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Introduction

In this thesis we will present the results achieved in three years of research, performed
between Scuola Normale Superiore, under the supervision of Prof. A. M. Anile, and the Uni-
versity of Münster, under the supervision of Prof. A. Arnold. In particular, are collected here
three articles; the first of them is in collaboration with Doct. L. Barletti of the University
of Florence, while the third with Prof. A. Arnold and E. Dhamo of the University of Münster.

The aim of the developed research is to contribute to the analytical study of quantum kinetic
models of certain quantum systems, whose dynamics is time-irreversible due to the interac-
tion with the environment; accordingly, they are called open. In particular, the models under
examination have a well-grounded application to the simulation of nanoscale semiconductor
devices, thus semiconductor physics is the background of reference for our work.
The models are formulated according to the Wigner-function formalism, a well-known tool in
both the physical and the mathematical literatures, which provides a quantum-mechanically
consistent, phase-space description of the dynamics of the systems of interest.
The leitmotiv of our investigation is the attempt of keeping to a purely kinetic analysis.
More precisely, our aim is to obtain results that are physically-consistent and in agreement
with those achieved via other formalisms, but independently of them. The way we pursue
that end is by developing new analytical tools, in some cases inspired by formal analogies
with other problems. The motivation for that type of study is that, apart from being ana-
lytically challenging, it is naturally suitable to numerical reformulation for applications to
real devices simulation.
The aspects of our research we have here presented will be widely discussed, in comparison
with the existing literature, according to the following sectioning: In Part I, we will present
an overview of the possible mathematical descriptions of semiconductor physics. In particu-
lar, in Chapter 1, we will introduce the (semi-)classical kinetic approach and start to discuss
possible ways of modelling the irreversible dynamics of certain systems. In Chapter 2, we
will focus on quantum systems, since we are interested in the applications to semiconductor
devices reaching quantum regimes and we will present the quantum-statistical formalism. In
Section 2.2 we will briefly introduce the theory of open quantum systems, which constitutes
the reference frame of our work, and proceed in the discussion of the literature related to
the description of irreversible quantum dynamics. Thus, the background is complete.
The aim of Chapter 3, in Part II, is to present the quantum kinetic description of the quan-
tum systems, and, to compare it with the quantum-statistical one. By that discussion we will
derive the motivation for our analytical study: in particular, in Section 3.4, we will describe
the starting point of our investigation, namely, the choice of the Hilbert space of L2-functions
defined on the phase-space, as the state space for the successive well-posedness studies. In
Chapter 4 are introduced new tools we have employed in the cited articles, which are also
promising in view of the resolution of open problems. We will compare them with similar
instruments used in classical kinetic theory, which in many cases have directly inspired their
derivation in the quantum framework. The tools presented constitute a contribution to the
discussion in literature about the analogies between the Schrödinger and the Vlasov equa-
tions. We anticipate that we will recover a further a posteriori motivation for our choice of
the functional setting: according to our investigation, the analogy with the classical kinetic
formalism can indeed be exploited just in the L2-context.
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Part III and Part IV contain the bodies of the above cited articles: in particular, Part III
those related to the Wigner-Poisson system on bounded spatial domains, while Part IV, the
one about the (all-space) Wigner-Poisson-Fokker-Planck model. At the beginning of each
part we will provide both a description of the physical system they are meant to describe
and a discussion of the related literature.
We remark that, in the three cases, the well-posedness result will be obtained in the Hilbert
space of L2-functions defined on the phase-space, modified by an appropriate weight in the
velocity-direction. Accordingly, the result we present in Part IV is a slightly improved version
of the one presented in the above cited paper, where also a weight in the space-direction was
used.
Relatively to both problems (in the all-space formulation), we also discuss possible per-
spectives for attaining the same well-posedness theorems in a L2-setting, without using the
weights.
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Chapter 1

Semiconductor materials

1.1 Quantum description

A semiconductor is a solid-state material; accordingly, its atoms are arranged in a crystal.
This structure can be described as an infinite three-dimensional array in which the atoms are
located at the points P of a lattice L. L is represented, starting from the basis {~a1, ~a2, ~a3}
of IR3, as the set of vectors

L := {i ~a1 + j ~a2 + z ~a3, i, j, z ∈ ZZ}

(cf. the definition of Bravais lattice in Ref. [12]), and P ≡ (i, j, z) ∈ IR3
L, i, j, z ∈ ZZ (where

we indicate with IR3
L, IR3 with the basis of L). Thus, the material consists of a periodic

distribution of charges, which generates an electrostatic potential Vper with the same period;
a free-electron in the periodic field (usually called Bloch electron) is described by the following
version of the Schrödinger equation

− ~2

2m
∆ψ(x) + Vper(x)ψ(x) = Eψ(x), x ∈ IR3, (1.1)

where ψ : x ∈ IR3 → IC is the free-electron wave-function, m is the free-electron mass and E
the value of its total energy1. The physical space IR3, in which the electron move, can be
partitioned by translates of an elementary cell D with the vectors of L, where

D := {(α, β, γ) , α, β, γ ∈ [−1/2, 1/2]}.

Correspondingly, it can be defined the dual lattice L∗

L∗ := {i ~a∗1 + j ~a∗2 + z ~a∗3, i, j, z ∈ ZZ},

with the vectors ~a∗1, ~a
∗
2, ~a

∗
3 defined by ~am· ~a∗n = 2πδmn, m, n = 1, 2, 3 (the Kronecker delta

symbol). Accordingly, for all ~l ∈ L, ~l∗ ∈ L∗, it holds ei
~l∗·~l = 1. The elementary cell D∗ can

be defined analogously to D, starting from the lattice L∗. In particular, the first Brillouin
zone B is the elementary cell constituted by the points of IR3 closer to the origin, than to

1Since this is a many-electrons problem, in the one-electron Schrödinger equation it should appear also a
potential taking into account electron-electron interactions. In the independent electron approximation, these
interactions can be represented by an effective one-electron potential, Vper, which has the same periodicity
of the crystal (cf. Ref. [12]).
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any other point P ∗ ≡ (i, j, z) ∈ IR3
L∗, i, j, z ∈ ZZ.

According to such partition of the space, the wave-function ψ can be decomposed into

ψ(x) =
1

vol(B)

∫
B
ψk(x) dk , (1.2)

with the function ψk k-pseudo-periodic in L, i.e.

ψk(x+~l) = ψk(x) e
i~k·~l , ∀~l ∈ L

(cf. the definition of Bloch decomposition in Ref. [21]). Observe that, for all ~l∗ ∈ L∗ and
~l ∈ L, ei~k·~l = ei(

~k+~l∗)·~l, thus, k can be indeed restricted to B. Equivalently,

ψk(x) =
∑
~l∈L

e−i
~k·~lψ(x+~l) .

According to such decomposition2, it can be proved (cf. Ref. [12]) that the Schrödinger
equation (1.1) is equivalent to infinitely many Schrödinger equations indexed by k ∈ B
posed on the elementary cell D with k-pseudo-periodic boundary conditions on ∂D:

− ~2

2m
∆ψk(x) + Vper(x)ψk(x) = Ekψk(x), x ∈ D, (1.3)

ψk(x+~l) = ψk(x) e
i~k·~l , ∀x ∈ ∂D, x+~l ∈ ∂D . (1.4)

It can be proved as well that, for all k ∈ B, there exist a sequence of eigenvalues {En
k , n ∈ IN}

and another of eigenfunctions {ψnk (x) , n ∈ IN}. The ψnk are “distorted” waves

ψnk = unk(x) e
i~k·~x ,

by unk L-periodic functions (i.e. unk(x + ~l) = unk(x)), because of the periodic potential.
Accordingly, the vector k is not a real wave-vector, but a pseudo wave-vector and the cor-
responding pseudo momentum3 p = ~k is called crystal momentum (cf. Ref. [12]). The
function k ∈ B → En

k is called dispersion relation and describes the way the energy depends
on the pseudo wave-vector k.
An electron that is in the eigenstate ψnk has the energy En

k . For each fixed n, En
k individ-

uates the n-th energy band: we assume for simplicity that the bands do not cross. It can
happen that some energies are not in the range of any of the functions En

k : such energies are
“forbidden” and fall in intervals that are called energy gaps. In our picture, two successive
bands are separated by an energy gap.
Now we specify in what consists a semiconductor material. In a crystal at thermodynamical
equilibrium, each electron will occupy one4 of the eigenstate described by ψnk . In particular,
at zero temperature, only the lowest energy states will be occupied and the highest value
among the energies corresponding to the occupied energy states is called the Fermi energy.
The material is an insulator or a semiconductor, in case all the states in the band below the
Fermi energy, the valence band, are occupied and the energy gap, between the valence band

2Precisely, the Hilbert space L2(IR3) of the wave-functions is represented as L2(B, L2(D)k), with L2(D)k

the space of square integrable k-pseudo-periodic functions.
3In fact, due to the presence of the periodic potential, ψn

k is not simultaneously an eigenfunction of the
momentum operator (~/i)∇x with eigenvalue p = ~k.

4The electrons are Fermions, thus, the Pauli’s principle excludes that two electrons can occupy the same
state (observe that we are ignoring the spin).
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and the band above the Fermi energy (the conduction band), is large with respect to the
energy that can be gained from the electric field. Thus, electron conduction, i.e. electron
motion in k-space, is excluded.
However, in the semiconductor case the gap is moderate5, then typically the absorption of
thermal energy is enough to allow the electrons to jump from valence band states to con-
duction states, due to the electric field. The electrons “moving” to empty states in the
conduction band leave behind vacancies (empty states in the valence band), which can be
filled by valence electrons6. Hence, occupation of conduction sites will propagate, namely,
conduction will occour, and, simultaneously, vacancies will propagate in the band below.
These two simultaneous phenomena can be described as the motion of two different classes
of particles: electrons in the conduction band and holes in the valence band.
Typical examples of semiconductor materials are Silicon (Si), Germanium (Ge) and Gallium-
Arsenide (GaAS).

1.2 Semi-classical description

In the semi-classical picture, an electron belonging to the nth-energy band is described as
a point particle individuated by the continuous variables (x, k), moving with velocity vnk .
In the semi-classical limit, the velocity of the particle will coincide with the group velocity
of the wave-packet, made of wave-functions near the (pseudo) wave-vector k (|k| = κ).
Since the group velocity is defined by vg = dω/dκ, with ω the frequency associated to the
wave-function of energy ε, ω = ε/~, then

vg =
1

~
dε

dκ
(1.5)

(cf. Ref. [36]), accordingly

vnk =
1

~
∇kE

n
k .

Thus, the equation of motion of an electron in the crystal reads

ẋ =
1

~
∇kE

n
k . (1.6)

The dispersion relation for a free-electron in the vacuum reads ε(κ) = (~2/2m)κ2, and the
curvature of such parabola is 1/m, the reciprocal mass. On the other hand, an electron in
a periodic potential is accelerated relatively to the crystal, say, by an external force F , as if
the mass of the electron were equal to an effective mass. Indeed,

v̇g =
dvg
dt

=
1

~
d2ε

dκ dt
=

1

~
d2ε

dκ2

dκ

dt
,

where ~ dκ/dt = F for an electron in a crystal (cf. Ref. [36]). Accordingly,

dvg
dt

=

(
1

~2

d2ε

dκ2

)
F , or F =

(
1

~2

d2ε

dκ2

)−1
dvg
dt

.

5Precisely, comparable to kBT with T temperature, kB Boltzmann constant.
6A way, alternative to thermal excitation, to improve the conductivicity, consists in inserting impurities

in the crystal lattice. They can be either positively or negatively ionized, correspondingly, they will either
provide electrons to the conduction band, or trap electrons in the valence band: such process is called doping.
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which reads like the second Newton’s law, if we define the effective mass7 m∗ as(
1

~2

d2ε

dκ2

)−1

=: m∗ .

If we call respectively εc(k) and εv(k) the conduction and valence band energies (i.e. En
k =:

εv(k) , E
n+1
k =: εc(k) for some n ∈ IN), and

εc = min
k∈B

εc(k) , εv = max
k∈B

εv(k) ,

then

εc(k) = εc +
~2

2m∗ |k|
2 , εv(k) = εv −

~2

2m∗ |k|
2 , ∀k ∈ IR3

are called parabolic (or effective mass) band approximations8. Accordingly, for what an
electron in the conduction band is concerned, (1.6) reads

ẋ = vc(k) , vc(k) =
1

~
∇kεc(k) =

~k
m∗ , (1.7)

while for a hole in the valence band

ẋ = vv(k) , vv(k) = −1

~
∇kεv(k) = − ~k

m∗ . (1.8)

If an external potential V = V (x) is added to the periodic potential Vper, the analysis carried
in the previous section continues to hold, if the potential is assumed to be weak 9. Then, the
motion of an electron in the conduction band is described by

ẋ = vc(k) , k̇ =
q

~
∇xV (x). (1.9)

These are Hamilton’s equations for the pair of conjugate variables (x, p) = (x, ~k) with
Hamiltonian

H(x, p) = εc

(p
~

)
− qV (x) .

Analogously, for the hole in valence band

ẋ = vv(k) , k̇ = − q
~
∇xV (x) , Hv(x, p) = εv

(p
~

)
+ qV (x) . (1.10)

By the way, we observe that the hole behaves like a particle endowed with effective mass m∗

and opposite charge q and opposite velocity −vc(k) (cf. Ref. [36]).

7In case of an anisotropic energy surface, as in Ge and Si, we should introduce components of the reciprocal
effective mass tensor : (

1
m∗

)
µ ν

=
1
~2

d2ε

dκµdκν
,

dvµ

dt
=
(

1
m∗

)
µ ν

Fν .

8Such approximation is valid indeed in the neighborhood of a conduction (respectively, valence) band
minimum (respectively, maximum). The Kane dispersion relation, instead, takes into account the non-
parabolicity at high energy, in terms of a parameter α, accordingly

εc(κ)[1 + αεc(κ)] =
~2κ2

2m∗
, k ∈ IR3 ,

and analogously for the valence band.
9This depends on the fact the Bloch decomposition does not commute with the multiplication by V , thus,

the bands are all coupled. However, the effect of the coupling can be disregarded if the additional potential
is supposed to be weak enough.
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1.3 Semi-classical kinetic equations

Let z = (z1, . . . , zn) individuate an event in terms of n continuous variables, z ranging in
a continuous set Z ⊂ IRn, and, for all t ∈ IR, let P (. , t) : z ∈ Z → IR+ be the probability
distribution function associated to the realization of an event z ∈ Z at time t. Then,
P (z, t) dz will be the probability that the event which occours at time t is described by a
vector belonging to the infinitesimal volume of Z around z and∫

Z

P (z, t) dz = 1 , ∀ t.

Let f : z ∈ Z → IR represent some quantity that can be computed starting from the event
z, then the average value of f at time t will be

<f P >(t) =

∫
Z

f(z)P (z, t) dz . (1.11)

Let ζ : z ∈ Z → IRn be a vector field such that

ż = ζ , div ζ = 0 . (1.12)

Thus, to all z0 ∈ Z, it can be associated, for all t > 0 , z(t) ∈ Z by integrating Eq. (1.12)
with the initial condition z(0) = z0, if ζ is regular enough. Analogously, to the volume dz
around z0 will correspond, for all t > 0 , the volume dz(t) around z(t) and, accordingly, the
probability that the event at time t lies in dz(t) around z(t), P (z(t), t) dz(t) = P (z0, 0) dz,
i.e. the probability that it lies at time t = 0 in dz around z0. Moreover div ζ = 0, thus, by the
Liouville theorem, dz(t) = dz, i.e. the volume is preserved in the correspondence z0 → z(t) ,
and then

P (z(t), t) = P (z0, 0) . (1.13)

Differentiating both sides with respect to t and remembering Eq. (1.12), it follows(
∂P

∂t
+ ζ·∇zP

)∣∣∣∣
(z(t),t)

= 0 , ∀ t > 0, z ∈ Z.

Due to the time-reversibility of the equations, the mapping z → z(t) is invertible and

∂P

∂t
+ ζ·∇zP = 0. (1.14)

follows. Eq. (1.14) is called the Liouville (or transport) equation.
Observe that z = (x, p) ∈ IR2d can be the phase-space description of the state of a system
with d degrees of freedom. Let ζ = (∂H/∂p,−∂H/∂x) with H = H(x, p) Hamiltonian
function (associated to the system) expressed in terms of the canonical variables, then, in
case H is regular enough, the Hamilton equations will read as eqs. (1.12) and Eq. (1.14) still
holds. Correspondingly, if we call fc(x, k, t)dx dk the probability of finding the electron in
the volume dx dk of the conduction-band phase-space around (x, k), the Hamilton Eqs. (1.7),
(1.9) are analogous to Eqs. (1.12), thus (1.14) will read as

∂fc
∂t

+ vc(k)·∇xfc +
q

~
∇xV (x)·∇kfc = 0 , (x, k) ∈ IR6 , t ∈ IR , (1.15)

which is called the one-particle semi-classical Vlasov equation.
Exactly the same equation describes the evolution in time of the probability distribution
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function f
(N)
c relative to an ensemble of N non-interacting electrons in a periodic field,

subject to an external potential V . Indeed, with f
(N)
c (z) = fc({xi}i, {ki}i) , i = 1, . . . 3N ,

the Hamilton equations will look exatly the same as Eqs. (1.7), (1.9) in the phase-space
IR6N , thus

∂f
(N)
c

∂t
+ vc(k)·∇xf

(N)
c +

q

~
∇xV (x)·∇kf

(N)
c = 0 , (x, k) ∈ IR6N , t ∈ IR . (1.16)

A way to go beyond the independent electrons approximation we have so far applied to derive
the Vlasov equation, is to include two-particle interaction forces in the considered dynamics.
Then, starting again from a phase-space description of the ensemble of N electrons (z =
({xi}i, {ki}i) , i = 1, . . . 3N), which leads to a transport equation for the electron ensemble,
and introducing the “marginal” probability distributions

f (d)
c ({xi}i=1,...3d, {ki}i=1,...3d) =

∫
fc(z) dx3d+1 . . . dx3N dk3d+1 . . . dk3N ,

which are referred to the sub-ensemble of d electrons, it can be derived the BBGKY hi-
erarchy of (transport) equations for the functions f

(d)
c , 0 < d < N (cf. Ref. [41] and the

Refs. therein). Then, under the assumption of low correlation, which is reasonable for
d << N , it can be obtained the following equation

∂f

∂t
+ vc(k)·∇xf +

q

~
(∇xV (x) +∇xΦ(x))·∇kf = 0 , (x, k) ∈ IR6 , t ∈ IR , (1.17)

for f := Nf
(1)
c , which can be interpreted as the electron number density10 in the phase space.

In such equation, which has the shape of a one-particle equation, the reciprocal effect of the
electrons (i.e. the Coulombian repulsive force they exert each on the other due to the charge)
is taken into account via a mean-field description. Precisely, the field generated by the elec-
trons is represented as if the ensemble constitutes a uniform distribution of negative charge
with charge density −q n (where n is the electron-ensemble position density), analogously to
the Hartree approximation in the Schrödinger picture. Thus, to the external field ∇V , it is
added the electrical field ∇Φ calculated by solving the Poisson equation

−ε∆xΦ(x, t) = q(n+(x, t)− n(x, t) + (NA(x)−ND(x)) ,

where ε is the permittivity, n, n+ are, respectively, electron and hole number densities in the
position space

n(x, t) =

∫
B
f(x, k, t) dk ,

and NA,D are the densities of the (respectively, acceptor and donor) ions that can be im-
planted in the semiconductor.
Equation (1.17) is known as the semi-classical Vlasov equation.
It differs from the classical one, since vc is an assigned function of k (cf. Eq. (1.7)), which
takes into account the presence of the crystal.
However, in the present description, the crystal is represented as an ideal lattice, thus, we
are disregarding both its imperfections (both artificial, due to the introduction of impurities,
e.g., and manifactural) and the vibrations due to the thermal energy. These effects can be
modelled as collisions of the electrons with other “particles”(respectively, with impurities

10i.e., the number of electrons per unit volume,

17



and phonons11)12.
Observe that, for the first time, we are taking into account the presence of what is con-
sidered, in first approximation, external with respect to the electron ensemble, thus, so to
say, with the environment. The assumption underlying the previous derivation, precisely the
application of the Liouville theorem, is instead, that the electron ensemble can be considered
as a closed sub-system; as a consequence,

f(x(t), k(t), t) = f(x0, k0, 0) , ∀ t , equivalently,
df

dt
= 0

(cf. Eq. (1.13) equivalent to Eq. (1.14)), hold.
When collisions are taken into account, f can no longer be constant along the paths (x(t), k(t), t) ,
∀ t , thus it will hold

df

dt
= C(f) , (1.18)

with C(f) rate of change of the probability distribution function. In particular, the term
C(f) will have the shape of a balance between the probability that an interaction occourring
at x causes a transition from the Bloch state k to a Bloch state k′ ∈ B and the probability
that a transition to the state individuated by k from a certain k′ takes place. Such evaluation
is made in terms of a scattering probability S(k, k′), which has to be determined according
to the type of interaction to be modelled.
We will not provide here the specific shape of the term C(f), since it would require the
introduction of a terminology and of concepts (the detailed balance principle, e.g.) that
are not interesting for our porpouse (cf. Refs. [21, 41], e.g.). However, the introduction of
the collisional term C(f) in Eq. (1.18) constitutes an example of a possible way of model-
ing the irreversible interaction of the sub-system under examination with the environment
(cf. Section 2.2).

