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Physical description of the KANE MODEL.

The Kane model consists into a couple of Schrödinger-like equations

for the conduction and the valence band envelope functions.

Let ψc(x, t) be the conduction band electron envelope function and

ψv(x, t) be the valence band electron envelope function
i~
∂ψc

∂t
= −

~
2

2m
∆ψc + Vcψc −

~
2

m
P · ∇ψv

i~
∂ψv

∂t
= −

~
2

2m
∆ψv + Vvψv +

~
2

m
P · ∇ψv

• m is the bare mass of the carriers,

• Vc (Vv) is the minimum (maximum) of the conduction (valence) band energy

• P is the coupling coefficient between the two bands (the matrix element of
the gradient operator between the Bloch functions)



SCALING

In order to rewrite the Kane system in a dimensionless form, we
introduce the rescaled Planck constant

ε =
~

α
where α =

mx2
R

tR

by using xR and tR as characteristic (scalar) lenght and time vari-
ables.

We rescale t′ = t
tR
, x′ = x

xR

and we leave the mass m unchanged. The band energy can be

rescaled, taking new potential units V0 =
mx2

R
t2R

.

The original coupling coefficient is a reciprocal of a characteristic
lenght

P ′ = PxR

.



THE SCALED KANE SYSTEM



iε
∂ψc

∂t
= −

ε2

2
∆ψc + Vcψc− ε2P · ∇ψv ,

iε
∂ψv

∂t
= −

ε2

2
∆ψv + Vvψv + ε2P · ∇ψc .

• WIGNER APPROACH

• HYDRODYNAMIC APPROACH

The first aim of this paper is to derive the hydrodynamic version
of the Kane system using the WKB method.

Using this approach the hydrodynamic limit is valid only for pure
states, (quantum system at zero temperature).



The HYDRODYNAMIC quantities

Look for solutions in the form

ψc(x, t) =
√
nc(x, t) exp

(
iSc(x,t)

ε

)
ψv(x, t) =

√
nv(x, t) exp

(
iSv(x,t)

ε

)
We introduce the particle densities

nij = ψiψj

Then n = ψcψc + ψvψv is exactly the electron density in conduction
and valence bands.

It is natural to write the coupling terms in a more manageable way,
introducing the complex quantity

ncv := ψcψv =
√
nc
√
nv e

iσ,

with

σ :=
Sv − Sc

ε
.



We define quantum mechanical electron current densities

Jij = ε Im
(
ψi∇ψj

)
.

When i = j, we recover the classical current densities

Jc := Im
(
εψc∇ψc

)
= nc∇Sc,

Jv := Im
(
εψv∇ψv

)
= nv∇Sv .

It is easy to get

εψi∇ψj =
√
ni
√
nj exp

(
i
Sj − Si

ε

)(
ε
∇√nj
√
nj

+ i∇Sj

)
.

We introduce the complex velocities

uc := ε∇ψc
ψc

=
ε∇√nc√

nc
+ i∇Sc,

uv := ε∇ψv
ψv

=
ε∇√nv√

nv
+ i∇Sv.



We name the real and imaginary part of uc osmotic velocity and

current velocity respectively:

uos,i :=
ε∇√ni√

ni
, uel,i := ∇Si =

Ji
ni
. i = c, v , (9)

so that

uc = uos,c + iuel,c, uv = uos,v + iuel,v.

Hence osmotic velocity and current velocity can be expressed in

terms of nc, nv, Jc and Jv.

CHOICE of the hydrodynamic quantities:

For a zero-temperature quantum hydrodynamic system it is suffi-

cient to take the usual quantities nc, nv, Jc and Jv, plus the phase

difference σ.



HYDRODYNAMIC formulation of the Kane model

Taking account of the wave form and using the first equation of the

Kane system, we find

∂nc

∂t
= ψc

∂ψc

∂t
+ ψc

∂ψc
∂t

= −∇· Im
(
εψc∇ψc

)
− 2P · Im

(
εψc∇ψv

)
.

Analogously for ∂nv
∂t .

