barrier struc-
ture used in the simulation. The band offset between
InAs and GaSb is such that the conduction-band edge
of InAs lies 0.15 eV below the energy of the valence-
band edge of GaSb. Transport through this system
involves resonant tunneling of electrons from the InAs
emitter, through unoccupied electron states in the sub-
bands of theGaSb well, and subsequently back into the
conduction band of the collector.
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Figure 2: Transmission coefficient for the spin up conduction
electrons of the InAs/GaSb/AlSb diode of Fig. 1.

Figure 2 shows the calculated transmission coefficient
for the resonant diode for the six band system. The
in-plane wave vector is k‖ = 2π

a (0.03, 0, 0) where a is
the lattice constant. The resonant peak is related only
to the spin-up conduction electrons, and it disappears
completely for the spin-down states. In this way, only
conduction electrons injected into the device with res-
onant energy and with spin parallel to the direction
of motion can travel from the emitter to the collec-
tor lead; electrons with anti-parallel spin are instead
reflected. In Fig. 3 we show the electron density in
the valence bands nv =

∑

j=±1/2,±3/2
|ϕj

h|2 and in the

conduction band nc =
∑

j=± |ϕj
c|2 of spin up electrons

with resonant energy. No resonant behaviour is shown
by spin down electrons.

Figure 3: Spin-up electron density at 1.18 eV
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