Remark 1.3.1 Our aim is, indeed, to introduce the “quantum kinetic” description of the
irreversible evolution of systems related to semiconductors physics. In Part II, the quan-
tum transport equation, namely the Wigner equation, will be derived from the Schrödinger
equation, via a series of unitary transforms. Accordingly, the Wigner equation will provide
a quantum kinetic description, equivalent to the Schrödinger one, of the reversible dynamics
of an isolated quantum system. As a consequence, an a posteriori modification of such equa-
tion via the introduction of a classical collisional term, in the spirit of (1.18), wouldn’t be
quantum-mechanically consistent. In Section 2.2 we will discuss some alternative strategies
to include dissipative effects in the Wigner formalism.

The modified version of Eq. (1.17) reads

∂f

∂t
+ vc(k)·∇xf +

q

~
(∇xV (x) +∇xΦ(x))·∇kf = C(f) , (x, k) ∈ IR6 , t > 0 , (1.19)

and is called the Boltzmann equation for semiconductors.
Eq. (1.19) is the analogue, in semi-classical kinetic framework, of the Boltzmann equation
of gas-dynamics. Accordingly, in the last decade, much interest has been arised by the
repetition of the steps of the classical kinetic theory in the semiconductors case. Indeed,
a H-Theorem corresponding to its specific collisional term and equilibrium solutions were
studied in Refs. [38, 39, 40] and macroscopic balance equations were deduced as moments
equations from the Boltzmann equation, analogously to the gas-dynamics case (cf. Ref. [18]).

11i.e. the independent normal modes of the harmonic oscillations that approximate thermal vibrations.
12Observe that, the collisions with other electrons are negligible at the densities tipically encountered in

semiconductor devices.
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1.4 Macroscopic description

One of the most interesting aspect of the kinetic approach is, indeed, the possibility of
passing from a microscopic to a macroscopic description by computing averaged quantities,
i.e. moments. We mention here some physical quantities that can be computed13 starting
from the electron distribution function f

n(x, t) = <f >(x, t) =

∫
B
f(x, k, t) dk , electron position density , (1.20)

V (x, t) = <vcf >(x, t) =

∫
B
vc(k) f(x, k, t) dk , electron velocity , (1.21)

P (x, t) = <pf >(x, t) =

∫
B
~k f(x, k, t) dk , crystal momentum , (1.22)

Ek(x, t) = <εcf >(x, t) =

∫
B
εc(k) f(x, k, t) dk , electron kinetic energy , (1.23)

S(x, t) = <vc εcf >(x, t) =

∫
B
vc(k) εc(k) f(x, k, t) dk , kinetic energy flux . (1.24)

The evolution equations for such quantities can be deduced from the Boltzmann equation
(1.19), by multiplying by the appropriate factors and integrating in the k-space. Thus, in
principle it can be created an infinite hierarchy of equations, then, the degree of precision
of the description will be decided by the number of equations that are taken into account.
The moments, whose time-evolution is disregarded, but appear in the equations that are
considered, are to be expressed in terms of the moments that are kept into consideration.
Moreover, on the right hand side of the corresponding equations, will appear the moments
of the collisional term, which are called the production terms, that are also to be expressed
in terms of the choosen moments. This procedure, called closure, is usually done by physical
assumptions or reductions.
For example, in case only the balance equations for the electron position density is taken
into account, the particle flux J = nV , is to be expressed via a constitutive equation, un-
der the assumption that the temperature is uniform14. The corresponding model is called
drift-diffusion (cf. Ref. [41], e.g.) and it is valid in quasi-stationary regimes. If, instead, also
the energy and energy flux equations are included, hydrodynamical models are obtained.
One of the earliest is the energy transport model: there exist several versions of it, starting
from the BBW15 (cf. Ref. [48] and the Refs. therein), which uses the (questionable) closure
assumption that the heat flux vector can be expressed according to the Fourier law. There,
the production terms for momentum and energy are assumed to be of relaxation type and
the relaxation times are computed via phenomenological arguments. Several extensions16

of it were studied (cf. Refs. [5, 29], e.g.). However, such description reveals to be quite
unsatisfactory, since certain physical relations (namely, the Onsager reciprocity relations)
are not fullfilled (cf. Ref. [3]). Accordingly, a great interest has been devoted to the inves-
tigation (cf. Refs. [7, 8]) of a different closure strategy, which is based on the application of
the maximum entropy principle, in the spirit of Extended Thermodynamics (cf. Ref. [42]).

13in the parabolic band approximation; otherwise, if the Kane dispersion relation is adopted, in the
definition of the crystal momentum, ~k is to be replaced with m∗vc[1 + 2αε(k)], with α non-parabolicity
parameter

14i.e., the temperature of the electrons is the same as the lattice temperature,
15i.e., the famous Blotekjaer-Baccarani-Wonderman, for the parabolic band approximation case
16e.g., to the non-parabolic case,
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Constitutive relations are obtained in a systematic way, by using a formalism close to the
one adopted in Ref. [37] for the classical kinetic case. Accordingly, extended hydrodynami-
cal models can be considered, where high order fluxes and the respective production terms,
both in the parabolic and in the Kane cases (cf. Refs. [6, 46]), are closed consistently with
the Onsager reciprocity principle of linear irreversible thermodynamics. Such models pro-
vide a refined description of the semiconductor physics and constitute a relevant tool in
semiconductor devices simulation (cf. Refs. [2, 4, 47]).

1.5 Beyond the semi-classical approach: quantum de-

vice simulation

In the recent years, due to the increasing degree of miniaturization and integration the
semiconductor technology is pursuing, it has become important to realise transport mod-
els suitable for describing quantum phenomena and sufficiently simple to allow for efficient
numerical simulations. More precisely, already when the characteristic length of the active
region of the device is under 1µm, and when potential variations of 106 V/cm are reached,
quantum effects occour. Additionally, are in use semiconductor devices whose performances
rely on a quantum-mechanical phenomenon, namely the tunneling effect, e.g., the resonant
tunneling diodes (RTD).
The behaviour of such devices cannot be adequately described via semi-classical Vlasov or
Boltzmann equations. Therefore, it is necessary to use intrinsically quantum models.
In the next chapter, we will introduce the quantum-mechanical and quantum-statistical de-
scriptions of (semiconductor) solide-state physics. However, for real device simulations, a
phase-space, quantum description would be desirable: that is indeed possible via the Wigner
function. Part II of the present work will be devoted to present that tool in view of the
successive analytical studies.
Here, we simply cite some articles that collect numerical results obtained via the Wigner-
function method, thus proving that this formalism is indeed suitable for numerical imple-
mentation: namely, Refs. [14, 31] and the Refs. therein, where different numerical methods
are tested on double-barrier semiconductor structures and the physically-expected diagrams
are recovered; Ref. [10], where a numerical analysis is performed in a L2-framework of the
coupled Wigner-Poisson problem, and the more recent Ref. [23], where the analogy with the
classical Vlasov equation is exploited to build a scheme for a Wigner-model for non-parabolic
band profiles.
For a matter of completeness, we also report on the development of a new group of de-
vices, namely interband resonant tunneling diodes (IRTD), in which occour transitions of
electrons from valence to conduction band, due to the tunneling effect through potential
barriers (cf. Ref. [50]). As a response to the increasing simulation interest, multi-band quan-
tum kinetic models are under examination: we just quote, e.g., Ref. [25], where the Wigner
formalism is again employed.
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Chapter 2

Quantum systems

2.1 Quantum-statistical description

In Section 1.1 we have presented a first example of an isolated quantum system, namely, an
electron moving in the three-dimensional space under the effect of a periodic potential. We
have described its state through a wave-function ψ ∈ L2(IR3; IC) and the energy associated to
it can be computed via the operator “kinetic plus potential” energy Êtot = −~2/2m∆x+Vper

acting1 on L2(IR3; IC). More precisely, the (real) value E of the energy measured via the
operator Êtot when the system is in the state ψ is

E =<ψ, Êtotψ>=

∫
ψ(x) Êtotψ(x) dx ,

since with <. , . > we represent the scalar product in the Hilbert space L2(IR3; IC). In general,
in Quantum Mechanics, a physical observable quantity is a linear, self-adjoint operator2 Â
on L2(IRd

x; IC), which is the state space of a system with d degrees of freedom, and the result
of the measurement3 of the physical observable, when the system is in the state ψ, is

<ψ, Âψ>=

∫
ψ(x) Âψ(x) dx . (2.1)

Let us denote with Ĥ the operator associated to the observable total-energy of the system
(Ĥ = Êtot, in the case of the isolated electron in the semiconductor material), then the
following differential equation in the space L2(IRd; IC)

i~
d

dt
ψ(t) = Ĥψ(t) , t ∈ IR (2.2)

describes the evolution in time of the system and is the Schrödinger equation in abstract form
(for a derivation of it, consistent with the classical mechanics limit, see Ref. [34] Chapt. I §6
and Chapt. II §8). We have already observed that Eq. (2.2) provides a quantum description
of the reversible dynamics of an isolated quantum system.
A possible way of describing semiconductor physics, by keeping to the Schrödinger formalism,

1The operator potential energy is the multiplication operator by the real-valued function Vper. In what
follows, we are not specifying the domains of definition of the operators.

2For example, the position operator, which is the multiplication by x, and the momentum operator, which
is −i~∇x, on their appropriate domains.

3a real number, due to the fact the operator Â is self-adjoint,
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but going beyond the independent electron approximation, consists in modeling the mutual
interaction of the electrons via a mean-field approximation. Accordingly, the dynamics of
an ensemble of N electrons in an ideal crystal (represented via the Vion potential) can be
described by the following system of equations for the corresponding wavefunctions ψi , i =
1, . . . N,

i~
d

dt
ψi(t) = −~2/2m∆xψi(t) + (Vion − q Ve)ψi(t) , t ∈ IR , x ∈ IR3 , i = 1, . . . N,

−ε∆xVe(x, t) = q n(x, t) , n(x, t) =
N∑
i=1

|ψi(x, t)|2 ,

which are known as the Hartree equations (cf. Ref. [12]). For a mathematically rigorous
derivation of the Hartree equation (i.e. of a one-body Schrödinger-Poisson equation) from
the N -body Schrödinger equation in the mean-field limit, see Ref. [27].
However, in case we are dealing with a quantum system with many degrees of freedom (many-
particles system occourring in semiconductor modeling, e.g.), the use of the wave-function
formalism is no longer adequate; in fact, more in general, the quantum-mechanical approach
reveals to be unfeasible, as, for example, the concept of closed sub-system ceases to be
rigorous (cf. Ref. [35] Chapt. I §5 for a satisfactory discussion). Accordingly, it is necessary
to adopt the Quantum Statistics’ formalism and introduce the concept of density matrix
(cf. Ref. [34] Chapt. II §12), as the proper instrument for the description of the states of a
“macroscopic” quantum system.

Definition 2.1.1 (Density matrix) The state of a quantum system with d degrees of free-
dom is described by an operator ρ̂ on L2(IRd; IC) of the form4

ρ̂ :=
∑
j∈IN

λj < ψj, . > ψj

where {ψj| j ∈ IN} is a complete orthonormal set in L2(IRd; IC), λj ≥ 0 , ∀ j ∈ IN and∑
j λj = 1 . If all but one of the λj are zero, the system is in a pure state, otherwise it is in

a mixed state.

(cf. Ref. [28])

Remark 2.1.1 (Physical quantum state) Due to its definition, a density matrix oper-
ator ρ̂ is a positive, self-adjoint, trace-class operator on L2(IRd; IC) (cf. Ref. [43] for the
definitions). According to (2.3), ρ̂ is, indeed, an integral operator with kernel ρ ∈ L2(IR2d; IC)

ρ(x, y) =
∑
j∈ IN

λjψj(x)ψj(y) .

Equivalently, ρ̂ is a Hilbert-Schmidt operator; in addition, ρ(x, y) = ρ(y, x), equivalently ρ̂
is self-adjoint. Moreover, λj ≥ 0 , ∀ j ∈ IN and {λj}j∈IN ∈ l1(IN) imply that ρ̂ is positive
and trace class.
In what follows, we will consider a physically relevant state of a quantum system (“physical
quantum state”) to be univocally individuated by a density matrix operator.

4precisely, for all φ ∈ L2(IRd; IC),

(ρ̂φ)(x) =
∑
j∈IN

λj

∫
ψj(x)ψj(y)φ(y) dy . (2.3)
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The expectation of the physical observable Â relative to the system in the state ρ̂ is well-
defined5 as Tr(ρ̂ Â) and it coincides with

Tr(ρ̂ Â) =
∑
j∈IN

λj <ψj, Âψj> (2.4)

(cf. Ref. [28]). By comparing (2.4) with (2.1), it follows from Def. 2.1.1 that each λj can
be interpreted as the probability that the system is in the state ψj. In particular, if it
exists j such that λj = 1, the system is in the pure state described by the density matrix
ρ̂j :=< ψj, . > ψj and

Tr(ρ̂j Â) =<ψj, Âψj>=

∫
ψj(x) Âψj(x) dx .

According to the previous interpretation of the {λj , j ∈ IN}, as occupation probabilities of
the states {ψj , j ∈ IN}, the density n relative to the quantum system in the state described
by ρ̂ can be calculated as

n(x) =
∑
j∈ IN

λj|ψj(x)|2 , (2.5)

and it is a positive function. Moreover, by Def. 2.1.1 and Eq. (2.4),∫
n(x) dx = Tr(ρ̂) = 1 ,

equivalently, the total mass of a physical QS is finite. Analogously, the kinetic energy is
defined by

Ekin(ρ̂) := Tr(Ĥ0 ρ̂) , Ĥ0 := −~2/2 ∆x.

If we denote again with Ĥ the observable total energy, then the evolution in time of a physical
quantum system is governed by the Von Neumann equation (cf. Ref. [34] Chapt. II §12)

i~
d

dt
ρ̂ = Ĥρ̂− ρ̂Ĥ , t ∈ IR , (2.6)

which is a differential equation in the space of the trace-class operators on L2(IRd; IC). The
corresponding Cauchy problem with initial value the density matrix ρ̂0 is studied, e.g., in
Refs. [19, 44]6, and the solution ρ̂(t) is proved to be a density matrix for all times t ∈ IR,
equivalently individuates a physical quantum system for all times t ∈ IR.
Moreover, the explicit representation that can be given of the evolute of ρ̂0, i.e. of ρ̂(t)
(cf. Ref. [9]), shows that the dynamics of ρ̂ is fully described by the time evolution of its
eigenfunctions {ψj , j ∈ IN}, while the eigenvalues are constant in time. Thus, the Von Neu-
mann equation (2.6) is equivalent to countably many Schrödinger equations with the same
operator Ĥ. As a by-product, this equivalence shows that Eq. (2.6) provides a quantum
statistical description of the reversible dynamics of a physical quantum system.
A possible extension of such model consists in including a Hartree-type nonlinearity repre-
senting a mean-field interaction, namely,

i~
d

dt
ρ̂ = Ĥ(t)ρ̂− ρ̂Ĥ(t) , t ∈ IR , Ĥ(t) = −~2/2 ∆x + V (x, t) (2.7)

−∆xV (x, t) = n(x, t) , (2.8)

5actually if the operator ρ̂ Â is also trace class
6respectively, with Ĥ = Ĥ0 and with Ĥ(t) = Ĥ0 + V (t) , V (t) a time-dependent, bounded perturbation

of Ĥ0
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where n is defined in terms of ρ̂ by Eq. (2.5).
Observe that the models (1.17), (2.3) and (2.7) have in common that they belong to the
class of Markovian approximation of the dynamics of the corresponding systems: in Ref. [49]
can be found an extended overview of such derivations for a variety of kinetic equations.
Such picture has to be modified in case we want to include the effect of an irreversible inter-
action of the system with the “environment”: in some situations (including semiconductor
devices modeling) it could be not negligible. Accordingly, the concept of open quantum
system has to be introduced and we will briefly focus on the available descriptions of it in
the literature.

2.2 Open quantum systems

In the final part of Section 1.3, we have introduced the (semi-classical) Boltzmann equation
(1.19) that, in the (semi-)classical kinetic framework, constitutes a description of the irre-
versible dynamics of a system (cf. Ref. [18] for a satisfactory discussion). Another possibility
is to use the Fokker-Planck equation (cf. Ref. [45]): there, instead of a collisional term, are
included a friction and a diffusion terms. In plasma physics, where it is widely employed,
these two terms describe respectively the friction between the particles and the grazing col-
lisions, which produce a diffusion term in the velocity direction.
In the quantum picture, a multi-particle system undergoing an irreversible interaction with
the environment, falls into the class of the open quantum systems (cf. Ref. [20]).
The system under examination is rather small with respect to the “rest of the universe” and
the aim is to study in detail the evolution of the former by taking into account the influ-
ence of the latter (cf. Ref. [1]). Accordingly, the starting point of the description consists in
considering a picture of the universe, in which two parts are distinguishable. The attention
is restricted to the evolution of weakly coupled systems, thus to the states of the universe
that evolve from an initial state which can be “factorised” by a given reference state of the
reservoir (ωR, a density matrix on the Hilbert space HR), and an arbitrary state of the
system under examination (ρ̂0, a density matrix on L2(IRd)). The object of the study is the
reduced dynamics, i.e. the evolution of the state ρ̂0, which can be isolated from the evolution
of the initial state of the universe, by computing the partial trace of the universal evolution,
i.e. the trace TrHR(cf. Def. (2.4)) of the evolute of the state of the universe.
Accordingly, the evolution of an open quantum system will be governed again by an equation
of the following type

d

dt
ρ̂ = L̂(ρ̂) , t > 0 , ρ̂(t = 0) = ρ̂0 , (2.9)

the so called Markovian master equation (cf. Ref. [1] or [49]), with ρ̂0 trace-class operator
and L̂ the “Liouvillian” operator. A possible class of operators is the so called Lindblad
one: since they are mostly unbounded, they may lead to non unique and non conservative
(i.e. non trace-preserving) solutions (cf. Ref. [1, 49] or Ref. [11] for a discussion about the
wide related literature). However, among Lindblad operators, there are those that are linear
combinations of position and momentum operators: these ones can be used, in particular, to
represent the coupling of the quantum system to the reservoir. In Ref. [11] is established the
existence and uniqueness of a trace-preserving solution of the system (2.9) with a family of
unbounded Lindblad operators of the latter type and with a Hartree interaction term. Cor-
respondingly, the evolute of a quantum physical system, which can describe a many-particle
system undergoing an irreversible interaction with the environment, will be a quantum phys-
ical system for all positive times.
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In literature are also available many phenomenological description of the dissipative in-
teraction of a quantum physical system with its environment, via relaxation-type term or
quantum-BGK operator. For example, we cite Ref. [9], where a relaxation-time term is
added to the Von-Neumann equation, coupled with the Poisson one (cf. Eq. (2.7)). There,
it is proved a global-in-time well-posedness result for the corresponding Cauchy problem
and, moreover, that the evolute of a (initial) physical quantum state is a physical quantum
state for all positive times. An example of use of a quantum-BGK operator can be found in
Ref. [22]. We remark that such modifications of Eq. (2.7) make the cited equivalence with a
system of Schrödinger equations no longer valid.