Then, the previous equations become
∂nc

∂t
+∇·Jc = −2P · Im

(
εψc∇ψv

)
∂nv

∂t
+∇·Jv = 2P · Im

(
εψv∇ψc

) (10)



and using the definitions of osmotic and current velocities:

εψc∇ψv = ncvuv
=
√
nc
√
nv (cosσ + i sinσ)(uos,v + iuel,v)

we have 
∂nc

∂t
+∇·Jc = −2 Im (ncvP ·uv)

∂nv

∂t
+∇·Jv = 2 Im (ncvP ·uc) ,

(12)

Summing the equations in (12), we obtain the balance law

∂

∂t
(nc + nv) +∇·(Jc + Jv + 2εP Im ncv) = 0 ,

which is just the quantum counterpart of the classical continuity

equation .



Next, we derive equations for phases Sc, Sv, obtaining a system

equivalent to the coupled Schrödinger equations.

To obtain a system of coupled equations for the currents, we get

∂Jc

∂t
=
∑
j

ε2

2

∂

∂xj
Re

(
ψc∇

∂ψc

∂xj
−∇ψc

∂ψc
∂xj

)
− ψcψc∇Vc

+ε2 Re
[
ψc∇(P · ∇ψv)−∇ψc(P · ∇ψv)

]
.

(similar equation for Jv).

The left-hand sides of such equations can be put in a more familiar

form introducing the Bohm potentials for each band

div
(
∇√ni ⊗∇

√
ni −

1

4
∇⊗∇ni

)
= −

ni
2
∇
[

∆
√
ni√
ni

]
,

The correction terms
ε2

2

∆
√
ni√
ni

i = c, v , can be called the quantum

Bohm potential for each band.



Moreover the right-hand sides of the previous equations can be ex-

pressed in terms of the hydrodynamic quantities, using the following

relations for i, j = c, v

ε ψi(P · ∇ψj) = nij P · uj
ε2∇ψi(P · ∇ψj) = nij P · uj ui .

Finally the resulting system takes the following form

∂Jc

∂t
+ div

(
Jc ⊗ Jc
nc

)
− nc∇

(
ε2∆
√
nc

2
√
nc

)
+ nc∇Vc

= ε∇ Re (ncvP ·uv)− 2 Re (ncvP ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv
nv

)
− nv∇

(
ε2∆
√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇ Re (ncvP ·uc) + 2 Re (ncvP ·ucuv) .
(13)



It is important to notice that, differently from the uncoupled model,

(12) and (13) are not equivalent to the original equations, due to

the presence of σ.

There are many ways to “close” the system, in order to obtain an

extension of the classical Madelung fluid equations to a two-band

quantum fluids .

(12) and (13) can be supplemented with the constraint

ε∇σ =
Jv

nv
−
Jc

nc
.



Now we are in position to rewrite the hydrodynamic system as

follows

∂nc

∂t
+ divJc = −2 Im (ncvP ·uv),

∂nv

∂t
+ divJv = 2 Im (ncvP ·uc),

∂Jc

∂t
+ div

(
Jc ⊗ Jc
nc

)
− nc∇

(
ε2∆
√
nc

2
√
nc

)
+ nc∇Vc

= ε∇Re (ncvP ·uv)− 2 Re (ncvP ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv
nv

)
− nv∇

(
ε2∆
√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇Re (ncvP ·uc) + 2 Re (ncvP ·ucuv) ,

ε∇σ =
Jv

nv
−
Jc

nc
,

ncv, uv, and uv are given by the hydrodynamic quantities nc, nv, Jc, Jv,
and σ.



The DRIFT-DIFFUSIVE scaling

It is customary to introduce a relaxation time term in order to

simulate all the mechanisms which force the system towards the

statistical mechanical equilibrium.

We rewrite the current equations in the previous system as

∂Jc

∂t
+ div

(
Jc ⊗ Jc
nc

)
− nc∇

(
ε2∆
√
nc

2
√
nc

)
+ nc∇Vc

= ε∇Re (ncvP ·uv)− 2 Re (ncvP ·uvuc)−
Jc

τ
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv
nv

)
− nv∇

(
ε2∆
√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇Re (ncvP ·uc) + 2 Re (ncvP ·ucuv)−
Jv

τ
,

(16)

where τ is a relaxation time, which we assume equal for the two

bands.



In analogy with the classical diffusive limit for a one-band system,

we introduce the scaling

t→
t

τ
, Jc → τJc, Jv → τJv . (17)

Consequently, the phase difference has to rescaled in a such way

that

σ → τσ .

