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In this paper we derive a hydrodynamic formulation of the following scaled Kane
system [1, 2]: 

iε
∂ψc

∂t
= −ε

2

2
∆ψc + Vcψc− ε2P · ∇ψv,

iε
∂ψv

∂t
= −ε

2

2
∆ψv + Vvψv + ε2P · ∇ψc,

(1)

where ψc(x, t) and ψv(x, t) are the conduction and valence band electron envelope
functions, the space variable x ∈ R3, i is the imaginary unit, ε is the rescaled Planck
constant, Vc and Vv are the minimum of the rescaled conduction band energy and
maximum of the rescaled valence band energy respectively, and P is the coupling
coefficient between the two bands given by the matrix element of the gradient oper-
ator between the Bloch functions. The Kane model is a simple two-band model for
describing the electron dynamics in a material where the tunneling across potential
barriers between different bands has to be taken into account. Such a model is of
great importance for Resonant Interband Tunneling Diode (RITD), whose properties
differ from other devices because of the role played by the valence band electrons [3].
This model, firstly proposed by E.O. Kane in 1956 [1], is widely used in literature.
The Kane model, obtained in the frame of the envelope function theory, consists
into a couple of Schrödinger-like equations for the conduction and the valence band
envelope functions.

In this paper we apply the WKB method, which is a classical way to write
the Schrödinger equation in hydrodynamic form. It consists in characterizing the
wave function with a quasi-classical limit expression a exp

(
iS
ε

)
, where a is called the

amplitude and S/ε the phase of the wave.
Another approach to face the problem of a quantum hydrodynamic model is

based on the formulation of the Kane model in terms of Wigner functions [4]. The
reader interested in quantum hydrodynamic modeling can refer to the papers quoted
in the book by Jüngel [5].

In our case, we look for solutions of the rescaled system (1) in the form

ψj(x, t) =
√
nj(x, t) exp

(
iSj(x,t)

ε

)
, j = c, v . (2)
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The squared amplitude is interpreted as the probability density of finding the ”par-
ticle” at some point in space, and the gradient of the phase corresponds to the
classical velocity of the ”particle”.

In the frame of the two band Kane model, we introduce the particle densities

nij = ψiψj

where ψi, with i = c, v are the envelope function for the conduction and the valence
band. When i = j, quantities nij are real and represent the quantum probability
densities for the position of conduction band and valence band electron only in an
approximate sense, because ψi are envelope functions which mix the Bloch states.
Nevertheless, ρ = ψcψc +ψvψv is exactly the electron density in conduction and va-
lence band. Moreover we introduce the complex quantity ncv := ψcψv =

√
nc
√
nv e

iσ,

with σ :=
Sv − Sc

ε
.

Then we define quantum mechanical electron current densities

Jij = ε Im
(
ψi∇ψj

)
.

When i = j, still using the form (2), we recover the classical current densities

Jc := Im
(
εψc∇ψc

)
= nc∇Sc, Jv := Im

(
εψv∇ψv

)
= nv∇Sv.

Also, we introduce the complex velocities uc and uv, with

uc = uos,c + iuel,c :=
ε∇√nc√

nc

+ i∇Sc, uv = uos,v + iuel,v :=
ε∇√nv√

nv

+ i∇Sv.

The real and imaginary part of uc and uv are named osmotic velocities and current
velocities, respectively, and each one can be expressed in terms of nc, Jc and nv, Jv.
It is easy to verify that, as hydrodynamic quantities for a zero-temperature quantum
hydrodynamic system, it is sufficient to choose the usual quantities nc, nv, Jc and
Jv, plus the phase difference σ.

The equations for the particle densities nc and nv read as follows
∂nc

∂t
+∇·Jc = −2 Im (ncvP ·uv) ,

∂nv

∂t
+∇·Jv = 2 Im (ncvP ·uc) .

(3)

where, by means of the definitions of osmotic and current velocities, we have used
εψc∇ψv = ncvuv and εψv∇ψc = ncvuc. Summing the equations in (3), we obtain the
balance law for the total density (continuity equation)

∂

∂t
(nc + nv) +∇·(Jc + Jv + 2εP Imncv) = 0.
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Moreover the resulting system for the currents takes the following form

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc

= ε∇ Re (ncvP ·uv)− 2 Re (ncvP ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇ Re (ncvP ·uc)− 2 Re (ncvP ·ucuv) .

(4)

In order to close the system and to obtain an extension of the classical Madelung
fluid equations, we can add the following elliptic equation for σ,

ε∆σ = ∇·
(
Jv

nv

− Jc

nc

)
. (5)

Introducing a suitable diffusive scaling and performing the relaxation-time limit,
we derive the drift-diffusion equations corresponding to the zero temperature system
(3)-(4)-(5). Finally, considering mixed states, we obtain the nonzero temperature
hydrodynamic model.

The results presented in this paper are obtained only formally and a more ap-
propriate mathematical investigation is devoted to a future work.
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