Apart from being physically well-grounded and providing a physically consistent descrip-
tion for all times, the density matrices formalism is not useful for practical applications,
namely, for real devices modeling and simulation, since due to its mathematical structure,
it is restricted to whole space cases. To that aim, it would be advisable the introduction
of a quantum kinetic description and that will be indeed the object of Part II. We expect
it to be equivalent or at least to be deducible from the quantum mechanical/statistical ap-
proaches, and, at the same time, being a phase-space description, to be suitable for the study
of boundary-value problems and for numerical approximations.
As we have anticipated in Remark 1.3.1, it will be introduced a quantum transport equation
(the Wigner equation) for the reversible dynamics of a quantum system. Possible modifi-
cations to describe the irreversible evolution of the system via the Wigner formalism are
examined in literature: we briefly discuss here some of them.
In Ref. [17], can be found a tentative derivation of a quantum transport equation with a
scattering term describing electron-phonon interaction. It starts from the introduction of a
Hamiltonian for the coupled system of the electrons and the phonons: due to the scattering
events, the number of phonons is not conserved, thus, to deal with a non-constant number
of particles, the procedure of second quantization is employed. In Ref. [24], instead, a nu-
merical study is performed of a transport model, based on the Wigner-function approach,
which allows a non-parabolic band profile and, moreover, include two different scattering
mechanisms (namely, with polar optical and intervalley phonons) via a Boltzmann-like colli-
sion operator. We refer the reader again to Ref. [9] and the Refs. therein, for the discussion
about a possible use of the relaxation-time approximation in the Wigner picture, while, in
Ref. [32], this option is investigated from the numerical simulation point of view.
We anticipate that, in the last chapter, we’ll study a modified version of the Wigner equation,
namely the Wigner-Fokker-Planck equation: the diffusive term that is added to the trans-
port equation is a “generalization” of the classical Fokker-Planck term for plasma physics
(cf. the introduction of Part IV for a more precise comparison with the classical F-P term
and for a detailed description). It is widely used in literature to describe the dissipative
interaction of a quantum system with a heath bath, i.e. with an environment in thermo-
dynamic equilibrium. Accordingly, it can model the irreversible interaction of the electrons
with the crystal lattice, represented by a phonon bath, in nanoscale semiconductor devices
(cf. Refs. [30, 33]), and in quantum Brownian motion, quantum optics and decoherence, as
well (cf. Ref. [11] and the Refs. therein). For a formal derivation of various versions of such
equation the reader can refer to Refs. [15, 26]), while in Ref. [16] a tentative derivation from
many-body Quantum Mechanics is performed. We conclude with the additional remark that
the operator that appears in the Master equation (2.9) studied in Ref. [11] is a generalization
of the one which corresponds to the quantum Fokker-Planck one. Thus, the description of
the evolution of a physical QS provided by the Wigner-Fokker-Planck equation is equivalent
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to the physically-consistent one which uses the density matrices formalism.
Another physical situation, adherent to real device simulation, which can be modeled via
an open QS, is a device coupled to an external resevoir. In that case there is an exchange
of particles between the “system” and the “environment” that, in first approximation, can
be described as a black-body (see the introduction to Part III for a more complete dis-
cussion and for Refs.). Also for such model a quantum kinetic approach seems promising,
since it provides the possibility of stating a boundary-value problem in the phase-space (at
difference with the density matrices formalism). By the way, we name that, in the recent
years, has been widely investigated the possibility of coupling different parts of a semicon-
ductor device, distinguishing between those in which quantum regimes are attained and the
ones that are well-described by the semi-classical approach. In particular, for what a mixed
classical-kinetic and quantum-operatorial description is concerned, we name Ref. [13]: there,
an open quantum system is under examination, as well, since are described “particles” in
the quantum region interacting with those coming from the classical region of the device.
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Part II

Quantum kinetic theory
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Chapter 3

The Wigner-function description

3.1 The concept of quasiprobability

The aim of the present chapter is to introduce a kinetic model for the evolution of a quantum
system (QS), starting from the dynamics of Quantum Mechanics (QM). Accordingly, the
state of the system at a certain time t should be described by a probability distribution
function in the phase space1, W : (p, q, t) ∈ IR2d × IR 7→ W (p, q, t) ∈ IR+

0 .
In the classical kinetic theory, that enables to compute macroscopic physical quantities
(observables) corresponding to real-valued functions f(p, q) as averages, i.e., by

<f W >=

∫∫
f(p, q)W (p, q) dp dq (3.1)

(cf. Eq. (1.11)). Correspondingly, in the Quantum-Mechanics framework, that would mean
to compute the expectation values of a physical observable Â, say at a pure state of our phys-
ical system, without resorting to the wave function ψ that describes the state (cf. Def. (2.1)).
In particular, a joint (i.e. phase-space) probability density W would make it possible to per-
form the calculation for observables f̂ that are expressed in terms of position and momentum
operators, f̂ = f(p̂, q̂). That would lead to the following contradiction with the Heisenberg
commutation relation, which reads

p̂ q̂ − q̂p̂ =
~
2π
ι̂

(where ι̂ is the identity operator on the appropriate domain): Let us assume that the operator
f(p̂, q̂) differs from f1(p̂, q̂) by some power of (~/2π) ι̂, due to the non-commutability of the
operators, and that it still holds f(p, q) = f1(p, q), for all (p, q) ∈ IR2d. Accordingly, the
corresponding observable would have the same average value at an arbitrary (pure) state ψ,
when computed with Eq. (3.1), thus

<ψ, f̂ψ>=

∫∫
W (p, q) f(p, q) dp dq =

∫∫
W (p, q)f1(p, q) dp dq =<ψ, f̂1ψ> ,

which is contradictory, since it can not be <ψ, f̂ψ>=<ψ, f̂1ψ>, because f(p̂, q̂) and f1(p̂, q̂)
differ by some power of (~/2π) ι̂.

1Here, as before, d indicates the degrees of freedom of the system, while p are the momentum and q the
position variables.
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This consideration suggests that, before introducing a distribution W (p, q) corresponding to
a state of the QS, it is necessary to set up rules to assign to each function f of variables
p, q, a unique function f(p̂, q̂) of noncommuting operators: that is the well-known problem of
quantization. There isn’t a unique way to solve this problem; however, to every possible or-
dering, corresponds the definition of a function W in terms of a state of the QS, such that the
use of expressions like (3.1), for observables that are described by suitably ordered functions
f(p̂, q̂), will give the correct quantum-mechanical mean values at that state (cf. Ref. [31]).
The corresponding functions W are called quasiprobability distributions, since they are to
a large extent analogous to a joint probability densities for coordinate and momentum, al-
though they have also certain peculiarities which do not allow to fully treat them as such.
Somehow, during the use of such quasiprobabilities for the kinetic description of the system,
their peculiarities will remind us of the quantum origin of the description itself, since their
appearance is related to the Heisenberg uncertainty principle, which is one of the distin-
guishing points of QM.
A possible way to associate to f(p, q) a unique operator is the Weyl-ordering rule (cf. Refs. [16,
32]): if we indicate with {f} = {f(p̂, q̂)} the Weyl-ordered function of operators p̂, q̂, it reads

({f}ψ)(q) :=
1

(2π~)d

∫
IRd

z×IRd
p

exp (ip · (q − z)/~)f

(
p,
q + z

2

)
ψ(z) dz dp .

Accordingly, we can state the following

Definition 3.1.1 (The Wigner function) Let f(p, q) denote a physical observable and let
{f} identify the corresponding Weyl-ordered operator. The expectation value of the observable
f computed at the state ψ is given by

<ψ, {f}ψ>=

∫∫
f(p, q)w(p, q) dp dq ,

where the function w : (p, q) ∈ IR2d 7→ w(p, q) ∈ IR is defined in terms of ψ by

w(p, q) :=
1

(2π~)d

∫
exp (ip · ξ/~)ψ

(
q +

ξ

2

)
ψ

(
q − ξ

2

)
dξ (3.2)

The interested reader can find in Ref. [31] the details of the derivation of the definition in
the contest of the choice of the quantization. Instead, we will simply assume Eq. (3.2) to
be the definition of a quasiprobability distribution for the QS described by ψ. By Remark
2.1.1, it follows the equivalent definition in terms of density matrices.

Definition 3.1.2 (The Wigner function of a physical QS) The Wigner function as-
sociated to the density matrix2 ρ̂ describing the mixed (respectively, pure) state of a physical
QS, is defined as

w(p, q) :=
1

(2π~)d

∫
exp (−ip · ξ/~) ρ

(
q +

ξ

2
, q − ξ

2

)
dξ = Fξ→p ρ

(
q +

~ ξ
2
, q − ~ ξ

2

)
,

(3.3)
where we indicate with Fξ→p the Fourier transform multiplied by a factor (2π)−d/2.

2In particular, ρ̂ is self-adjoint, thus the corresponding kernel ρ satisfies ρ(x, y) = ρ(y, x). That is
equivalent to the Wigner function (defined by (3.3)) being real-valued.
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Remark 3.1.1 (The Wigner transform) Eq. (3.3) defines as well the Wigner transform
W, which is an isometry on L2(IR2d), by

w =: W ρ . (3.4)

This function was first introduced by E.Wigner in Ref. [33] to study quantum corrections to
thermodynamic equilibrium distributions.
In what follows, we will keep indicating with w the Wigner distribution function and we
will consider Definition (3.2), as well as (3.3) as the starting point of the quantum kinetic
description of the system under consideration.

3.2 Peculiarities of a quasiprobability

In this section we discuss some properties of the Wigner function that can be used as the
terms for a comparison with a classical probability distribution function.

3.2.1 Compatibility with the densities

From a joint probability density one naturally expects that its integral over p (respectively,
over q) leads to the probability density for the coordinate q (respectively, for the coordinate
p). Indeed, by exploiting Def. (3.2),

n[w](p) :=

∫
w(p, q) dp = |ψ(q)|2 ,

∫
w(p, q) dq = | Fq→p ψ(q)|2 , (3.5)

and the right hand sides of the equalities above coincide with the position and momentum
densities, in case the QS is described by the state ψ .
The discussion for the density matrix case has to be postponed to Section 3.3, since it is by
far more delicate.

3.2.2 Admissable distributions

Before comparing the evolution equations for the classical and the quasidistributions, we
should discuss the following point. According to the derivation in Section 3.1, not every
real-valued function defined in the phase space IRd

p × IRd
q can describe a QS.

Therefore, admissable initial data for the Cauchy problems relative to the quantum evolution
equation, have to be selected by the necessary condition that they describe quantum states.
A necessary and sufficient condition for a function w : (p, q) ∈ IR2d 7→ w(p, q) ∈ IR to
correspond to a pure state of a QS can be found in Ref. [31]. On Section 3.3, we will discuss
possible conditions to select functions which can be associated to density matrices.
Accordingly, such functions will automatically satisfy the uncertanty relation.

3.2.3 Evolution equation

The evolution equation for the quasidistribution function w(p, q, t) can be easily determined
starting by the Definition (3.2) and considering the time-dependent function ψ(q, t) as the
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solution of the Schrödinger equation (2.2). It reads3

∂

∂t
w(p, q, t) = − p

m
·∇qw(p, q, t)+

− i

(2π)d~

∫ ∫ (
V

(
q +

~ ξ
2

)
− V

(
q − ~ ξ

2

))
w(p′, q, t) exp (−i (p− p′) · ξ) dp′ dξ, (3.6)

and it is the quantum generalization of the classical Liouville equation (1.14).

Remark 3.2.1 Observe that, being equivalent to the Schrödinger equation, such equation
provides a description of the reversible dynamics of an isolated QS (cf. the discussion in
Remark 1.3.1 and in Section 2.2. Equivalently, it could be derived from the density matrices
picture, i.e. from Eq. (2.6), via Wigner transform (3.3). We can include a Hartree-type non-
linearity, analogously to (2.7), in order to model adequately the dynamics of the QS under
examination; accordingly, Eq. (3.6) can be coupled to the Poisson equation

−∆xV (q, t) = n[w](q, t) ,

with n[w] formally defined as in Eq. (3.5).

Indeed, at least for (potential) functions V that are analytic in q, the Wigner equation can
be rewritten in the form

∂

∂t
w(p, q, t) =

(
− p

m
·∇q −

i

~

(
V

(
q +

i~
2
∇p

)
− V

(
q − i~

2
∇p

)))
w(p, q, t). (3.7)

And, if we expand the potential V in series at the point q, we get the following form

∂

∂t
w(p, q, t) = − p

m
·∇qw(p, q, t) +∇qV (q)·∇pw(p, q, t) +O(~2)-terms (3.8)

that suggests that, if we can neglect quantities of order ~2, the quantum Liouville equa-
tion goes over into the classical Vlasov equation. Another remarkable case is when V is a
quadratic polynomial, then the Wigner equation will coincide with the classical Liouville
equation for the corresponding system.
The previous (formal) limit procedure, apart from fixing in terms of ~ the order of the error
of the classical description of a quantum system, opens the discussion about the meaning of
the Wigner formulation. Let us rewrite Eq. (3.8) in the form

∂

∂t
w(p, q, t) +

p

m
·∇qw(p, q, t)−∇qV (q)·∇pw(p, q, t) = Φ(p, q)w(p, q, t) ,

Φ(p, q) :=

[
i

~

(
V

(
q +

i~
2
∇p

)
− V

(
q − i~

2
∇p

))
−∇qV (q)·∇p

]
. (3.9)

The solution of the corresponding Cauchy problem with initial condition w(p, q, 0) = w0(p, q),
identically satisfies

w(p, q, t) = G(p, q, t) ∗ w0 +

∫ t

0

G(p, q, s) ∗ (Φw)(s) ds, (3.10)

3Here, as before, with m it is indicated the electron mass, while we have substituted the periodic potential
Vper with the generic one V .
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with G the Green’s distribution of the classical Vlasov equation. The function defined by
w0(p, q, t) = G(p, q, t) ∗ w0 is indeed the solution of the Vlasov equation with initial datum
w0. Thus, if we consider the solution of Eq. (3.10) in the form of an iterative series with
first term w0, we are driven to say that its next terms will bring quantum corrections to
the “classical” solution w0. Let us recall instead (cf. Section 3.2.2), that a correct use of
the Wigner description requires the use of (admissible) quantum initial datum. That will
already carry some “quantum information”; thus, it is not appropriate to call w0 a classical
solution; instead, an initial quantum distribution evolving according to the laws of Classical
Mechanics. Thus, the formal similarities of classical and quantum kinetic formulation can
be misleading.
Moreover, the previous discussion points out the problem that the Wigner equation can
be satisfied also by extraneous solutions, i.e. which can have nothing to do with quantum
systems: again, the quantum-mechanical meaning of the solution of the Wigner equation
has to be guaranteed by the selection of the initial data.
A possible concrete example is the harmonic oscillator: in that case (more generally in
the case of a quantum system with quadratic potential), the classical and the quantum
Liouville equations coincide: thus, the Wigner equation is satisfied by the solution of the
classical equation. However, the solution of the problem of the quantum oscillator is definitely
different from the classical one. In Ref. [31], is shown that the quantization condition on the
oscillator energy is obtained not from the equation of motion for the corresponding Wigner
function, but from the supplementary condition which distinguishes those quasidistributions
that correspond to pure quantum states.
In conclusion, the Wigner equation is the quantum equivalent of the Liouville equation and,
in certain circumstances, can be formally identical to its classical counterpart; however, the
conditions coming from its quantum origin have to be kept into consideration, in order to
preserve the quantum-mechanical value of its solution.

Remark 3.2.2 (Analogies between the Schrödinger and the Liouville equations)
From a strictly mathematical point of view4, in case V ≡ 0, the transform defined by

ψ ∈ L2(IRd
q ; IC) 7−→ ψ( . )ψ( . ) ∈ L2(IRd

ξ × IRd
q ; IC)

W7−→ wψ ∈ L2(IRd
p × IRd

q ; IR) (3.11)

(cf. Eq. (3.4)), make the Schrödinger equation (2.2) with V ≡ 0 correspond to the free-
transport equation, i.e. the Liouville equation (1.14) with only the free-streaming oper-
ator. Accordingly, we expect that the two equations present analogies. Indeed, first, in
Ref. [21] have been deduced dispersion estimates for the Schrödinger equation from a mo-
ments lemma for the free-transport equation, via the transform (3.11). Secondly, in Ref. [13],
have been recovered estimates for the free-transport equation, which are analogous to the
Strichartz’estimates for the Schrödinger equation (cf. Section 4.2 for a more detailed dis-
cussion and Refs.). Then, in Ref. [28], analogies between the Schrödinger-Poisson and the
Vlasov-Poisson systems are discussed: among them a regularizing effect on the electric field
(proved for the Schrödinger case in Ref. [11]), still due to dispersive properties of the free-
streaming operator. Inspired by the strategy there used (which, actually, is to be ascribed to
Ref. [20]), we will recover also for the Wigner case (cf. Section 4.3) an analogous effect and
that will be crucial for our well-posedness analysis (Ref. [4]).
However, we observe that, in spite of the correspondences between the different pictures,
which motivate to pursue the parallelism, and the similarities of the achieved results, the

4i.e., neglecting the previous discussion about the admissability of the initial data and considering just
the formal aspect,
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techniques used to prove them have to be adequated from case to case in order to take into
account the peculiarities of each description. For example, the Strichartz’ inequalities re-
covered in Ref. [13] are not simply the Wigner-transformed version of those that hold in
the Schrödinger picture (cf. Section 4.2): they need, instead, to be derived differently. As
a second example, the nonnegativity of the classical distribution probability is lost at the
Wigner level; thus, in Chapter 4 we will see several modified tecniques with respect to the
ones used in the literature for the Vlasov-Poisson problem, according to such peculiarity of
the Wigner function. In addition, roughly speaking, the quantities that are quadratic in the
Schrödinger formalism are linear5 in the Wigner one (cf. Def. (3.11)) and this can make the
Schrödinger/Wigner parallelism difficult to be exploited.

3.2.4 Positivity and smoothed quasiprobabilities

A fundamental difference between the Wigner function and a probability distribution is the
former does not satisfy, in general, the condition of being non-negative. In Ref. [31] it is
investigated the reason why: starting from Definition (3.2), the Wigner function can be
represented as the difference of two nonnegative quantities, thus its sign depends on their
ratio.
The only example of a non-negative Wigner function is the one defined by Eq. (3.2) with ψ
equal to a Gaussian function (cf. Ref. [27]). No similar characterization has been found yet
for the mixed states case.
However, it is possible to define some averaged quasidensities, which do not assume negative
values. The use of such substitutes as probability densities will not lead to the genuine
quantum averages (cf. Ref. [31]); thus, they don’t have a remarkable physical meaning.
Nevertheless, they have proved to be the correct instruments to perform the semiclassical
limit, i.e. the limit for ~ → 0 (cf. Ref. [31] for the example of the quantum oscillator,
and Ref. [19, 25] for a rigorous study). There, a smoothed Wigner function is defined by
convolution with an appropriate mollifier; namely, the Husimi function

w~(p, q) := w ∗q G
~
m (q) ∗p G

~
m (p) , with

Gδ(r) :=
1

(2πδ)d/2
exp

(
−r

2

δ

)
. (3.12)

As a consequence of the uncertainty principle, it can be proved w~ is nonnegative, and
exactly on that rely compactness criteria for the convergence. Moreover,∫

w(p, q) dp dq =

∫
w~(p, q) dp dq ;

so this distribution is at least compatible with the one-dimensional distributions (see also
Section 3.3).

As a conclusion, we can state that the Wigner function is the object, arising from a quantum
description, which is nearest to a classical distribution function. However, we must be aware
of the limits pointed out above, before using it for a quantum-mechanically meaningful
kinetic description.

5Think, e.g., to the fact that ψ ∈ L2(IRd
q IC) ⇒ n[ψ] := |ψ|2 ∈ L+

1 (IRd
q ; IR), while w ∈ L2(IRd

p × IRd
q ; IR)

does not yield that n[w](q) :=
∫
w(p, q) dp is well-defined.
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3.3 The kinetic characterisation of a physical QS

In Section 2.1, the tools for a quantum-mechanical and for a quantum-statistical description
of a QS have been introduced, while in Section 3.1, we have presented the main instrument,
namely the Wigner function, to try a quantum kinetic description of a QS; then, in Section
3.2, we have restricted the use of the quasiprobability as a “classical” probability distribu-
tion, by listing its peculiarities and the conditions for it to preserve its quantum meaning.
The further questions that naturally arise are whether and to what extent the physical in-
formations that QM conveys, can be transferred to the kinetic framework. Such physical
characterization can, indeed, be translated in mathematical features which are consistent
with the kinetic formulation, but they can happen not to have a meaning in that picture,
thus, in the end, to be unexploitable for the analysis of the kinetic model.
Specifically, in the quantum-statistical picture, a physical QS is a positive, self-adjoint trace-
class operator ρ̂ with kernel ρ (cf. Remark 2.1.1) and those informations already yield, e.g.,
the finite total mass of the system. The corresponding Wigner function can be defined as
w := Wρ (cf. Eq. (3.4)): in the next proposition, we collect the mathematical properties
that can be deduced for the function w, being the Wigner transformed of a physical QS. The
next point to be discussed is whether such properties can be used for the kinetic description
of the evolution of a physical QS.
The other way round, we investigate the possibility of characterizing a QS just in terms
of a function w defined on the phase-space. Accordingly, we look for sufficient conditions
for a function w (and its evolution) to identify a physical QS (respectively, to describe its
evolution).
Thus, the following discussion completes that started in Section 3.2.2, about Wigner func-
tions which are admissable for a quantum kinetic description.

Proposition 3.3.1 Let ρ̂ be an integral operator on L2(IRd
x) with kernel ρ

ρ̂f(x) =

∫
ρ(x, y)f(y) dy , ρ ∈ L2(IR2d) ,

and6 w : IRd
x × IRd

y → IC be defined by w := Wρ (cf. Eq. (3.4)). Then, the following equiva-
lences hold:

1. ρ̂ is (H-S) self-adjoint ⇔ w ∈ L2(IR2d) is real-valued,

2. ρ̂ is trace class ⇒ the particle density n, defined by Eq. (2.5), n ∈ L1(IRd) ,

3. ρ̂ is (H-S) self-adjoint, positive7⇔<w,wψ>L2(IR2d;IR)≥ 0, ∀ψ ∈ L2(IRd) , with wψ de-

fined by Eq. (3.11) (⇒ w~ ≥ 0)8,

4. if ρ̂ is (H-S) positive, then ρ̂ is trace class ⇔ n ∈ L1(IRd; IR+) ⇔ w~ ∈ L1(IR2d; IR+)
and

‖n‖L1(IRd) = ‖w~‖L1(IR2d) .