Then, we have

ncv →
√
nc
√
nv +O(τ),

uc →
ε∇√nc√

nc
+ i

τJc

nc
,

uv →
ε∇√nv√

nv
+ i

τJv

nv
.



Moreover, the coupling terms has to be tackled with much care, as

follows

ncvP ·uv →
√
nc
√
nvP · uos,v+ i

√
nc
√
nv
(
σP · uos,v + P · uel,v

)
τ+O(τ2).

Formally, as τ tends to zero, the hydrodynamic system with the

current equations (16) reduces to

∂nc

∂t
+ divJc = −2

√
nc
√
nv
(
σP · uos,v + P · uel,v

)
,

∂nv

∂t
+ divJv = −2

√
nc
√
nv
(
σP · uos,c − P · uel,c

)
,

Jc = nc∇
(
ε2∆
√
nc

2
√
nc

)
− nc∇Vc + ε∇

(√
nc
√
nvP · uos,v

)
− 2
√
nc
√
nvP ·uos,vuos,c ,

Jv = nv∇
(
ε2∆
√
nv

2
√
nv

)
− nv∇Vv − ε∇

(√
nc
√
nvP · uos,c

)
+ 2
√
nc
√
nvP ·uos,cuos,v ,

ε∇σ =
Jv

nv
−
Jc

nc
.

(19)



Finally, after having expressed the osmotic and current velocities, in

terms of the other hydrodynamic quantities, we have

∂nc

∂t
+ divJc = −2εσ

√
ncP · ∇

√
nv − 2

√
nc√
nv
P · Jv,

∂nv

∂t
+ divJv = −2εσ

√
nvP · ∇

√
nc + 2

√
nv√
nc
P · Jc,

Jc = nc∇
(
ε2∆
√
nc

2
√
nc

)
− nc∇Vc + ε2∇

(√
ncP · ∇

√
nv
)
− 2ε2P · ∇

√
nv∇
√
nc ,

Jv = nv∇
(
ε2∆
√
nv

2
√
nv

)
− nv∇Vv − ε2∇

(√
nvP · ∇

√
nc
)

+ 2ε2P · ∇
√
nc∇
√
nv

ε∇σ =
Jv

nv
−
Jc

nc
.

(20)

This system represents the zero-temperature QUANTUM DRIFT-

DIFFUSION MODEL for a Kane system.



NONZERO TEMPERATURE hydrodynamic model

We consider an electron ensemble which is represented by a mixed
quantum mechanical state, with a view to obtaining a nonzero tem-
perature model for a Kane system. A mixed state is a sequence of
single states with occupation probabilities λk, k = 0,1,2, . . . k ∈ N
for the k − th single state.

The k − th state for the Kane system is described by the solutions
of the system

iε
∂ψkc
∂t

= −
ε2

2
∆ψkc + Vcψ

k
c − ε2P ·∇ψkv ,

iε
∂ψkv
∂t

= −
ε2

2
∆ψkv + Vvψ

k
v + ε2P ·∇ψkc .

(21)

Using the Madelung-type transform, under the assumption of pos-
itivity of the densities nkc and nkv ,

ψkc =
√
nkc exp

(
iSkc /ε

)
, ψkv =

√
nkv exp

(
iSkv/ε

)
,



the previous system is equivalent to

∂nkc
∂t

+ divJkc = −2 Im (nkcvP ·ukv),

∂nkv
∂t

+ divJkv = 2 Im (nkcvP ·ukc),

∂Jkc
∂t

+ div

(
Jkc ⊗ Jkc
nkc

)
− nkc∇

ε2∆
√
nkc

2
√
nkc

+ nkc∇Vc

= ε∇Re (nkcvP ·ukv)− 2 Re
(
nkcvP ·ukvukc

)
,

∂Jkv
∂t

+ div

(
Jkv ⊗ Jkv
nkv

)
− nkv∇

ε2∆
√
nkv

2
√
nkv

+ nkv∇Vv

= − ε∇Re (nkcvP ·ukc) + 2 Re
(
nkcvP ·ukcukv

)
,

ε∆σk = ∇
(
Jkv
nkv
−
Jkc
nkc

)
,



we define

Jki = nki∇S
k
i , σk =

Skv − Skc
ε

,

nkcv =
√
nkc

√
nkv exp

(
iσk

)
, uki =

ε∇
√
nki√
nki

+ i
Jki
nki
.