Let us carefully discuss the content of the previous proposition, since it motivates our future
choices; for the detailed proof of it, the reader can refer to Refs. [1, 7, 19], e.g..

6equivalently, a Hilbert-Schmidt(H-S) operator,
7equivalently, <ρ̂ψ, ψ>≥ 0, ∀ψ ∈ L2(IRd)
8cf. Eq. (3.12)
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Observe that a trace-class operator is necessarily Hilbert-Schmidt. Starting from ρ̂ Hilbert-
Schmidt, the Wigner function is well-defined by Eq. (3.4) (cf. Remark 2.1.1) and the equiv-
alence in 1. is straightforward from the definition and can be summarized in the following
way

‖w‖L2(IR2d; IR) = (4π)−N/2‖ρ‖L2(IR2d) < +∞. (3.13)

In the next sections, we will see examples of time-evolution of kinetic models by which the
information in Eq. (3.13) will be conveyed and it will be crucial for their well-posedness
analysis.
Nevertheless, that property doesn’t have any direct physical interpretation, apart from being
a necessary condition for the Wigner function to describe a physical QS. In particular, it
does not imply that the position density n[w], expressed in the kinetic formulation by

n[w](x) :=

∫
w(x, y) dy

(cf. Eq. (3.5) for the pure-state case), is well-defined. Correspondingly, if we define the
particle density n in terms of the normalized eigenvectors {ψj}j∈ IN ⊂ L2(IRd) and eigenvalues
{λj}j∈ IN ⊂ l2(IN) of the H-S operator ρ̂, in analogy with the case of a physical QS (cf.
Eq. (2.5)), by

n(x) :=
∑
j∈ IN

λj|ψj(x)|2 , (3.14)

the sum in Eq. (3.14) could also not converge.
Thus, starting from a function w ∈ L2(IR2d; IR), neither the density n defined in the cor-
responding operatorial formulation (via ρ := W−1w), nor the “kinetic” one, n[w], are well-
defined.
In case ρ̂ is trace class, instead, the density n is well-defined by (2.5), since it holds

‖n‖L1(IRd) ≤ Tr|ρ̂| (3.15)

and it can be proved a necessary condition for a function to be the Wigner transformed of
a trace-class operator, namely,

ρ̂ trace class ⇒ w ∈ C0(IR
d
x;FL1(IRd

y)) ∩ C0(IR
d
y;FL1(IRd

x)) (3.16)

(cf.Ref. [1] and the refs. therein).
However, only if the operator is trace class and positive (i.e. corresponds to a physical QS),
the {λj}j in Eq. (3.14) are non-negative and starting from the Fourier expansion of the
corresponding kernel ρ

ρ(x, y) =
∑
j∈ IN

λjψj(x)ψj(y) ,

the equality n(x) = ρ(x, x) has a rigorous meaning by the limit

n(x) = lim
ε→0

∫
ρ
(
x+

η

2
, x− η

2

) e−|η|2/(2ε)
(2πε)d/2

dη < +∞ , (3.17)

and n ∈ L1
+(IRd) (see Ref. [1] and the refs. therein). In addition, the definitions of the density

in the two formulations are consistent, since

n(x) = ρ(x, x) =
(
F−1
y→ηw

)
(x, η = 0) = n[w](x) , (3.18)
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by

n[w](x) = lim
ε→0

∫
w(x, y) e−ε|y|

2/2 dy < +∞ ,

and n[w] ∈ L1
+(IRd) (cf. (3.17) and Def. (3.3)).

Unfortunately, at least to our knowledge, there is no characterization of the positivity of the
operator ρ̂ only in terms of a function w ∈ L2(IR2d; IR), except for the equivalence stated in
3., which follows directly by the definitions and implies the positivity of many convolutions
with the function w, thus, of the Husimi function as well. In particular, in case the operator
is trace class and positive, w~ is non-negative, and it holds∫

n(x) dx =

∫ ∫
w~(x, y) dx dy ≥ 0

(cf. Eq. (3.18) and Section 3.2.4).
To conclude, let us deal with physically meaningful quantities: in case the operator is trace
class and positive,

Tr ρ̂ =
∑
j∈ IN

λj =

∫
n(x) dx =

∫ ∫
w~(x, y) dx dy

and this quantity, which corresponds to the total mass of the system, is positive and finite.
For what the kinetic energy is concerned, its expression in terms of the operator ρ̂ is Tr Ĥ0ρ̂
with Ĥ0 := −1

2
∆x and it holds

Tr(Ĥ0ρ̂) < +∞ ⇔ |y|2w~ ∈ L1(IR2d) . (3.19)

Instead, since ρ ∈ S(IR2d) ⇔ w ∈ S(IR2d), under such assumptions, it holds

Tr(Ĥ0ρ̂) =
1

2

∫ ∫
|y|2w(x, y) dx dy .

Let us derive some conclusions from the previous discussion: First of all, the mathematical
properties that characterize a physical QS on the operators framework, when translated in
the Wigner formalism, give the conditions (3.16) and 3. on the Wigner function w, and the
desireable property 4. on the (Wigner related) position density n[w] (which coincides with
the quantum-mechanically correct one). For what the properties of the Wigner function
are concerned, instead, 3. has not much interest or use in the kinetic context. For what
(3.16) is concerned, we just name that in Ref. [19], are discussed conditions on the potential,
such that the weak solution w(t) of the Wigner equation belongs to C(IR;L2(IR2d

x ))∩Cb(IR×
IRd
x;FL1(IRd

y))∩Cb(IR×IRd
y;FL1(IRd

x)) , for all times t. Moreover, condition 3. is very peculiar,
if we consider that w can take negative values as well.
The other way round, a characterization of a physical QS only in terms of a function
w defined on the phase-space is not possible, since both the conditions 1. and (3.16) on
the function w, are just necessary and, moreover, incomplete, since none of them includes
positivity of the corresponding operator, defined via ρ := W−1w. Indeed, the only sufficient
condition in terms of w, for the positivity of the operator to hold, is 3.. Additionally,
the physical quantities relative to a physical QS (e.g., the kinetic energy) are well-defined
in terms of w and coincide with the quantum-mechanically correct ones (obtained via the
corresponding density matrix), under more restrictive conditions on w with respect to the
necessary ones to describe a physical QS.
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Remark 3.3.1 (Positivity) Notice that, in case condition 3. holds for w ∈ L2(IR2d; IR),
the additional information n[w] ∈ L1

x will be sufficient to guarantee that the H-S, self-adjoint
operator ρ̂ corresponding to w, via ρ := W−1w, is also trace class (by 4.). Accordingly, this
could be a strategy to obtain a posteriori that w provides a description of a physical QS.
However, condition 3. looks not so meaningful in the kinetic formalism.

The characterization obtained for w~, instead, is more practical (cf. the necessary and suf-
ficient condition in 4.), once positivity is assumed. Nevertheless, the Husimi function is
not a proper instrument for a correct quantum description (cf. Section 3.2.4); moreover, its
evolution equation is not well-behaved.

3.4 The functional setting

In the literature of semiconductor devices modeling, there are several examples of analysis
of the evolution of a QS at the operatorial level (Ref. [1, 6], e.g.): there, the mathematical
properties distinguishing a physical QS are preserved during the evolution. Typically, such
result is recovered, by setting the study in some “energy space”, namely, in the space of the
density matrices such that the corresponding kinetic energy is well-defined (in an appropri-
ate sense) and bounded. Then, the conservation of the total energy is exploited, to recover
a solution for all times, belonging to the energy space.
Similarly, at the Schrödinger level, there is an entire collection of results (cf. Refs. [22, 11]
and the references therein) devoted to weakening the regularity assumptions on the wave-
functions which guarantee a physically-consistent description of the evolution of the QS. In
this framework, the sharpest result is in Ref. [11]; there a L2-theory is performed, by ex-
tending to the mixed state case the use of the Strichartz’ inequalities (cf. Ref. [11] and the
Refs. therein).

Our aim would be to prove well-posedness results at the quantum kinetic level, by keeping
the analysis to it. Instead, most part of the results achieved till now in Wigner framework,
either rely on the reformulation of the kinetic problem in terms of density matrices or of wave-
functions (cf. Refs. [10, 22] and the Refs. therein), or, implicity exploit such correspondence,
by adding some assumptions that are not consistent with the kinetic framework (cf. Refs. [3,
14]).
The discussion in the previous section motivates to choose L2(IR2d; IR) as the functional
setting for the analysis of a quantum kinetic model, since such Wigner functions are in
bijective correspondence with H-S, self-adjoint operators. Thus, they satisfy at least the
necessary condition to represent physical QSystems. Moreover, we have anticipated that
the L2-norm is preserved during the evolution by the Wigner equation, then the necessary
condition is satisfied at any time. Nevertheless, the physical quantities are not even well-
defined, nor positive, starting by an L2-quasidistribution. We recall that the reason is they
are not well-defined starting by the corrisponding H-S operator as well. Accordingly, a L2-
analysis of problems in the Wigner formulation cannot rely on any physical conservation
law9, differently to what happens in the other contexts. In particular, there isn’t, as far as

9In literature there are several examples of boundary value problems for the Wigner function, studied in
L2-context (cf. Refs. [2, 5, 26, 24, 23], e.g.): there arises the additional problem of a quantum-mechanically
consistent definition of the physical quantitites, since the bounded domain breaks the equivalence both with
the operatorial and with the Schrödinger formalisms.
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we know, any way to plug in the kinetic description, the condition 3. on w in Prop. 3.3.1,
which is equivalent to positivity at the operatorial level, and to check whether it is conveyed
by the evolution.
In conclusion, even if the L2-setting consists of admissable quasidistributions, by a L2-
kinetic analysis we will not obtain a physical QS, at variance with the results in the other
formulations.
Nevertheless, in many cases (cf. Refs. [2, 5, 4, 24, 26]), the L2-analysis of the Wigner problems
proves to be self-contained. Moreover, we will show in the following sections that the study in
the L2-setting permit to recover results that are in agreement with the physically expected
ones, without exploiting the physical quantities (as well as the conservation laws), which
would require to add some non-kinetic assumptions inspired by the alternative formulations.
Precisely, we will not make any assumption concerning positivity.

Remark 3.4.1 (L1-analysis) We mention here that in literature are present some exam-
ples of L1-analysis of problems in Wigner formulation (cf. Refs. [3, 14], as well as in Ref. [29],
concerning a Lp-analysis): we remark that in those cases, there is no reason why the models
under examination should describe a QS (cf. Section 3.2.2), nor why the Wigner function
should be associated to a positive, H-S operator ρ̂. Thus, even if w ∈ L1(IR2d; IR) ensures
n[w] ∈ L1

x, there is no reason why n[w] should coincide with the positive density n defined
starting from a H-S positive operator. Accordingly, the Husimi function w~, defined starting
from w ∈ L1(IR2d; IR), will belong to L1(IR2d), but could take negative values as well. As
a consequence, the corresponding kinetic energy (defined via Eq. (3.19)) could as well take
negative values and cannot be used to state a priori estimates.
In conclusion, a L1-analysis doesn’t have any intrinsic quantum-mechanical value and more-
over it requires additional assumptions (namely, positivity) from the operatorial level to be
performed.
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Chapter 4

Tools in quantum kinetic theory

In this chapter we introduce some analytical tecniques for the study of quantum kinetic
problems in the L2-setting: we will extensively use them in the next chapters, thus we
provide a preliminary discussion and a comparison with the related literature. In particular,
we collect in Section 4.1 some results presented in Refs. [23, 24], while Section 4.3 contains
extracts from Ref. [4]. Here, our model-problem is the three-dimensional version of the
Wigner-Poisson (WP) system, already introduced in Remark 3.2.1; namely,[

∂

∂t
+ v·∇x

]
w(x, v, t) = (Θ [V ]w)(x, v, t) , (x, v) ∈ IR3

x × IR3
v , t ≥ 0, (4.1a)

∆xV (x, t) =

∫
IR3

v

w(x, v, t) dv , x ∈ IR3 , t ≥ 0 , (4.1b)

with the unknown functions w : (x, v, t) ∈ IR3
x × IR3

v × [0,∞) → w(x, v, t) ∈ IR and V :
(x, t) ∈ IR3

x × [0,∞) → V (x, t) ∈ IR and the additional initial condition

w(x, v, 0) = w0(x, v), (x, v) ∈ IR3
x × IR3

v .

The operator Θ [V ] in Eq. (4.1a) is a pseudo-differential operator (cf. Ref. [16]), formally
defined, for V = V (x), x ∈ IR3, by

(Θ[V ]w) (x, v) =
i

(2π)d

∫
IRd

ξ×IR3
v′

δV (x, ξ)w(x, v′) ei(v−v
′)·ξ dξ dv′, (4.2a)

δV (x, ξ) := V

(
x+

ξ

2

)
− V

(
x− ξ

2

)
, (x, ξ) ∈ IR3

x × IR3
ξ . (4.2b)

Since δV (x, ξ) is an odd function with respect to ξ, it is straightforward from the definition
that, the operator Θ[V ] with V real-valued, maps a real-valued function w to a real-valued
function Θ[V ]w. Observe that, in the Fourier space with respect to the v-variable1, the
pseudo-differential operator Θ[Φ] has the following “product shape”

(Fv (Θ [V ]w) ) (x, η) = i δV (x, η) (Fvw) (x, η). (4.3)

1We recall that with Fv→η we indicate the Fourier transform multiplied by a factor (2π)−3/2.

42



The system2 of non-lineraly coupled equations (4.1), together with (4.2), is the quantum
generalization3 of the Vlasov-Poisson (VP) system, which we recall here for later reference,[

∂

∂t
+ v·∇x

]
f(x, v, t) = ∇xV (x, t)·∇vf(x, v, t) , (x, v) ∈ IR3

x × IR3
v , t ≥ 0, (4.4a)

∆xV (x, t) =

∫
IR3

v

f(x, v, t) dv , x ∈ IR3 , t ≥ 0 , (4.4b)

with the unknown functions f : (x, v, t) ∈ IR3
x × IR3

v × [0,∞) → f(x, v, t) ∈ IR+
0 , classical

probability distribution function, and V : (x, t) ∈ IR3
x × [0,∞) → V (x, t) ∈ IR.

For a matter of simplicity, we have introduced the version of the WP system with the physical
constants equal to one, in particular ~ = 1. The interested reader can refer to Ref. [19], where
VP is recovered as the limit for ~ → 0 of WP.
The common features with the VP system has inspired us to use some strategies to tackle
the analytical difficulties the Wigner equation present. In particular, we anticipate here
that the Fourier-transformed pseudo-differential operator (4.3) can be written similarly to
the non-linear term on the right hand side of the Vlasov Eq. (4.4a), via an appropriate
reformulation; namely,

(Fv (Θ [V ]w) ) (x, η) = iW [∇xV ](x, η)· η (Fvw) (x, η), (4.5)

where the (vector-valued) function W [F ] : IR6 → IR3 can be defined starting from an arbi-
trary field F : IR3 → IR3 (cf. Eq.(4.29)). The analogy of the shape (4.5) with the non-linear
term in the Vlasov equation, ∇xV (x)·∇vf(x, v), will play a relevant role in the analysis.
Since the reformulation is possible in the Fourier space and the Fourier transform of the
unknown w is involved, it is natural to choose a L2-space as the functional setting for the
study and this is a further motivation with respect to the discussion in the previous sections.
However, for a correct analysis, it is necessary to keep in mind the peculiarities of the Wigner
quasi-distribution function with respect to the classical probability distribution function f .

4.1 The weighted spaces

A natural demand from the state space for the analysis of a system of the type (4.1), is
that it consists of functions u : (x, v) ∈ IR3

x × IR3
v → u(x, v) ∈ IR such that the function

n[u] :=
∫

IR3
v
u(x, v) dv , x ∈ IR3, on right hand side of Eq.(4.1b), is well-defined. The way to

conciliate that expectation with the choice of L2(IR3
x × IR3

v; IR) as the functional setting, is
to introduce

X := L2( IR3
x × IR3

v , (1 + |v|2)2dx dv ; IR ) ,

which is a Hilbert space with scalar product

< u,w >X :=

∫
IR3

v

∫
IR3

x

u(x, v)w(x, v) (1 + |v|2)2 dx dv. (4.6)

That choice of the functional setting is in the same spirit of Refs. [5, 26] for the one-
dimensional (bounded spatial domain) case. A generalization for the d-dimensional (bounded
spatial domain) case was first introduced in Ref. [24](Prop. 5.2.1, Chapter 5). The motivation
of it is contained in the following lemma:

2In the introduction of Part III there is a more detailed description of it.
3Remember the discussion in Section 3.2.3, where we discuss in which sense the quantum transport

equation can be considered a generalization of the classical one.
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Lemma 4.1.1 Let u ∈ X and n[u](x) :=
∫

R3
v
u(x, v) dv, for all x ∈ IR3. Then

‖n[u]‖L2(IR3
x) ≤ C ‖u‖X , (4.7)

with C := π.

Proof. The estimate follows directly by applying Hölder inequality:

‖n‖2
L2(IR3

x) =

∫
IR3

x

∣∣∣∣∫
R3

v

u(x, v) dv

∣∣∣∣2 dx =

∫
IR3

x

(∫
R3

v

|u(x, v)|1 + |v|2

1 + |v|2
dv

)2

dx

≤
∫

IR3
x

∫
R3

v

|u(x, v)|2(1 + |v|2)2 dv dx

∫
R3

v

1

(1 + |v|2)2
dv = π2‖u‖2

X .

The way to get similar estimates for Lp-norms with p < 2 is to introduce a weight also in
the x-variables. Precisely, we can define

Xα := L2( IR3
x × IR3

v , (1 + |x|2α + |v|2)2dx dv ; IR ) ,

and, accordingly, we can prove the following result.

Lemma 4.1.2 For all u ∈ Xα, the function n[u] belongs to Lp(IR3), 6
3+α

< p ≤ 2, and
satisfies

‖n[u]‖Lp(IR3) ≤ C(p)‖u‖Xα , (4.8)

Proof. By using Hölder inequality first in the v-integral and then in the x-integral, we get

‖n[w]‖p
Lp(IR3)

=

∫ ∣∣∣∣∫ w(x, v) dv

∣∣∣∣pdx
≤
∫ (∫

|w(x, v)|2(1 + |x|2α + |v|2)2 dv

) p
2
(∫

dv

(1 + |x|2α + |v|2)2

) p
2

dx

≤
(∫∫

|w(x, v)|2(1 + |x|2α + |v|2)2 dv dx

) p
2

[∫ (∫
dv

(1 + |x|2α + |v|2)2

) p
2−p

dx

] 2−p
2

= C‖w‖pXα

[∫ (
1

1 + |x|2α

) p
2(2−p)

dx

] 2−p
2

≤ C(p)‖w‖pXα
for

6

3 + α
< p ≤ 2.

Thus, in principle, by increasing appropriately the index α, it is possible to work in a
functional setting such that the corresponding particle density n belongs even to L1(IR3)
(namely, by choosing α > 3).

Remark 4.1.1 In case the power of the x-weight α is α > 1, for the well-posedness study
it is necessary to consider the space X̃α with a symmetric weight in the v-variables, namely
X̃α := L2(IR3

x× IR3
v , (1+ |x|2α+ |v|2α)2dx dv; IR) . The free-streaming operator (precisely, the

operator −v·∇x − d(α)I) is indeed dissipative in X̃α, but not in Xα, if α > 1 (cf. Lemma
7.2.1).
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Remark 4.1.2 By Lemma 4.1.1, a sufficient assumption for the kinetic energy density
EK [u],

EK [u](x) :=
1

2

∫
R3

v

|v|2u(x, v) dv, x ∈ IR3 ,

to be well-defined (indeed, to belong to L2(IR3)) is |v|2u ∈ X. Moreover, EK [u] ∈ L1(IR3) if
|v|2u belongs to the space Xα, with α > 3. However, the kinetic energy is not non-negative,
thus it won’t be possible to exploit the (physically motivated) conservation of total energy to
deduce an uniform (in time) bound for the kinetic energy.

Let us make some considerations upon the previous Lemmata.
In Lemma 4.1.1 it is proved

X ↪→ L2
x(L

1
v) , (4.9)

where we call Lpx(L
r
v) := Lp(IR3

x;L
r(IR3

v)). That means that, if u, |v|2u ∈ L2(IR3
x × IR3

v), then
for a.e. x ∈ IR3 we gain the summability of the function u(x, . ) : v ∈ IR3 → u(x, v) ∈ IR.
In the same spirit, we can gain something also on the p-summability of the function in the
x-direction, by adding a symmetric weight in that direction. Namely, in Lemma 4.1.2, in
the case α = 1 it holds

X1 ↪→ Lpx(L
1
v) , 3/2 < p ≤ 2 . (4.10)

Observe that, in the proof of Lemma 4.1.2, the x and the v variables can be interchanged in
order to obtain

X1 ↪→ Lpv(L
1
x) , 3/2 < p ≤ 2 , (4.11)

In conclusion, the introduction of the symmetric squared weight make us gain, for a.e. fixed
x (respectively, v) the summability with respect to v (respectively, x) of the function u(x, . )
(respectively, u(. , v)) and also the p-summability with p > 3/2 (p < 2) in the other direction.
We remark that in the embeddings (4.9), (4.10), (4.11) it is always p > r = 1 . However, by
interpolation with L2

. (L
2
. ), we have also the embeddings with 2 = p ≥ r ≥ 1 .

In addition, it can be easily proved

X1 ↪→ Lax,v , 6/5 < a ≤ 2 ; (4.12)

accordingly, the weight can give in both variables the same gain in a-sommability in both
directions, with a varying in the smaller interval (6/5, 2].

Remark 4.1.3 The use of the x, v-weight to get p-summability of the particle density n[f ] is
well-known in kinetic theory: as an example, we quote (the three-dimensional version of) the
standard estimate for n[f ](t), where f is the (non-negative) classical distribution function;
namely,

‖n(t)‖Lm+3/3 ≤ C‖f(t)‖m/(m+3)
L∞x,v

‖|v|mf(t)‖3/m+3

L1
x,v

(4.13)

(cf. Ref. [20], e.g.): depending on how many moments are employed it is possible to improve
the control. In the wide literature concerning the VP problem, are introduced several defini-
tions of solutions corresponding to different assumptions on the initial datum. In particular,
we name the distinction between weak solutions4, obtained by adding to f0 ∈ L1

x,v ∩ L∞x,v the
assumption of initial finite kinetic energy |v|2f0 ∈ L1

x,v, and strong solutions5, corresponding

4i.e., in the distributional sense,
5i.e., f ∈ C(IR+;Lp

x,v) ∩ L∞(IR+;L∞x,v), ∀ p ∈ [1,∞),
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to the additional hypothesis |v|mf0 ∈ L1
x,v, ∀m < m0 with m0 > 3 (cf. Ref. [20] for the

sharpest result in both sense). In the latter case it holds also |v|mf(t) ∈ L1
x,v, ∀ t ≥ 0, i.e.

the propagation of v-moments for the strong solution of the VP problem.
Alternatively, by an assumption on the x-moments, precisely |x|2f0 ∈ L1

x,v, it is possible to
obtain solutions6 with infinite energy (cf. Ref. [28]), by exploiting dispersive effects related
to the free-streaming operator and a pseudo-conformal law for the VP case (which makes
an alternative control7 hold for n, cf. Remark 4.4.1). In the same spirit, the propagation of
x-moments is studied in Ref. [12], under the assumption |x|mf0 ∈ L1

x,v.
In the quantum case, instead, an assumption of finite initial kinetic energy (guaranteed by
|v|2w0 ∈ X) is of no help (cf. Remark 4.1.2). Thus, we will search solutions with infinite
energy, corresponding to the assumption w0 ∈ X (or w0 ∈ X1, as well) and, as well as in
Ref. [28], will be exploited dispersive effects as an alternative to the conservation of energy.
However, we cannot obtain a control of the particle density alternative to (4.7), in analogy
with Ref. [28], by the substitution of the assumption |v|2w0 ∈ L2 with some x-weight of the
initial datum, since the pseudo-conformal law (which holds in the WP case, as well, cf. Sec-
tion 4.4) is again of no help, due to the missing non-negativity of the quantities involved.

Remark 4.1.4 (Conservation of the L2-norm) Observe that both the spaces X and X1,
which we shall use extensively in the next sections, embed in L2. That implies that the chosen
state space consists of functions which are admissible for the quantum kinetic description,
in the sense discussed in the previous section.
Moreover, it immediately follows, by multiplying Eq. (4.1a) by w and integrating both in dx
and in dv, that d

dt
‖w(t)‖2

L2
x,v

= 0, since < w,Θ[V ]w >L2
v
= 08 because δV (x, ξ) is odd with

respect to ξ.

4.2 Strichartz’ estimates for the free-transport equa-

tion

Both in the Wigner-Poisson and in the Vlasov-Poisson systems, the linear part consists of
the free-streaming operator. In the literature of the VP problems, there is a series of results
in which a priori estimates for the self-consistent electric field are recovered, by exploiting
dispersive effects to be referred to the transport operator (cf. Refs. [13, 28],e.g.). In the
following section, which contains extracts from Ref. [4], we will show that the same effects
can be used to obtain similar estimates in the WP case.
In view of that, here we collect different estimates for the solution of the free-transport
equation

∂tw(x, v, t) + v·∇xw(x, v, t) = 0 , t ≥ 0 , w(x, v, t = 0) = w0(x, v) , ∀ (x, v) ∈ IR6 ,

and, in particular, those presented in the paper [13]. They are the analogue of the Strichartz’
inequalities for the solution of the free-Schrödinger equation (cf. Refs. [15, 18] and the refer-
ences therein). However, they are not derived via Wigner transform, since the norms of w0

6f ∈ L∞(IR+;Lp
x,v), ∀ p ∈ [1,∞],

7Precisely,
t6/5‖n(t)‖L5/3 ≤ C(T, ‖w0‖L∞x,v

, ‖(1 + |x|2)w0‖L1
x,v

) , ∀ t < T, ∀T > 0

cf. Thm. III.3 in Ref. [28].
8In case V is regular enough for Θ[V ]w ∈ L2

x,v to hold (V ∈ L∞, e.g.).
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that would appear in the estimate for the Wigner-transformed solution, would be of difficult
interpretation9. Accordingly, in Ref. [13] they are derived differently.

Proposition 4.2.1 (Thm.1-2 in [13]) The solution of the free-transport equation w(x, v, t) =
w0(x− vt, v) satisfies the following estimates

• for all (p , r), such that 1 ≤ r ≤ p ≤ ∞,

‖w(t)‖Lp
x(Lr

v) ≤ t−3( 1
r
− 1

p)‖w0‖Lr
x(Lp

v) ∀t > 0 ; (4.14)

• for all (q, p, r, a) satisfying

1

r
− 1

3
<

1

p
≤ 1

r
≤ 1 , 1 ≤ 1

p
+

1

r
,

2

q
= 3

(
1

r
− 1

p

)
, a =

2pr

p+ r
,

‖w‖Lq
t (Lp

x(Lr
v)) ≤ C(p, r)‖w0‖La(IR6) . (4.15)

Estimate (4.14) shows that, if the initial datum w0 belongs to Lrx(L
p
v) with 1 ≤ r ≤ p, an

effect of the transport is the exchange of summability between the x and the v directions.
Indeed, the estimate follows from

‖w(t)‖L∞x (L1
v) ≤ t−3‖w0‖L1

x(L∞v ) ;

(cf. Ref. [8]), which exploits the exact expression of the solution w(x, v, t) = w0(x − vt, v),
and by the conservation of the L1-norm (cf. Thm. 2 in the paper cited above). The estimate
(4.14) holds for all t with a pole of order 3 (1/r − 1/p) at t = 0.
Estimate (4.15) contains, instead, a mixed information in space, velocity and time, and is
obtained via a method which generalizes the Strichartz’ inequalities (cf. Ref. [18]).
The relation between the indices p, r and a, namely 2/a = (1/p+ 1/r) , constitutes a hyper-
bole H on the plane IRp× IRr. Starting from a datum w0 ∈ Lpx(Lrv) with (p, r) = (a, a) ∈ H,
for a.e. t, the solution w(t) belongs to Lpx(L

r
v), for all points (p, r) ∈ H satisfying 1 ≤ r ≤ p

and the additional conditions listed above. Moreover, the function t→ w(t) belongs to Lqt .

Let us compare the use of the mixed Lp-spaces with the weighted spaces introduced in
the previous section. As we have anticipated in Remark 4.1.1, the operator −v·∇x − 3

2
is

dissipative in the weighted space X1, thus

‖w(t)‖X1 = ‖w0(x− vt, v)‖X1 ≤ e
3
2
t‖w0‖X1 , ∀ t ≥ 0 .

Accordingly, if w0 ∈ X1(↪→ La , a ∈ (6/5, 2]), then the solution w(t) will belong to Lpx(L
1
v), 3/2 <

p ≤ 2 , for all t ≥ 0 and to L2
x(L

r
v) , 1 ≤ r ≤ 2 , for all t ≥ 0.

Observe that, for w0 ∈ La , a ∈ (6/5, 2], by Strichartz’ inequalities (estimate (4.14)), we
get w(t) ∈ L2

x(L
r
v) for 1 ≤ r ≤ 2, for all t > 0. The choice of p ∈ (3/2, 2] is instead not

compatible with r = 1 and analogously for a ∈ (6/5, 2] with r = 1 and a ∈ (6/5, 2] with
p > 3/2 .
Moreover, if we want to gain a.e. in time r = 1, p ∈ [1, 3/2), we have to assume a ∈ [1, 6/5).

9Remember also the discussion in Section 3.2.2: the initial data that make the equivalence between the
free-Schrödinger and the free-transport equation hold, are of very peculiar type.
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This is equivalent to increase the weight in x, v. Thus, except by improving the information
on the initial datum, we cannot gain anything more in p-summability, even by renouncing
to the punctual information in time.
In conclusion, for what the solution of the free-transport equation is concerned, the indices
in the estimates in the weighted L2-spaces are as sharp as those in the Lp-mixed ones.
Instead, we are interested in the estimates in Prop. 4.2.1 because of the information about
the time-behaviour they contain. In particular, they can be used for the particle density
relative to the solution of the free-streaming equation, which we indicate by

n0(x, t) :=

∫
R3

v

w0(x− vt, v) dv , ∀x ∈ IR3 , t ≥ 0 .

Corollary 4.2.1 The density n0(t) satisfies

• for all 1 ≤ p ≤ ∞,

‖n0(t)‖Lp ≤ t−3(1− 1
p)‖w0‖L1

x(Lp
v) , ∀t ≥ 0; (4.16)

• for all (q, p, a) satisfying

1 ≤ p <
3

2
,

2

q
= 3

(
1− 1

p

)
,

2

a
− 1 =

1

p
,

‖n0‖Lq
t (Lp

x) ≤ C(p)‖w0‖La
x,v
. (4.17)

Again, the previous estimates are to be compared with those obtained by the use of the
x-weight: we name here (the three-dimensional version of) the estimate in Lemma I.1 of
Ref. [28], namely,

‖n0(t)‖L5/3 ≤ Ct−6/5‖w0‖2/5
L∞x,v

‖|x|2w0‖3/5

L1
x,v
, ∀ t ≥ 0 (4.18)

This estimate is in the same spirit of estimate (4.16): the two different assumptions on the
inital datum yields the same time-decay of the norm ‖n0(t)‖L5/3 .

Remark 4.2.1 In the study of the Vlasov-Poisson problem, such estimate for the density
with p = 5/3 can be used, either in the version (4.16) or (4.18), in the estimate for the self-
consistent electric field. Precisely, the information about the t-decay yields a reguralizing
effect of the field completely analogous to that in Refs. [11, 22], relative to the Schrödinger-
Poisson case (cf. Ref. [28]).

An estimate concerning the p-summability with p = 6/5, can be obtained analogously; it
reads:

‖n0(t)‖L6/5 ≤ Ct−1/2‖w0‖1/6
L∞‖|x|

3/5w0‖5/6

L1 , ∀ t ≥ 0 . (4.19)

The alternative version (p = 6/5 in (4.16)) reads:

‖n0(t)‖L6/5 ≤ t−1/2‖w0‖L1
x(L

6/5
v )

,∀ t ≥ 0 . (4.20)

The index p = 6/5 will be crucial, indeed, for the estimate of the self-consistent electric
field in the Wigner-Poisson case: we anticipate here that we can recover, by exploiting the
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information about the t−1/2-decay of ‖n0(t)‖L6/5 , the same reguralizing effect of the electic
field in the Schrödinger-Poisson and Vlasov-Poisson cases (cf. Remark 4.2.1).
We will assume, instead, that it holds, for some ω ∈ [0, 1),

‖n0(t)‖L6/5 ≤ CT t
−ω, ∀ t ≥ 0 . (A)

Observe that if either w0 ∈ L∞x,v , |x|2w0 ∈ L1
x,v or w0 ∈ L1

x(L
6/5
v ) holds, then n0(t) satisfies

assumption (A) (by either (4.19) or (4.20)); both the assumption w0 ∈ X1 and w0 ∈ X,
instead, do not give any information about the time-decay. However, since the previous
assumptions on the initial datum have no meaning in the quantum context, we prefer to add
assumption (A) to w0 ∈ L2 (alternatively, to w0 ∈ X1 or to w0 ∈ X, as well), in order to
recover the a priori estimates for the electric field.

4.3 A priori estimates for the electric field

Let us assume that w is a “regular” solution of the WP problem (e.g., let w(t) ∈ L2
x(H

1
v ),

∇xV [w](t) ∈ CB(IR3), uniformly on bounded t-intervals) for which the Duhamel formula
holds:

w(x, v, t) = w0(x− tv, v) +

∫ t

0

(
Θ[V [w]]w

)
(x− sv, v, t− s) ds.

We formally integrate in v:

n[w](x, t) =

∫
IR3

w0(x− tv, v) dv +

∫ t

0

∫
IR3

(
Θ[V [w]]w

)
(x− sv, v, t− s) dv ds

=: n0(x, t) + n1(x, t),

and split the self-consistent field accordingly:

E0(x, t) := λ
x

|x|3
∗x n0(x, t) (4.22)

E1(x, t) := λ
x

|x|3
∗x
∫ t

0

∫ (
Θ[V [w]]w

)
(x− sv, v, t− s) dv ds, (4.23)

with λ = 1
4π

.
Then, we can estimate separately the two terms E0(t), E1(t) by exploting the properties of
the convolution kernel 1/|x|, in analogy to the VP case (cf. Ref [20, 28]).
Let us recall the main steps of the derivation of the estimates in the VP case (cf. Ref. [28])
for later comparison.

4.3.1 The Vlasov-Poisson case

Let wvp be the “regular” solution of the VP problem10

wvp(x, v, t) = w0(x− tv, v) +

∫ t

0

(
∇xV [wvp]·∇vw

vp

)
(x− sv, v, t− s) ds.

10Observe that, at this level, there is no reason of distinguishing between a “quantum” initial datum and a
classical one (cf. Section 3.2.2, instead), since we are discussing the formal similarities of the two equations.
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and Evp

0 , Evp

1 be the two terms of the corresponding self-consistent field

Evp

0 (x, t) := λ
x

|x|3
∗x n0(x, t), (4.24)

Evp

1 (x, t) := λ
x

|x|3
∗x
∫ t

0

∫ (
∇xV [wvp]·∇vw

vp

)
(x− sv, v, t− s) dv ds . (4.25)

For what the term Evp

0 (t) is concerned, by the properties of x/|x|3 and estimate (4.18)
(respectively, estimate (4.16)), it follows

∀ p ∈ (3/2, 15/4] , ‖Evp

0 (t)‖Lp ≤ C1 t
3
p
−2 , ∀ t ≥ 0 (4.26)

with C1 = C1(‖w0‖L∞ , ‖(1+|x|2)w0‖L1) (respectively, C1 = C1(‖w0‖L1 , ‖w0‖L5/3)), cf. Lemma
III.4 in Ref. [28] (alternatively, Ref. [13]).
The field Evp

1 (t) can be rewritten as

(Evp

1 )j(x, t) = λ
xj
|x|3

∗x divx

∫ t

0

s

∫ (
∇xV [wvp]wvp

)
(x− sv, v, t− s) dv ds

= λ

3∑
k=1

−3xjxk + δjk|x|2

|x|5
∗x
∫ t

0

s

∫ (
∇xV [wvp]wvp

)
(x− sv, v, t− s) dv ds ,

for all j = 1, 2, 3. Since it holds for all t > s > 0, a.e. x ∈ IR3 ,∫ (
|Evp|wvp

)
(x− sv, v, t− s) dv ≤ s−3/p′‖Evp(t− s)‖p′

(∫
wp(x− sv, v, t− s) dv

)1/p

, (4.27)

∀ p, q ∈ (1,∞) , 1/p + 1/p′ = 1 , by the properties of the convolution kernel and the conser-
vation of the Lp-norm by the Vlasov equation, it follows

‖Evp

1 (t)‖Lp ≤ ‖w0‖Lp
x,v

∫ t

0

sds

s3/p′
‖Evp(t− s)‖Lp′ .

In conclusion, by the use of estimate (4.26) and of an argument of Gronwall type, it can be
recovered

∀ p ∈ (3/2, 3) , ‖Evp

1 (t)‖Lp ≤ C ′1 t
3
p
−2 , ∀ t ≥ 0 (4.28)

with C ′1 = C ′1(‖w0‖L∞x,v
, ‖(1+|x|2)w0‖L1

x,v
) (respectively, C ′1 = C ′1(‖w0‖L1

x,v
, ‖w0‖L5/3

x,v
)), cf. Lemma

III.5 in Ref. [28] (respectively, Ref. [13]).
We remark that the time-decay in (4.26), (4.28) is the same obtained for the electric field
correponding to the solution of the Schrödinger-Poisson systems (cf. Thm. 5.1 in Ref. [22]
and Thm. 2.3 in Ref. [11] for the L2-study).

4.3.2 The Wigner-Poisson case

We want to proceed analogously to the VP case. To this end, we need an appropriate refor-
mulation of the pseudo-differential operator Θ[V ], in analogy with the operator ∇xV ·∇vw
in the VP equation. The idea is that the latter should be recovered from Θ[V ]w in the
semiclassical limit (cf. Remark 4.3.1).
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Let us recall that Θ[V ]w(x, v) = F−1
η→v

(
i δV (x, η)Fv→ηw(x, η)

)
(cf. (4.3)). We can rewrite

δV (x, η) =

x+η/2∫
x−η/2

∇xV (z) · dz =

1/2∫
−1/2

η · ∇xV (x− rη) dr = η ·W (x, η) , (4.29)

with the vector-valued function

W (x, η) :=

1/2∫
−1/2

∇xV (x− rη) dr , ∀ (x, η) ∈ IR6 .

Then, we define the vector-valued operator

Γ[∇xV ]u(x, v) := F−1
η→v

(
W (x, η)Fv→ηu(x, η)

)
. (4.30)

It holds:

Lemma 4.3.1 Let ∇xV ∈ CB(IR3). Then

1. W (x, η) ∈ CB(IR6), ‖W‖L∞x,v
≤ ‖∇xV ‖L∞ ;

2. Γ[∇xV ] : L2(IR6) → L2(IR6) and, for all u ∈ L2(IR6) ,

‖Γ[∇xV ]u‖L2
x,v

≤ ‖∇xV ‖L∞‖u‖L2
x,v

;

3. Γ[∇xV ] : L2
x(H

1
v ) → L2

x(H
1
v ) and, for all u ∈ L2

x(H
1
v ),

‖Γ[∇xV ]u‖L2
x(H1

v ) ≤ ‖∇xV ‖L∞‖u‖L2
x(H1

v ). (4.31)

Proof. The first and the second assertion are obvious. For (4.31) we use

∂vj
Γ[∇xV ]u(x, v) = iF−1

η→v

(
ηjW (x, η)Fv→ηu(x, η)

)
= Γ[∇xV ]∂vj

u; j = 1, 2, 3. (4.32)

Lemma 4.3.2 Let ∇xV ∈ CB(IR3) and u ∈ L2
x(H

1
v ). Then

Θ[V ]u(x, v) = divv (Γ[∇xV ]u) (x, v) (4.33)

Proof. By the definition (4.29) and Lemma 4.3.1,

‖δV (. , η)‖L∞x ≤ |η| ‖W (. , η)‖L∞x ≤ |η| ‖∇xV ‖L∞ .

Thus, ‖Θ[V ]u‖L2
x,v
≤ ‖∇xV ‖L∞‖u‖L2

x(H1
v ); the right hand side of equation (4.33) is also well-

defined in L2(IR6) by estimate (4.31). Equality then follows by equation (4.29) and

iF−1
η→v

(
η ·W (x, η)Fv→ηu(x, η)

)
=

3∑
j=1

∂vj
Γj[∇xV ]u(x, v) = divv (Γ[∇xV ]u) (x, v).
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Remark 4.3.1 (The semiclassical limit) The correctly scaled version of the pseudo-diffe-
rential operator with the reduced Planck constant ~ = h

2π
reads

Θ~[V ]w(x, v) =
i

(2π)3/2

∫
IR3

V (x+ ~
2
η)− V (x− ~

2
η)

~
Fv→ηw(x, η)eiv·η dη.

Under the assumptions of Lemma 4.3.2, we thus have

Fv→η(Θ~[V ]w(x, v)) =
i

~
δV (x, ~η)Fv→ηw(x, η)

= iW (x, ~η) · ηFv→ηw(x, η).

The limit ~ → 0 then yields:

iW (x, ~η) · ηFv→ηw(x, η) −→ i∇xV (x) · ηFv→ηw(x, η) = F−1
η→v

(
∇xV (x) · ∇vw(x, v)

)
;

and hence

Θ~[V ]w(x, v) −→ ∇xV (x) · ∇vw(x, v) in L2(IR6),

which is the non-linear term in the VP equation.