The densities and the currents corresponding to the two mixed

states can be defined as

ni :=
∞∑
k=0

λkn
k
i , Ji :=

∞∑
k=0

λkJ
k
i .

We also define

σ :=
∞∑
k=0

λkσ
k, ncv :=

√
nc
√
nv exp(iσ), ui :=

ε∇√ni√
ni

+ i
Ji
nc
.



Multiplying by λk and summing over k, we find

∂nc

∂t
+ divJc = −2 ImRc,

∂nv

∂t
+ divJv = 2 Im Rv,

∂Jc

∂t
+ div

(
Jc ⊗ Jc
nc

+ ncθc

)
− nc∇

(
ε2∆
√
nc

2
√
nc

)
+ nc∇Vc

= ε∇ReRc − 2P · Re Qcv,

∂Jv

∂t
+ div

(
Jv ⊗ Jv
nv

+ nvθv

)
− nv∇

(
ε2∆
√
nv

2
√
nv

)
+ nv∇Vv

= − ε∇ReRv + 2P · Re Qvc,

ε∆σ = ∇

 ∞∑
k=0

λk

(
Jkv
nkv
−
Jkc
nkc

) ,

(23)



with

Ri =
∞∑
k=0

λkn
k
ijP ·u

k
j , Qij =

∞∑
k=0

λkn
k
iju

k
j ⊗ ukj , i, j = c, v.

Analogously with the one-band case, new terms containing the total

temperature θc and θv, for each band, appear.

The temperature tensors θc = θos,c + θel,c and θv = θos,v + θel,v are

the sum of osmotic temperature and electron current temperature,

θos,c =
∞∑
k=0

λk
nkc
nc

(ukos,c − uos,c)⊗ (ukos,c − uos,c),

θel,c =
∞∑
k=0

λk
nkc
nc

(ukel,c − uel,c)⊗ (ukel,c − uel,c).

We write

Rc = P ·ncv(αuv + βv), Rv = P ·ncv(αuc + βc), (24)



with

α :=
∞∑
k=0

λk
nkcv
ncv

, βi :=
∞∑
k=0

λk
nkij

nij
(uki − ui), i, j = c, v.

These quantities are not independent:

1

iα

(
ε∇α− βv − βc

)
= −ε∇σ +

Jv

nv
−
Jc

nc
,

Next, in order to obtain an expression of the coupling terms between
the two bands by a sort of temperature tensors, we write

Qcv = ncv (αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv) ,

Qvc = ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc) ,

with

θcv :=
∞∑
k=0

λk
nkcv
ncv

(ukv − uv)⊗ (ukc − uc),



In conclusion, using the new quantities defined above, system (23)

can be written as

∂nc

∂t
+ divJc = −2P · Im [ncv (αuv + βv)],

∂nv

∂t
+ divJv = 2P · Im [ncv (αuc + βc)],

∂Jc

∂t
+ div

(
Jc ⊗ Jc
nc

+ ncθc

)
− nc∇

(
ε2∆
√
nc

2
√
nc

)
+ nc∇Vc

= ε P ·∇ Re (ncv(αuv + βv))

− 2P · Re
(
ncv(αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv)

)
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv
nv

+ nvθv

)
− nv∇

(
ε2∆
√
nv

2
√
nv

)
+ nv∇Vv

= −ε P ·∇ Re (ncv (αuc + βc))

+ 2P · Re
(
ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc)

)
,

ε∇σ −
Jv

nv
+
Jc

nc
= − Im

{
1

α

(
ε∇α− βv − βc

)}
.

(25)



FINAL REMARKS

We have derived a set of quantum hydrodynamic equations from

the two-band Kane model.

This system, which can be considered as a nonzero-temperature

quantum fluid model, is not closed.

In addition to other quantities, we have the tensors θc, θv, θcv and

θvc (only the first ones are similar to the temperature tensor of

kinetic theory).

• Closure of the quantum hydrodynamic system

• Poor physical meaning of the envelope functions

• New basis for more physical envelope functions

• Heterogeneous materials

• Numerical treatment