Using the redefinition (4.33) of the pseudo-differential operator, and under the additional
assumptions w ∈ H1

x(L
2
v), ∆V [w] ∈ CB(IR3), we have for s ∈ IR(

Θ[V [w]]w
)
(x− sv, v) = divv

(
Γ[∇xV [w]]w(x− sv, v)

)
+ s divx

(
Γ[∇xV [w]]w

)
(x− sv, v). (4.34)

Thus, also in the WP case, the field E1 in (4.23) admits the reformulation as (j = 1, 2, 3)

(E1)j(x, t) := λ
xj
|x|3

∗x divx

∫ t

0

s

∫ (
Γ[∇xV [w]]w

)
(x− sv, v, t− s) dv ds (4.35)

= λ

3∑
k=1

−3xjxk + δjk|x|2

|x|5
∗x
∫ t

0

s

∫ (
Γk[∇xV [w]]w

)
(x− sv, v, t− s) dv ds.

The following two lemmata are concerned with giving a meaning to the definition (4.35) of
the field E1, independently of the previous derivation.

Lemma 4.3.3 For all u ∈ L2(IR6) and E ∈ L2(IR3) the following estimate holds∥∥∥∫
IR3

v

(Γ[E]u) (x− sv, v) dv
∥∥∥
L2

x

≤ Cs−3/2‖E‖L2‖u‖L2
x,v
, ∀ s > 0. (4.36)

Remark 4.3.2 Observe that the exponent of the variable s recovered in the Lemma is the
same as obtained for the VP case in the estimate (4.27) with p = 2. The difference between
the two estimates is that in the quantum case it has to be derived in the Fourier space, thus
the L2-framework is the only possible. In the classical case, instead, analogous estimates with
p 6= 2 hold.
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Proof. Since the operator Γ[. ] was originally defined for E ∈ CB(IR3), we shall first derive
(4.36) for E ∈ C∞0 (IR3) and conclude by a density argument.
By the definition (4.30) and by several changes of variables, the following chain of equalities
holds:

(Γ[E]u)(x, v) = (2π)3/2
[
F−1
η→v (W (x, η)) ∗v u

]
(x, v)

=

∫∫ 1/2∫
−1/2

E(x− rη) eiη·z dr dη u(x, v − z) dz =

∫∫ 1/2∫
−1/2

1

|r|3
E(x− η̃) eiη̃·

z
r dr dη̃ u(x, v − z) dz

=

∫∫
E(x− η̃) eiη̃·z̃ dη̃

1/2∫
−1/2

u(x, v − rz̃) dr dz̃ =

∫∫
E(−η̂) eiη̂·z̃ dη̂ eix·z̃

1/2∫
−1/2

u(x, v − rz̃) dr dz̃

= (2π)3/2

∫
Fη→z̃E(z̃)

1/2∫
−1/2

u(x, v − rz̃) dr eix·z̃ dz̃.

Hence∫
(Γ[E]u) (x− sv, v) dv = (2π)

3
2

∫
Fη→z̃E(z̃)

(∫∫ 1/2

−1/2

u(x− sv, v − rz̃) dr e−isv·z̃ dv

)
eix·z̃ dz̃

=
1

(2πs)3

∫
Fη→z̃E(z̃)Fv→z̃

(∫ 1/2

−1/2

u(x− v,
v

s
− rz̃) dr

)
eix·z̃ dz̃ .

Then,∥∥∥∫ (Γ[E]u) (x− sv, v) dv
∥∥∥
L2

x

≤ ‖E‖L2

(2πs)3

∥∥∥∫ 1/2

−1/2

Fv→z̃

(
u(x− v,

v

s
− rz̃)

)
dr
∥∥∥
L2

z̃,x

≤ ‖E‖L2

(2πs)3

(∫ 1/2

−1/2

∥∥Fv→z̃

(
u(x− v,

v

s
− rz̃)

)∥∥2

L2
z̃,x
dr

)1
2

,

by applying Hölder’s inequality first in the z̃ integral and then in the r integral. Finally, it
remains to prove that∫ 1/2

−1/2

‖Fv→z

(
u(x− v,

v

s
− rz)

)
‖2
L2

x,z
dr = s3‖u(x, v)‖2

L2
x,v
.

This is obtained by using repeatedly Plancherel’s equality:

1/2∫
−1/2

‖Fv→z

(
u(x− v,

v

s
− rz)

)
‖2
L2

x,z
dr =

1/2∫
−1/2

‖Fx→ξ

[
Fv→z

(
e−ivξu(x,

v

s
− rz)

)]
‖2
L2

ξ,z
dr

=

1/2∫
−1/2

‖Fx→ξ

(
s3e−is(ξ+z)rzFv→s(ξ+z)u(x, v)

)
‖2
L2

ξ,z
dr = s6

1/2∫
−1/2

‖Fx→ξ

(
Fv→s(ξ+z)u(x, v)

)
‖2
L2

ξ,z
dr

= s3‖u(x, v)‖2
L2

x,v
.
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Remark 4.3.3 In Refs. [9, 20], are used more refined versions of the basic estimate (4.27)
(cf. e.g. estimate (39) in Prop. 1 of Ref. [9]); however, the non-negativity of the classical
distribution is a crucial ingredient for their derivation, thus we cannot hope to get analogous
estimates in the quantum case.

The following lemma is an immediate consequence of Lemma 4.3.3. We shall need the
notation

VT,ω := {E ∈ C((0, T ]; L2
x(IR

3) ‖E‖VT,ω
<∞}

with
‖E‖VT,ω

:= sup
0<t≤T

tω‖E(t)‖L2 .

Lemma 4.3.4 For any fixed T > 0, let w ∈ C([0, T ];L2
x,v), and let w0 be such that for some

ω ∈ [0, 1) it holds
‖n0(t)‖L6/5 ≤ CT t

−ω, ∀ t ∈ (0, T ]. (A)

Then, there exists a unique vector-field E ∈ VT,ω− 1
2

which satisfies the linear equation

Ej(x, t) = λ
3∑

k=1

−3xjxk + δjk|x|2

|x|5
∗x
∫ t

0

s

∫ (
Γk[E0 +E]w

)
(x− sv, v, t− s) dv ds; j = 1, 2, 3

(4.38)
with E0 defined by (λ = 1

4π
):

E0(x, t) := λ
x

|x|3
∗x
∫
w0(x− tv, v) dv.

Proof. (4.38) has the structure of a Volterra integral equation of the second kind. Hence,
we define the (affine) map M : VT,ω− 1

2
→ VT,ω− 1

2
by

(ME)j(x, t) := λ
3∑

k=1

−3xjxk + δjk|x|2

|x|5
∗x
∫ t

0

s

∫ (
Γk[E0 + E]w

)
(x− sv, v, t− s) dv ds.

Applying the generalized Young inequality to the definition of E0 yields

‖E0(t)‖L2 ≤ C‖n0(t)‖L6/5 , ∀ t ∈ (0, T ] . (4.39)

Thus, by Lemma 4.3.3, the second convolution factor in (4.38) is well-defined and∥∥∥∫
IR3

v

(
Γk[E0+E]w

)
(x−sv, v, t−s) dv

∥∥∥
L2

x

≤ Cs−3/2‖(E0+E)(t−s)‖L2‖w(t−s)‖L2
x,v
, ∀ s ∈ (0, t].

By classical properties of the convolution with 1
|x| (cf. [30]) and the Young inequality, we get

‖(ME)j(t)‖L2 ≤ C

∫ t

0

1√
s

(‖E0(t− s)‖L2 + ‖E(t− s)‖L2)‖w(t− s)‖L2
x,v
ds , ∀ t ∈ (0, T ].

(4.40)
Hence, the map M is well-defined from VT,ω− 1

2
into itself and satisfies

‖ME(t)‖L2 ≤ C
(
CT + sup

s∈(0,T ]

sω−
1
2‖E(s)‖L2

)
sup
s∈[0,T ]

‖w(s)‖L2
x,v

(
t1−ω + t

1
2
−ω
)
, ∀ t ∈ (0, T ].
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Since the map is affine, we have (by induction) for all t ∈ (0, T ]

‖MnE(t)−MnẼ(t)‖L2 ≤ C sup
s∈[0,T ]

‖w(s)‖L2
x,v

∫ t

0

1√
t− s

‖Mn−1E(s)−Mn−1Ẽ(s)‖L2 ds

≤

(
C sup
s∈[0,T ]

‖w(s)‖L2
x,v

)n
Cn−1

∫ t

0

s
n
2
−ω

√
t− s

ds sup
s∈(0,T ]

(
sω−

1
2‖E(s)− Ẽ(s)‖L2

)
,

with ∫ t

0

s
n
2
−ω

√
t− s

ds = t
n+1

2
−ωB

(
1

2
,
n+ 2

2
− ω

)
,

Cn−1 =
n−1∏
j=1

B

(
1

2
,
j

2
+ 1− ω

)
=

π
n−1

2 Γ
(

3
2
− ω

)
Γ
(
n
2

+ 1− ω
) ,

where B denotes the Beta function and Γ the Gamma function. Thus, the map Mn is con-
tractive for n large enough and admits a unique fixed point E ∈ VT,ω− 1

2
.

With E = E1 the above lemma yields the regularity of the self-consistent field in the
WP equation: It satisfies ∇xV [w] = E1 + E0 ∈ VT,ω− 1

2
, under the assumptions that w ∈

C([0, T ];L2
x,v) and w0 satisfies (A).

Proposition 4.3.1 For any fixed T > 0, let w ∈ C([0, T ];L2
x,v) be a mild solution of the

WP equation with ‖w(t)‖2 = ‖w0‖2, and with the initial value w0 satisfying condition (A).
Then, the self-consistent field satisfies the following estimates for all t ∈ (0, T ] :

‖E0(t)‖L2 ≤ C‖n0(t)‖L6/5 ≤ CCT t
−ω, (4.41)

‖E1(t)‖L2 ≤ C
(
‖w0‖L2

x,v
, sups∈(0,T ] {sω‖n0(s)‖L6/5} , T

)
t

1
2
−ω. (4.42)

Here and in the sequel, the T -dependence of the constants C is continuous (on T ∈ IR+).

Remark 4.3.4 (No weight) Observe that the L2-weighted norm of the Wigner function,
correspondingly, the definition of the density n, are not needed for the self-consistent field to
be well-defined and for the previous estimates to hold. It is sufficient an assumption on the
time-decay of n0, analogously to the classical case (cf. Remark 4.2.1).
Thus, hypothesis (A) can also be seen as a kinetic assumption that allows to overcome the
difficulties related to the definition of the density in a L2-context. However, the possibility of
exploiting such an assumption as an alternative to the weight, in order to get well-posedness,
is still under investigation. Accordingly, in the previous proposition, it has to be assumed the
existence of a mild solution of the WP equation under the assumptions w0 ∈ L2 , such that
(A) is satisfied (cf. also Remark 4.4.1).

PROOF of the Prop. 4.3.1
The first estimate is (4.39) in Lemma 4.3.4. To derive the second one, we exploit Eq. (4.40),
the conservation of the L2-norm of the solution and (4.41):

‖E1(t)‖L2 ≤ C

∫ t

0

s−1/2(‖E0(t− s)‖L2 + ‖E1(t− s)‖L2)‖w(t− s)‖L2
x,v
ds

≤ C‖w0‖L2
x,v

sups∈(0,T ] {sω‖n0(s)‖L6/5} t
1
2
−ω

+C‖w0‖L2
x,v

∫ t

0

(t− s)−1/2‖E1(s)‖L2 ds.
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The thesis follows by Gronwall’s Lemma.

Remark 4.3.5 Let us compare the a-priori bounds (4.41), (4.42) with their classical coun-
terparts (4.26), (4.28). Using either estimate (4.19) or (4.20), we can obtain the same

t−
1
2 –singularity of ‖E(t)‖2 also in the Wigner-Poisson case, by a modification of the proof

of Prop. 4.3.1, in the spirit of Lemma III.5 in Ref. [28]. In the Vlasov-Poisson case, similar
Lp-estimates hold for p in a non-trivial interval. One crucial reason for this difference is the
conservation of Lp-norm of the solution: while the WP equation only conserves the L2-norm,
all Lp-norms are constant in the VP case.

Remark 4.3.6 (The WPFP case) In Chapter 6 we will study an equation which differs
from the Wigner equation (4.1a) by a uniformly elliptic operator, namely, the Wigner-Fokker-
Planck equation (WFP). In that case, the diffusive effect adds to the dispersive one and some
a priori bounds for the Lp-norm of the electrical field hold, with p 6= 2. These estimates will
be a crucial tool to asses a global-in-time well-posedness result, by assuming just w0 ∈ X and
a hypothesis similar to (A).

4.4 Identities for the WP system

In the Vlasov-Poisson case, it is possible to state some physically motivated identities, that
make evident strong analogies with the Schrödinger-Poisson one. In Ref. [28], e.g., are stated
for VP, both a pseudo-conformal law and a dispersive identity, which are inspired respectively
by Refs. [15, 17, 22] and Ref. [15, 21]: possible applications of them are to extend the interval
of the Lp-a priori estimates for the physical quantities and to deduce decay estimates for
large time. In the Wigner-Poisson case, it is possible to state analogous identities; however,
due to the fact the Wigner function can assume negative values, the quantities involved are
not non-negative, thus such identities cannot be exploited for that aim.

Proposition 4.4.1 (Pseudo-conformal law) Let w be a regular solution of the WP sys-
tem (4.1a), (4.1b), then it satisfies

d

dt

[∫
|x− vt|2w(x, v, t) dx dv + t2

∫
|E(x, t)|2 dx

]
= t

∫
|E(x, t)|2 dx .

Proof. If the solution of the WP problem is smooth enough (w ∈ X1, V ∈ H2, e.g.) the
following identities hold by exploiting the equations (4.1a) and (4.1b), and the fact that the
function δV is odd in the second variable. Precisely,

d

dt

∫
|x|2w(x, v, t) dx dv = 2

∫
x· j(x, t) dx ,

−2
d

dt

∫
tx· vw(x, v, t) dx dv = −2

∫
x· j(x, t) dx− 2t

∫
|v|2w(x, v, t) dx dv − 2t

∫
|E(x, t)|2 dx ,

where is used the current density j(x, t) :=
∫
v w(x, v, t) dv and∫

x· vΘ[V ]w(x, v) dx dv =

∫
x·∇η[δV (x, η)ŵ(x, η)]

∣∣∣
η=0
dx =

∫
x·E(x)n(x) dx =

1

2

∫
|E(x)|2 dx .
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by applying the Poisson equation (4.1b) for the last equality. Similarly,∫
|v|2Θ[V ]w(x, v, t) dx dv =

∫
∆η[δV (x, η, t)ŵ(x, η, t)]

∣∣∣
η=0
dx = 2

∫
E(x, t)· j(x, t) dx

and ∫
E(x, t)· j(x, t) dx = −1

2

d

dt

∫
|E(x, t)|2 dx ,

since it holds ∂tn(x, t) = ∇xj(x, t), by integrating in dv the Wigner equation. Thus

d

dt

∫
t2|v|2w(x, v, t) dx dv = 2t

∫
|v|2w(x, v, t) dx dv − t2

d

dt

∫
|E(x)|2 dx .

The thesis follows by collecting the pieces.

Remark 4.4.1 The pseudo-conformal law can be put in the form∫
|x− vt|2w(x, v, t) dx dv + t2‖E(t)‖2

L2 =

∫
|x|2w0(x, v) dx dv +

∫ t

0

s‖E(s)‖2
L2 ds ,

and is to be compared with the one that holds in the Schrödinger framework (cf.Refs.[17, 15,
22, 11]), namely

‖(x+ i~t∇x)ψ(t)‖2
L2 + t2‖E(t)‖2

L2 = ‖xψ0‖2
L2 +

∫ t

0

s‖E(s)‖2
L2 ds

and with the one that holds in the Vlasov-Poisson case (for a non-negative distribution
function wvp)

‖|x− vt|2wvp(t)‖L1
x,v

+ t2‖Evp(t)‖2
L2 = ‖|x|2w0‖L1

x,v
+

∫ t

0

s‖Evp(s)‖2
L2 ds ,

cf. Ref. [28]. Both the identities yield a series of results concerning the asymptotic behaviour
in time of the solutions (cf. Refs. [11, 15, 28], e.g.)

Remark 4.4.2 (A priori bound on the density) The pseudo-conformal law in the VP
case can be used to prove the a priori bound on the density

t6/5‖nvp(t)‖L5/3 ≤ C(T, ‖w0‖L∞x,v
, ‖(1 + |x|2)w0‖L1

x,v
) , ∀ t ≤ T .

We remark that such a bound extends the validity of estimate (4.18), which gives the rate of
dispersion of particles for the solution of the free-transport equation, also to the solution of
the VP system; moreover, it allows to avoid the use of a control of the density of type (4.13),
i.e. to avoid any assumption on v-weights of the initial datum.
A further extension to the quantum case is missing and would be a useful tool to asses the
global-in-time well-posedness of the three-dimensional WP problem, under the assumption
w0 ∈ L2 s.t. (A) is satisfied. Precisely, an analogous control of some Lp-norm of the
particle density, with p ≤ 3/2, would give the boundedness of the self-consistent potential
V (x) = 1/|x| ∗n(x), x ∈ IR3 and, thus, the pseudo-differential operator would be well-defined
and bounded in L2.
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Another identity of interest is the dispersive identity stated in Ref. [28] for the VP case: from
it can be derived a useful estimate for the VP case, similar to Morawetz’ estimate, which
holds for the solution of the nonlinear Schrödinger equation (cf. Ref. [15, 18]). In Ref. [21],
such an estimate for the solution of a transport-type equation, is employed to deduce the
Morawetz’ estimate itself.
The identity reads∫ t

0

∫
w(x, v, s)

(
|v|2

|x|
− (x· v)2

|x|3

)
dx dv ds+

∫ t

0

∫
(x·E(s, x))2

|x|3
dx ds

+

∫
(x· v)
|x|

w0(x, v) dx dv =

∫
(x· v)
|x|

w(x, v, t) dx dv

for both the WP and the VP cases, and it can be obtained exactly in the same way
(cf. Thm. II.2 of Ref. [28]). However, an estimate of Morawetz’ type for the WP equa-
tion is impossibile, due to the fact the Wigner function is not non-negative.

Analogously, the conservation of energy, which can be formally recovered also for the WP
system (cf. Ref. [3]), does not yield any bound for the moments of the solution, as in the
classical case, since the kinetic energy (cf. Remark 4.1.2) is not non-negative.
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Wigner-Poisson systems on bounded
domains

62



The model

In this part we are concerned with a quantum kinetic model for the transport of a charged
particles ensemble in a semiconductor device: the active region of the device of interest is
a finite region of the physical space (i.e., of the semiconductor material) coupled with the
environment through ohmic contacts. Accordingly, the Wigner function, which describes the
evolution of the electrons ensemble, will be defined on a subset Ωx × IRd

v of the phase space
IRd
x× IRd

v, where Ωx is a bounded domain in the physical space (relative to the ensemble) IRd
x

and will be the unknow function of a boundary-value problem. In particular, the boundary
conditions will model a time-irreversible interaction with the environment, which is repre-
sented as an ideal particle reservoir (cf. Ref. [15]), accordingly, the system will exchange
locally conserved particles with the reservoir.
The evolution of such an open quantum system constitutes an example of a problem suitable
to be studied with a quantum kinetic approach. Indeed, it is unclear whether a reformula-
tion of it, either in terms of Schrödinger wavefunctions or of density matrices, is impossible,
because the interaction with the environment we want to model breaks the characterization
of the density matrices. For better understanding that point, we refer the reader to Ref. [8],
where it is investigated the possibility of constructing a density matrix from a classical in-
coming distribution function at the boundary between a one-dimensional quantum zone and
a classical one.
In the kinetic approach, instead, it is straightforward to model the present situation in which
the particles entering the device depend only upon the state of the resevoirs and the parti-
cles leaving it depend only upon the state of the device, by assigning inflow, time-dependent
boundary conditions to the Wigner quasi-distribution function. Precisely,

w(s, v, t) = γ(s, v, t) , (s, v) ∈ ∂Ωx × IRd
v , v ·n(s) > 0 , t ≥ 0,

where n(s) is the inward normal vector to ∂Ωx at s ∈ ∂Ωx and γ(t) is the prescribed time-
dependent inflow. These conditions are the d-dimensional version of those introduced in
Ref. [15] in the case of a slab situated between two particle reservoirs, and are those one
expects for an analogous classical transport problem formulated in the phase-space.
Inside the active region of the device, the free-transport of the electrons ensemble is modified
by the reciprocal repulsive effect due to the charge; the latter can be taken into account
through a mean-field self-consistent potential V (cf. the discussion in Part I). Moreover, we
can take into account the action of applied potentials and of heterostructures, by including
an “external” potential Ve.
Hence, the evolution in time of the function w is described by a version of the Wigner
equation (3.6), which is nonlinearly coupled with the Poisson equation for the potential V ,
because the particle density in the bounded domain Ωx is expressed by

n[w](x) :=

∫
Rd

v

w(x, v) dv, x ∈ Ωx . (d)

Precisely, by the following d-dimensional version of the WP system (4.1a), (4.1b)[
∂

∂t
+ v·∇x −Θ [Ve(t) + V (t)]

]
w(x, v, t) = 0 , (x, v) ∈ Ωx × IRd

v , t ≥ 0, (WP1)

∆xV (x, t) =

∫
IRd

v

w(x, v, t) dv , x ∈ Ωx , t ≥ 0 , (WP2)
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in addition, the unknown functions w and V satisfy the following boundary conditions (b.c.)

w(s, v, t) = γ(s, v, t) , (s, v) ∈ ∂Ωx × IRd
v , v ·n(s) > 0 , t ≥ 0, (bc1)

V (x, t) = 0, x ∈ ∂Ωx , t ≥ 0, (bc2)

and initial condition (i.c.)

w(x, v, 0) = w0(x, v), (x, v) ∈ Ωx × IRd
v . (bc3)

According to the definition of the pseudo-differential operator in the present bounded (spa-
tial) domain case,

(Θ[φ]w) (x, v) =
i

(2π)d

∫
IRd

ξ×IRd
v′

δφ(x, ξ)w(x, v′) ei(v−v
′)·ξ dξ dv′,

δφ(x, ξ) := φ

(
x+

ξ

2

)
− φ

(
x− ξ

2

)
, (x, ξ) ∈ Ωx × IRd

ξ ,

the time-dependent functions Ve(t), which is a datum of our problem, as well as V (t), which
is the solution of the Poisson problem (WP2), (bc2), have to be defined in the whole IRd

x.
Thus, we add the following condition, which is compatible with (bc2)

V (x, t) = 0, x ∈ IRd
x \ Ωx , t ≥ 0. (bc4)

The time-dependent WP system has been studied in the whole space IR3
x× IR3

v (see Ref. [17]
and references therein), in a bounded spatial domain with periodic (Refs. [3, 17]), or absorb-
ing (Ref. [1]), boundary conditions, and on a discrete lattice (Refs. [10, 28]). In most cases,
the analysis exploits either the equivalence of Wigner and Schrödinger equations, or the self-
adjointness property of the free-streaming operator in some appropriate domain. In the next
two chapters, we will deal respectively with the one-dimensional and the three-dimensional
versions of the WP system (WP) with the conditions (bc); as we have already anticipated,
the choice of the b.c. will require the use of alternative mathematical techniques.
Moreover, we will have to face the “standard” difficulties related to the WP-type problem
we have presented in Chapter 4. Let us recall that in the Fourier space with respect to the
v-variable, the pseudo-differential operator Θ[Φ] has the “product shape”

(Fv (Θ [Φ]u) ) (x, η) = i δΦ(x, η) (Fvu) (x, η), (P-S)

which makes its use easier. That consideration and the discussion in the Section 3.4 motivate
to choose the space L2(Ωx × IRd

v ; IC) as the functional setting11. However, the definition (d)
of density n[w] requires the use of some weighted L2-space Xk ⊂ L2(Ωx × IRd

v ; IC), namely,

Xk := L2( Ωx × IRd
v , (1 + |v|2)kdx dv; IC ) ;

for an index k s.t. 2k > d. This is a straightforward generalization for the d-dimensional
case of the functional setting used in Refs. [5, 26] (cf. Section 4.1). Observe that, roughly
speaking, we are assuming some regularity in the variable η of Fv→ηw; precisely, that its

11Indeed, we shall prove that the Wigner function w (and then V ) is real-valued for all times t ≥ 0 if the
initial datum is real-valued, thus we could directly settle the analysis in L2(Ωx× IRd

v ; IR), which is the space
of Wigner-transformed H-S operators, i.e. of physically admissable Wigner functions.
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derivatives12 of order k with respect to η still belong to L2(Ωx × IRd
v ; IC).

Accordingly, one can expect, by the product-shape in the Fourier space (cf. Eq. (P-S)), that
the pseudo-differential operator Θ [φ] will be well-defined from the space Xk in intself, if the
derivatives up to order k of the potential function φ are (essentially) bounded. Under such
hypothesis, the operator Θ[Φ] will be bounded from Xk to itself. Thus, a first obstacle will
be to prove the sufficient regularity of the solution V of the Poisson equation in the bounded
domain Ωx, for the operator Θ[V ] to be defined on Xk. We anticipate that, while it will
be an easy task in the one-dimensional case, in the three-dimensional case we will have to
modify the estimate of the pseudo-differential operator, in order to exploit the (previously
cited) regularity in the variable η of Fv→ηw.
For what the linearized13 problem is concerned, note that this is a non-autonomous “affine”
problem (cf. Ref. [4]), because the b.c. (bc1) are non-homogeneous, time-dependent. Accord-
ingly, the use of the semigroup generation property of the streaming operator is more delicate
than in Refs. [3, 24] (about the one-dimensional, spatially bounded case with periodic b.c.
and with homogeneous b.c., respectively). Thus, we will associate to the “affine” problem
one with a linear streaming operator and an additional source term and prove under which
assumptions a solution of the former can be recovered from a solution of the latter.
Then, the (local-in-time) solution of the non-linear problem can be obtained by a Banach-
type fixed point argument, since the potential term proves to be a locally-Lipschitz perturba-
tion. Accordingly, we will have to recover a priori estimates for the solution in the weighted
L2-norm. Due to the skew-simmetry of the pseudo-differential operator, the L2-norm is pre-
served (cf. Remark 4.1.4). For what the other terms in the Xk-norm are concerned, instead, a
direct evaluation starting from the equation, may not be enough to get the result, depending
on the space-dimension. More precisely, in the one-dimensional case it will be straightfor-
ward to prove the boundedness of the norm for all finite time, while in three-dimensional
case, it won’t be possible.
Also in the present case, hold the same considerations about the impossibility of employing
the physically-motivated identities stated in Section 4.4 for recovering a priori bounds for
the moments of the solution. Moreover, since the choosen bounded spatial domain breaks
the correspondence with the Schrödinger and the density matrices frameworks, there is the
additional problem of defining physically-consistent quantities.
We remark that the strategy presented in Section 4.3, to obtain a priori bounds for the self-
consitent electric field, cannot be easily modified for the present bounded spatial domain
case.
Accordingly, till now, it has not been possible to state the existence for all times of the
solution of the three-dimensional version of problem (WP).

12Indeed, we are assuming that ∂k
ηi
Fv→ηw ∈ L2(Ωx × IRd

v ; IC) , ∀ i = 1, . . . , d, k = m/n, m, n ∈ IN.
13i.e. , Eq. (WP1), with V = 0 together with the conditions (bc1),(bc3)
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Chapter 5

The one-dimensional Wigner-Poisson
system with inflow boundary
conditions

5.1 Introduction

In the present chapter we present the content of Manzini C., Barletti L., “An analysis of
Wigner-Poisson problem with inflow boundary conditions”, Nonlinear Analysis, 60(1), 77-
100 (2004). Relatively to the problem (WP) with the conditions (bc), (bc4) introduced in
the previous section, we shall prove well-posedness of the linearized d-dimensional version
and existence and uniqueness of a global-in-time, regular solution of the one-dimensional
nonlinear version.
Here follows an outline of the paper. In Section 5.2 we introduce the spaces Xk ⊂ L2(Ωx ×
IRd
v ; IC). Besides, we prove that the pseudo-differential operator Θ [φ] is well-defined in such

spaces with assumptions on the function φ which, in the one-dimensional case, are less
restrictive than those in Ref. [24] and yet will ensure well-posedness of the one-dimensional
W-P problem.
In Section 5.3, we drop the self-consistent potential V and study the Cauchy problem for
the d-dimensional Wigner equation with the time-dependent (external) potential Ve(t) alone,
subject to inflow b.c. (bc1).
We prove existence and uniqueness of a classical solution of such problem in the spaces Xk,
with 2k > d, thus improving the result obtained in Ref. [24], relevant to well-posedness of
the Cauchy problem with homogeneous b.c. in L2(Ωx × IRd

v ; IC).
In Section 5.4 we discuss the existence of a linear map P which associates to each state
w ∈ Xk the extension with value zero outside Ωx of the solution V of the Poisson problem
(WP2)-(bc2), yielding the self-consistent potential term Θ [V ] in (WP1). However, because
of the requirements on the potential V for the operator Θ [V ] to be defined (see Section 2),
this attempt is successful only in the one dimensional case. Thus, in the following sections
we shall restrict our investigation to the case1 d = 1 . In Section 5.5, therefore, we consider

1We anticipate that the assumptions on the potential, for the pseudo-differential operator to be well-
defined, can be weakened. That modification will make it possible to complete the analysis also in the
three-dimensional case (cf. Chapt. 6).
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a one-dimensional, nonlinear and non-autonomous Cauchy problem of the following form

d

dt
w(t) = Tγ(t)w(t) + Θ [Ve(t) + Pw(t)] w(t), t ≥ 0, (5.1a)

w(t = 0) = w0, (5.1b)

where the affine operator Tγ(t) contains the inflow b.c. Note that the problem contains
the quadratic nonlinearity Θ [Pw]w. We associate to (5.1) a semilinear, non-autonomous
problem where the inflow is transformed into a suitable source term and prove existence and
uniqueness of a local-in-time, classical solution of this latter problem.
In Section 5.6, the results of the preceding section, together with a suitable a priori estimate,
are used to prove the main result of this paper, i.e. existence, uniqueness and regularity of
a global-in-time, classical solution of (5.1).
The Appendix is devoted to the construction of an explicit “representation” of the domain
D(Tγ(t)), according to the concepts introduced in Secs. 5.2 and 5.3.

5.2 The functional setting

Assume that Ωx is an open, convex and bounded subset of IRd
x with C1 boundary ∂Ωx. Let

us introduce, for all k = 0, 1, 2, . . ., the space Xk of the IC-valued functions, defined on
Ωx× IRd

v, with square summable modulus with respect to the Lebesgue measure in Ωx× IRd
v

with weight (1 + |v|2)k; in symbols:

Xk := L2( Ωx × IRd
v , (1 + |v|2)kdx dv ; IC ) .

For all k , Xk is a Hilbert space with scalar product

< u,w >Xk
:=

∫
IRd

v

∫
Ωx

u(x, v)w(x, v) (1 + |v|2)k dx dv. (5.2)

It is straightforward to prove the equivalence of the norm ‖. ‖Xk
with the following

‖u‖X̃k
= ‖u‖X0

+
d∑
i=1

∥∥vki u∥∥X0
, (5.3)

and Xk is continuously imbedded in X0 = L2(Ωx × IRd
v , dx dv ; IC).

The following proposition is the d-dimensional version of Lemma 4.1.1 for n defined in the
domain Ωx.

Proposition 5.2.1 Let u ∈ Xk and n(x) =
∫

IRd
v
u(x, v) dv. If 2k > d, then n ∈ L2(Ωx, dx),

and
‖n‖L2(Ωx,dx)

≤ c(d, k) ‖u‖Xk
, (5.4)

where
c(d, k) := max

{
(ωd/d)

1/2, (ωd/(2k − d))1/2
}

(5.5)

and ωd is the (d− 1)-dimensional measure of the surface of the d-dimensional unit sphere2.

2Namely,

ωd =
2πd/2

Γ(d/2)
,

with Γ the Gamma function.
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Proof. From Minkowsky’s inequality we have

‖n‖L2(Ωx,dx)
≤
( ∫

Ωx

∣∣∣ ∫
|v|≤1

u(x, v) dv
∣∣∣2dx)1/2

+
(∫

Ωx

∣∣∣ ∫
|v|>1

u(x, v) dv
∣∣∣2dx)1/2

. (5.6)

By applying Hölder’s inequality on |v| ≤ 1 in the first summand, we get∫
Ωx

∣∣∣ ∫
|v|≤1

u(x, v) dv
∣∣∣2 dx ≤ ωd

d
‖u‖2

X0
. (5.7)

Moreover, by using again Hölder’s inequality,∫
Ωx

∣∣∣ ∫
|v|≥1

u(x, v) dv
∣∣∣2 dx ≤

∫
Ωx

[ ∫
|v|≥1

|u(x, v)|
(1 + |v|2)k/2

(1 + |v|2)k/2 dv
]2

dx

≤
∫

Ωx

(∫
|v|≥1

|u(x, v)|2 (1 + |v|2)k dv
)(∫

|v|≥1

1

(1 + |v|2)k
dv
)

dx

≤
( ∫

|v|≥1

1

|v|2k
dv
)
‖u‖2

Xk
.

(5.8)

Since, by changing into polar coordinates,∫
|v|≥1

1

|v|2k
dv =

ωd
2k − d

<∞ if 2k > d,

the bound (5.4) follows from bounds (5.7) and (5.8).

Remark 5.2.1 If we are dealing with the one-dimensional W-P system (5.1), then the
appropriate functional setting is X1 (see also Ref. [3]) and the suitable estimate is the
following

‖n(t)‖L2(Ωx,dx ) ≤ c(1, 1) ‖w(t)‖X1
∀ t ≥ 0 , (5.9)

where c(1, 1) =
√

2. The three-dimensional case has to be dealt with in X2, and we get the
estimate

‖n(t)‖L2(Ωx,dx ) ≤ c(3, 2) ‖w(t)‖X2
∀ t ≥ 0, (5.10)

where c(3, 2) = 2
√
π. Since our aim is proving that the Wigner equation (WP1) is well-

posed in Xk with the appropriate k, we discuss under which assumptions on the function
φ(t) the pseudo-differential operator Θ [φ(t)] is well-defined fromXk into itself. The following
Proposition is a straightforward generalization of (2.4) of Ref. [24].

Proposition 5.2.2 The map (u, φ) 7→ Θ [φ]u is bilinear from Xk×W k,∞(IRd
x) into Xk, and

there exists b > 0 such that

‖Θ [φ]u‖Xk
≤ b ‖φ‖Wk,∞(IRd

x) ‖u‖Xk
, ∀ (u, φ) ∈ Xk ×W k,∞(IRd

x) . (5.11)

In particular, if φ ∈ W k,∞(IRd
x), then Θ [φ] belongs to the space B(Xk) of linear, bounded

operators on Xk.
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Proof. The proof of bilinearity is immediate; then let us focus on the proof of inequality
(5.11). Let u ∈ Xk and φ ∈ W k,∞(IRd

x). By using (5.3) we can write

‖Θ [φ]u‖2
X̃k

= ‖Θ [φ]u‖2
X0

+
d∑
i=1

∥∥vki Θ [φ]u(x, v)
∥∥2

X0
. (5.12)

Since

(Fv (Θ [φ]u) ) (x, η) = i δφ(x, η) (Fvu) (x, η) ,

the first summand of the right-hand side of (5.12) is, up to a multiplicative constant,
‖δφ (Fvu)‖2

X0
, while in the second summand there are terms of the type∥∥vki Θ [φ]u

∥∥2

X0
= (2π)d

∥∥∂kηi
(δφ (Fvu))

∥∥2

X0
,

Since

∂jηi
δφ(x, η) = ∂jηi

{
φ
(
x+

η

2

)
− φ
(
x− η

2

)}
=

=
{(1

2

)j
(∂jηi

φ)
(
x+

η

2

)
−
(
− 1

2

)j
(∂jηi

φ)
(
x− η

2

)}
,

then ∥∥∂jηi
δφ
∥∥
L∞(IR2d)

≤
(1

2

)j−1 ∥∥∂jηi
φ
∥∥
L∞(IRd)

< +∞,

for all j ≤ k as φ ∈ W k,∞(IRd
x). Moreover, the derivatives ∂jηi

(Fvu) belong to X0 since

u ∈ Xk, and
∥∥∂jηi

(Fvu)
∥∥2

X0
= (2π)−d

∥∥vjiu∥∥2

X0
, for all j ≤ k. Thus, by using the Leibniz’s

rule

∂kηi
(δφ (Fvu)) =

∑
0≤l≤k

(
k

l

)
∂lηi
δφ ∂k−lηi

(Fvu) ,

we easily obtain the inequality in the thesis.

Remark 5.2.2 According to Proposition 5.2.2, a sufficient condition for the operator Θ [Ve(t) + V (t)]
appearing in (WP1) to be well-defined on Xk is that Ve(t) and V (t) belong to W k,∞(IRd

x).
This condition, together with the restriction 2k > d coming from Proposition 5.2.1, is a
serious obstacle to prove well-posedness of the n-dimensional W-P problem with d > 1 (see
Sec. 5.4). Actually, we shall prove in the one-dimensional case that, for all w ∈ X1, there
exists a unique solution of the Poisson problem on the bounded domain Ωx (WP2)-(bc2),
whose extension with value zero outside the domain Ωx belongs to W 1,∞(IRx). In contrast,
an analogous attempt is unsuccessful in the three-dimensional case: in fact the hypothesis
V ∈ W 2,∞(IR3

x) is in general not satisfied by the extension with value zero on IR3 \Ωx of the
self-consistent potential V .
We also remark that, in the one-dimensional case, the requirement V ∈ W 1,∞(IRx) is less
restrictive than that ensuring well-posedness of W-P in Ref. [24].

A straightforward consequence of Proposition 5.2.2 is the following.

Corollary 5.2.1 If the function t 7→ φ(t) is of class C1([0,∞) ; W k,∞(IRd
x) ), then the func-

tion t 7→ Θ [φ(t)] is of class C1( [0,∞) ; B(Xk) ) and its derivative is t 7→ Θ [φ′(t)].
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Now let us turn our attention to the free-streaming term −v·∇x appearing in Eq. (WP1).
Consider the linear operator

Tmaxu := −v·∇x u,

defined on the maximal domain

D(Tmax) := {u ∈ Xk | v·∇xu ∈ Xk }.

Since we want to take into account the b.c. (bc1) by defining a suitable subdomain, let us
introduce the “inflow trace-space”

Y in
k := L2(Φin , v·n(s) (1 + |v|2)k ds dv ; IR), (5.13)

where

Φin :=
{

(s, v) ∈ ∂Ωx × IRd
v | v ·n(s) > 0

}
. (5.14)

Under our assumptions on Ωx
3, any function belonging to D(Tmax) has a well-defined trace

u|Φin on Φin, belonging to Y in
k (see Refs. [16] and [30]). Thus, given a function t 7→ γ(t), with

γ(t) ∈ Y in
k for all t ≥ 0, we can define the following time-dependent affine operator:

Tγ(t)u := −v·∇x u, (5.15a)

∀u ∈ D(Tγ(t)) := {u ∈ D(Tmax) | u|Φin = γ(t)}. (5.15b)

In the case γ ≡ 0, the operator T0 is linear and represents streaming with null inflow. Note
that the sets D(Tγ(t)) are D(T0)-affine subspaces of Xk, i.e., for all t ≥ 0 and u1, u2 ∈
D(Tγ(t)), we have u1 − u2 ∈ D(T0). Moreover, the operators Tγ(t) are T0-affine operators,
i.e., for all t ≥ 0 and u1, u2 ∈ D(Tγ(t)), we have Tγ(t)u1 − Tγ(t)u2 = T0(u1 − u2). According
to that, we say that {Tγ(t) | t ≥ 0 } is a T0-affine family (see Refs. [4, 7]).

Note that if we find a function p : [0,+∞) → Xk such that

p(t) ∈ D(Tγ(t)), ∀ t ≥ 0, (5.16)

then

D(Tγ(t)) = p(t) +D(T0), ∀ t ≥ 0.

Such a function p(t) is called a representation of D(Tγ(t)). In particular, note that, if p(t) is
a representation of D(Tγ(t)), then, for any given function w : [0,+∞) → D(Tγ(t)), a function
u : [0,+∞) → D(T0) exists such that

w(t) = u(t) + p(t), ∀ t ≥ 0.

This fact will be exploited in the next section where we associate to the affine evolution
equation for the unknown w(t), containing the operators Tγ(t), a linear evolution equation
for the unknown function u(t), with the operator T0 and an additional source term depending
on p(t).

3Namely, Ωx open, convex, bounded subset of IRd
x, with ∂ΩxC1.
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5.3 The affine evolution problem

In this section we study the d-dimensional, linearized version of Eq. (WP1) with b.c. (bc1)
and i.c. (bc3) which, in its abstract form, reads as follows:

d

dt
w(t) = Tγ(t)w(t) + Θ [Ve(t)]w(t), t ≥ 0, (5.17a)

w(0) = w0, (5.17b)

where Ve(t) = Ve(x, t) is an assigned potential. This is an affine (because it contains the
T0-affine operators Tγ(t)) and non-autonomous evolution problem.
As hinted at the end of the previous section, if we choose an appropriate representation p(t)
for the D(T0)-affine domains D(Tγ(t)), i.e. a function p : [0,+∞) → Xk such that (5.16)
holds, then we can associate to the affine evolution problem (5.17) a linear problem with an
additional source term. More precisely, it can be easily verified that the following holds (see
also Theorem 2.1 of Ref. [4]).

Proposition 5.3.1 Let p be a representation of the family of the D(T0)-affine domains
{D(Tγ(t)) | t ≥ 0} and assume that p and Ve are such that Qp ∈ C( [ 0,+∞);Xk ), where

Qp(t) := Tγ(t)p(t) + Θ [Ve(t)] p(t)− p′(t) , ∀t ≥ 0 . (5.18)

If w is a classical solution4 of (5.17), then the function u : [0,+∞) → Xk, defined by
u(t) := w(t)− p(t) ∀t ≥ 0, is a classical solution5 of the following evolution problem

d

dt
u(t) = T0u(t) + Θ [Ve(t)] u(t) +Qp(t), t ≥ 0, (5.19a)

u(t=0) = u0 := w0 − p(0) . (5.19b)

Conversely, if u is a classical solution of (5.19), then the function w : [0,+∞) → Xk, defined
by w(t) = u(t) + p(t), ∀ t ≥ 0, is a classical solution of (5.17).

In the following, we shall refer to (5.19) as to the “associated problem”.

As suggested by the assumptions of Proposition 5.3.1, the representation p : [0,+∞) → Xk

must grant the required regularity of the function Qp(t) defined by (5.18) which is the source
in Eq. (5.19). Thus, we are led to the following definitions.

Definition 5.3.1 Let p : [0,+∞) → Xk be a representation of the D(T0)-affine domains
D(Tγ(t)). We say that p is regular if p ∈ C1([0,+∞) ;Xk) and the function t 7→ Tγ(t)p(t)
belongs to C([0,+∞) ;Xk). We say that p is strongly regular if p ∈ C2([0,+∞) ;Xk) and
t 7→ Tγ(t)p(t) belongs to C1([0,+∞) ;Xk).

Because of Corollary 5.2.1, assuming p regular and Ve in C([0,+∞) ;W k,∞(IRn
x) implies Qp ∈

C([0,+∞) ;Xk); similarly, assuming p strongly regular and Ve in C1([0,+∞) ;W k,∞(IRn
x))

implies Qp ∈ C1([0,+∞) ;Xk).

4i.e. is such that w ∈ C1( [ 0,+∞);Xk ) , w(t) ∈ D(Tγ(t)) ∀t ≥ 0 , w satisfies (5.17).
5i.e. is such that u ∈ C1( [ 0,+∞);Xk ) , u(t) ∈ D(T0) ∀t ≥ 0 , u satisfies (5.19).
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Remark 5.3.1 There is a considerable arbitrariness in the choice of regular and strongly
regular representations p of D(Tγ(t)). Since, on the other hand, p has been introduced in the
associated problem (5.19) in order to obtain the solution of the original affine problem (5.17)
as w = u+ p, then an important point will be proving that w does not depend on the choice
of p. Moreover, it may be interesting to look for representations which simplify the source
term Qp. For example, if v·∇xp = 0, then Qp(t) reduces to Θ [Ve(t)] p(t)−p′(t). It would be
also meaningful to translate the regularity conditions on p into regularity conditions on the
inflow datum γ. In the Appendix we give an example of a strongly regular representation of
D(Tγ(t)).

From known results on transport operators (see Ref. [16]) it follows that the (linear) null-
inflow streaming operator T0 generates a semigroup of contractions {etT0 | t ≥ 0} on Xk.
Then, the evolution problem (5.19) contains a time-dependent bounded perturbation Θ [Ve(t)]
of the generator T0, and a source term. The following considerations are standard in the
theory of evolution equations, [12].

Definition 5.3.2 (Mild solution of the associated problem (5.19)) Let p : [ 0,∞) →
Xk be a regular representation of D(Tγ(t)) (in the sense of Definition 5.3.1), let Ve ∈
C( [ 0,∞) ; W k,∞(IRd

x) ), and let u0 ∈ Xk. A continuous solution u : [0,∞) → Xk of the
integral equation

u(t) = etT0u0 +

∫ t

0

e(t−s)T0 Qp(s) ds+

∫ t

0

e(t−s)T0 Θ [Ve(s)]u(s) ds, (5.20)

is called mild solution of (5.19), [26].

The assumptions on Ve and p in Definition 5.3.2 grant that the integral operator appearing
in Eq. (5.20) is a Banach-space Volterra operator and that the term

etT0u0 +

∫ t

0

e(t−s)T0Qp(s) ds

is a continuous function of t ∈ [0,∞). Moreover, the solution of (5.20) (i.e., the mild solution
of (5.19)) is unique and is given by the perturbation series

u(t) =
+∞∑
n=0

vn(t) , t ≥ 0, (5.21)

where the functions vn(t) are recursively defined by
v0(t) := etT0u0 +

∫ t

0

e(t−s)T0 Qp(s) ds, t ≥ 0,

vn+1(t) :=

∫ t

0

e(t−s)T0 Θ [Ve(s)] vn(s) ds, t ≥ 0, n = 0, 1, 2, . . . .

(5.22)

Evidently a classical solution is also a mild solution; under the increased regularity assump-
tions of the following proposition also the converse is true.

Proposition 5.3.2 (Classical solution of the associated problem (5.19)) Let
p : [ 0,∞) → Xk be a strongly regular representation of D(Tγ(t)) (in the sense of Definition
5.3.1), let Ve ∈ C1( [ 0,∞) ; W k,∞(IRd

x) ), and let u0 ∈ D(T0). If u : [0,∞) → Xk is the
continuous solution of the integral equation (5.20), then u is also a classical solution of the
evolution problem (5.19).
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Proof. A proof is obtained by suitably modifying that of Thm. 4.8 in Ref. [6] on account
of the presence of the time-dependent bounded perturbation of the free-streaming operator
(see Prop. 3.3 in Ref. [21]). Otherwise, we observe that the function f : [0,+∞)×Xk → Xk

so defined
f(t, u) = Θ [Ve(t)]u+Qp(t),

is continuously differentiable in [0,+∞)×Xk, since

ft(t, u) = Θ [V ′
e (t)]u+

(
Tγ(t)p(t)

)
t
+ Θ [V ′

e (t)] p(t) + Θ [Ve(t)] p
′(t)− p′′(t)

and
fu(t, u) = Θ [Ve(t)]u,

by the definition of Fréchet differentiability. Then the thesis follows by applying Thm. 6.1.5
in Ref. [26].

Finally, we return to our original affine problem (5.17).

Theorem 5.3.1 (Classical solution of the affine problem (5.17)) Let w0 ∈ D(Tγ(0))
and let p and Ve be as in Proposition 5.3.2. Then (5.17) has a unique classical solution
w : [0,∞) → Xk given by w(t) := u(t) + p(t), t ≥ 0 where u : [0,∞) → Xk is the unique
classical solution of the associated problem (5.19) with initial datum u0 := w0 − p(0). In
particular, w is independent of the choice of the representation p with the required regularity.

Proof. The existence is a straightforward consequence of Proposition 5.3.1 and of Proposi-
tion 5.3.2. The uniqueness (and, therefore, the independence of the solution of the strongly
regular representation p) follows from the uniqueness of the solution of the problem

d

dt
z(t) = T0z(t) + Θ [Ve(t)] z(t), t ≥ 0, (5.23a)

z(0) = 0. (5.23b)

5.4 The Poisson problem

Let us turn our attention to the Poisson problem for the self-consistent potential V :

∆xV (x) =

∫
IRn

v

w(x, v) dv, x ∈ Ωx, (5.24a)

V (x) = 0 x ∈ ∂Ωx ⊂ IRn
x. (5.24b)

Throughout this section we do not write the time variable, which plays just the role of a
parameter.
Remember that, for all k ∈ IN such that 2k > d and for all w ∈ Xk, the right hand side
of Eq. (5.24a) is well-defined and belongs to L2(Ωx) (see (5.4)). In order to proceed in the
analysis of the W-P system, we need a solution V of this problem whose extension with value
zero out of Ωx has the properties required by Proposition 5.2.2, i.e., it belongs to W k,∞(IRd

x).
Such solution grants us that the operator Θ [V ] in the Wigner equation (WP1) is well-defined
from Xk into itself.
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In the one-dimensional case, d = 1, this program turns out to be successful since we can
work with k = 1 and, as we shall see in the following, problem (5.24) yields a potential V
whose extension to the whole real line belongs to W 1,∞(IR).

At higher dimension d ≥ 2, since in this case we need k ≥ 2, we should have at least
V ∈ W 2,∞(IR3) but this is false in general.

For these reasons, from now on we shall assume that the system is one-dimensional and the
analysis will proceed in the case d = 1.

Thus, let Ωx = (0, l); the solution of

V ′′(x) = n(x) a.e. x ∈ (0, l) (5.25a)

V (0) = V (l) = 0 , (5.25b)

with n ∈ L2((0, l)), can be easily calculated and is given by

V (x) =

∫ x

0

∫ y

0

n(z) dz dy − x

l

∫ l

0

∫ y

0

n(z) dz dy x ∈ (0, l).

V and Ṽ , its extension with value zero outside (0, l), are essentially bounded and similarly

for V ′ and for its zero extension Ṽ ′; actually

V ′(x) =

∫ x

0

n(z) dz − 1

l

∫ l

0

∫ y

0

n(z) dz dy x ∈ (0, l).

Moreover, for the norm
∥∥∥Ṽ ∥∥∥

W 1,∞(IR)
:= max{

∥∥∥Ṽ ∥∥∥
∞
,
∥∥∥Ṽ ′
∥∥∥
∞
}, we obtain the following esti-

mate ∥∥∥Ṽ ∥∥∥
W 1,∞(IR)

≤
√
l/3 max{ 3 +

√
3 , 2l

√
3 } ‖n‖L2( (0,l),dx ) (5.26)

(see Thm. VIII.5 in Ref. [9]).

Remark 5.4.1 Since the zero extension Ṽ of the solution of problem (5.25) belongs to

W 1,∞(IR), Θ
[
Ṽ
]

belongs to B(X1), in virtue of estimate (5.11).

The discussion about the one-dimensional case allows us to state the following lemma.

Lemma 5.4.1 Let P : X1 → W 1,∞(IR) be the map Pw := Ṽ , where Ṽ is the extension with
value zero outside Ωx of the solution of problem (5.25), with n(x) =

∫
IRv
w(x, v) dv. Then

P ∈ B(X1 ;W 1,∞(IR)).

Proof. The map is well-defined because of the estimate (5.26). From (5.26) and bound
(5.9), it follows that

‖Pw‖W 1,∞(IR) ≤ d c(1, 1) ‖w‖X1
, ∀w ∈ X1, (5.27)

where
d :=

√
l/3 max{ 3 +

√
3 , 2l

√
3 } (5.28)

and c(1, 1) =
√

2 comes from (5.5).

As a consequence of Lemma 5.4.1 and Proposition 5.2.2, the nonlinear operator

F : X1 → X1 such that F(w) := Θ [Pw]w . (5.29)

is well-defined for d = 1. Moreover, F(w) depends quadratically on w ∈ X1.
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Remark 5.4.2 In the applications to device modeling a more general, non-homogeneous
boundary condition for V may be of interest. In the one-dimensional case such non-
homogeneous condition reads as follows:

V (0) = V−, V (l) = V+,

where V− and V+ are constants. The solution of the Poisson problem with such b.c. can
be continuously extended, with constant values outside [0, l], in order to have well-defined
operators P and F . In this case the operator P is not linear any more but, nevertheless,
all the results that we shall obtain for the homogeneous case (V− = V+ = 0) can be easily
extended to the non-homogeneous one. In fact, it can be easily shown that an inequality
similar to (5.26) holds and that P is Lipschitz continuous, which implies that the Lipschitz
property of F (see Lemma 5.5.1) is still true. However, for higher dimension things would
be much more delicate.

5.5 The one-dimensional non-linear evolution problem

This section is devoted to the study of the affine-semilinear evolution problem

d

dt
w(t) = Tγ(t)w(t) + Θ [Ve(t)]w(t) + F(w(t)), t ≥ 0, (5.30a)

w(t=0) = w0. (5.30b)

which is the abstract formulation of the (one-dimensional) W-P problem (WP), (bc) in terms
of the operators introduced in the previous sections. In particular, we recall that the affine
streaming operator Tγ(t) is defined by (5.15), the pseudo-differential operator Θ [Ve] is defined
by (4.2) and the nonlinear operator F is defined by (5.29).

In analogy with Sec. 5.3, by choosing a representation p(t) for the family of D(T0)-affine
domains {D(Tγ(t)) | t ≥ 0 }, we can associate to the affine-semilinear problem (5.30) the
following semilinear problem:

d

dt
u(t) = T0u(t) + Θ [Ve(t)] u(t) + F

(
(u+ p)(t)

)
+Qp(t), t ≥ 0, (5.31a)

u(t=0) = w0 − p(0), (5.31b)

where, as before,

Qp(t) := Tγ(t)(p(t)) + Θ [Ve(t)] p(t)− p′(t),

for all t ≥ 0. In the following we shall refer to (5.30) as to the “original” problem and
to (5.31) as to the “associated” problem. By exploiting a local Lipschitz property of the
operator F and applying a Banach’s Fixed Point procedure (see Chpt. 6 of Ref. [26]), we
shall prove in this section the existence and uniqueness of a local-in-time, mild solution
of the associated problem (5.31). Under suitable assumptions, the mild solution is also
classical, and, in Section 5.6, we shall derive from it the local-in-time, classical solution of
the original problem (5.30). Then, we shall prove a priori estimates which yields uniqueness
and existence of a global-in-time, classical solution. Lastly, we discuss the independence of
the solution on the choice of the representation p, a result which is not evident a priori.
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5.5.1 The non-linear operator F

Let us recall that the operator F : X1 → X1 is defined by (5.29). From Proposition 5.2.2 the
quadratic structure of F is evident; this is the key point of the proof of the following lemma.

Lemma 5.5.1 The operator F : X1 → X1 has the following properties.

1. For all R > 0, F is Lipschitz-continuous on the ball

BR(X1) := {f ∈ X1 | ‖f‖X1
≤ R},

i.e.

‖F(f)− F(f1)‖X1
≤ L(R) ‖f − f1‖X1

, ∀f, f1 ∈ BR(X1), (5.32)

and the Lipschitz constant L(R) is bounded by 2c(1, 1) b dR, where b comes from Propo-
sition 5.2.2 and d is given by (5.28).

2. F is Fréchet-differentiable on every f ∈ X1 and its Fréchet-derivative Lf at f depends
linearly on f and is such that

‖Lf g‖X1
≤ 2c(1, 1) b d ‖f‖X1

‖g‖X1
, (5.33)

for all f and g in X1.

Proof. (1) Let f, f1 ∈ BR(X1); then, because of inequalities (5.11) and (5.27),

‖F(f)− F(f1)‖X1
≤ ‖Θ [ (P f − P f1) ] f ‖X1

+ ‖Θ [ (P f1) ] (f − f1) ‖X1
≤

≤ b
{
‖P f − P f1 ‖W 1,∞(IRx) ‖f‖X1

+ ‖P f1 ‖W 1,∞(IRx) ‖f − f1‖X1

}
≤

≤ b d c(1, 1)
{
‖f − f1‖X1

‖f‖X1
+ ‖f1‖X1

‖f − f1‖X1

}
.

Thus, ‖F(f)− F(f1)‖X1
≤ 2c(1, 1) b dR ‖f − f1‖X1

and (5.32) is proved.

(2) For all h , f ∈ X1, we have

F(f + h)− F(f) = Θ [ Ph ] f + Θ [ P f ] h + Θ [ Ph ] h.

If we define the linear operator

Lf h := Θ [Ph] f + Θ [P f ] h, (5.34)

then, by using again estimates (5.11) and (5.27), we get

‖F(f + h)− F(f)− Lf h‖X1
= ‖Θ [Ph] h‖X1

≤ b d c(1, 1) ‖h‖2
X1

= o
(
‖h‖X1

)
and ‖Lf h‖X1

≤ 2c(1, 1) b d ‖f‖X1
‖h‖X1

, for f, h ∈ X1, which proves the second part of the
Lemma.
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5.5.2 The semi-linear problem

We consider now the semilinear evolution problem (5.31), associated to the original, affine-
semilinear evolution problem (5.30). Let us recall the definition of mild solution of (5.31),
[26].

Definition 5.5.1 Let p : [ 0,∞) → X1 be a regular representation of D(Tγ(t)) (see Definition
5.3.1), let Ve ∈ C( [ 0,∞) ; W 1,∞(IRx) ), and let u0 ∈ X1 as in (5.30b). A continuous solution
u : [0,∞) → X1 of the integral equation

u(t) = etT0u0 +

∫ t

0

e(t−s)T0
[
Θ [Ve(s)] u(s) + F

(
(u+ p)(s)

)]
ds+

+

∫ t

0

e(t−s)T0 Qp(s) ds ∀ t ≥ 0, (5.35)

is called mild solution of (5.31).

Our next goal will be proving existence and uniqueness of a mild solution of (5.31) in some
maximal time interval [0, tmax).

Lemma 5.5.2 Under the assumptions of Definition 5.5.1, the map

G : [0,∞)×X1 → X1

G(t, u) := Θ [Ve(t)] u+ F
(
u+ p(t)

)
+Qp(t)

(5.36)

is well-defined for all t ≥ 0 and u ∈ X1, is continuous in t and locally Lipschitz-continuous
in u, uniformly for bounded t-intervals.

Proof. The continuity of the map G with respect to the variable t follows from the local
Lipschitz property of the operator F (Lemma 5.5.1) and the assumptions on the data of the
problem. Moreover, by eqs. (5.11) and (5.32),

‖G(t, u)−G(t, u1)‖X1
≤ b ‖Ve(t)‖W 1,∞ ‖u− u1‖X1

+ L(R) ‖u− u1‖X1

for all u, u1 ∈ BR(X1), which proves the Lipschitz continuity of G with respect to u.

Proposition 5.5.1 (Local solution of the associated problem) Under the assumptions
of Lemma 5.5.2 there exists a unique mild solution of the associated problem (5.31) on a max-
imal time interval [0, tmax), with 0 < tmax ≤ ∞.
Moreover, if Ve ∈ C1([0,∞);W 1,∞(IR)), u0 ∈ D(T0) and p : [0,∞) → X1 is a strongly regular
representation of D(Tγ(t)), then u is the (unique) classical solution of the problem.

Proof. The first statement follows from Lemma 5.5.2 and from Ref. [26], Chp. 6, Thm. 1.4.
It can be shown that a lower bound for tmax is given by

tmax ≥ sup
τ>0

r

ητ + (2r + ητ )
[
L(2r + ητ ) + bδτ

] , (5.37)
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where r := ‖u0‖X1
, ητ := ‖p‖C1([0,τ ];X1), δτ := ‖Ve‖C([0,τ ];W 1,∞(IR)), b comes from (5.11) and

L(R) is the Lipschitz constant of F (see Lemma 5.5.1). If Ve ∈ C1([0,∞);W 1,∞(IR)) and p
is a strongly regular representation, then the strong t-derivative

Gt(t, u) = Θ [V ′
e (t)]u+ Lu+p(t) p

′(t) +
(
Tγ(t)p(t)

)
t
+

+ Θ [V ′
e (t)] p(t) + Θ [Ve(t)] p

′(t)− p′′(t)

and the Fréchet u-derivative

Gu(t, u) = Θ [Ve(t)]u+ Lu+p(t) u

exist and are continuous functions of both t and u (see Def. 5.3.1, Corollary 5.2.1 and Lemma
5.5.1). Thus, the second part of the Theorem follows from Ref. [26], Chp. 6, Thm. 1.5.6

In the next section we shall see that the solution u(t) of the associated problem (5.31) (and,
therefore, of the original problem (5.30), given by w(t) = u(t) + p(t)) is indeed global, i.e.
tmax = ∞.

We end this section by proving that the (mild or classical) solution u(t) of (5.31) is real-
valued at all times t ∈ [0, tmax) if the initial datum u0 and the the inflow datum γ(t) are

real-valued.7 To this aim, let us set X̃1 := L2(Ωx × IRv , (1 + v2)dxdv; IR).

Corollary 5.5.1 If u0 ∈ X̃1 (resp. u0 ∈ D(T0) ∩ X̃1), p : [0,∞) → X̃1 is a regular
(resp. strongly regular) representation, then the mild (respectively, classical) solution u(t)

of (5.31) belongs to X̃1 for all t ∈ [0, tmax).

Proof. For all 0 ≤ t1 < tmax, the mild solution of (5.31) is the fixed point of the map
M : C( [0, t1] ;X1 ) → C( [0, t1] ;X1) so defined

M(u(t)) = etT0u0 +

∫ t

0

e(t−s)T0 G(s, u(s)) ds, ∀t ∈ [0, t1],

which is a strict contraction from the ball of radius 2 ‖u0‖X1
into itself (see the proof

of Thm. 1.4 of Chp. 6 in Ref. [26]). Precisely, u is the unique limit of the sequence
{vn | n ∈ IN} ⊂ C( [0, t1] ;X1 ), recursively defined by v0 := u0 , vn := M vn−1.
In the assumptions of the Corollary, since for real potentials Ve the pseudo-differential opera-
tor Θ [Ve] maps real functions into real functions, then G(t, u0) ∈ X̃1 for all t ∈ [0, t1]. Thus,

the sequence {vn | n ∈ IN} is contained in the ball of radius 2 ‖u0‖X̃1
of C( [0, t1] ; X̃1 ) and,

consequently, u belongs to X̃1 for all t ∈ [0, t1]. The same holds for the solution extended to
tmax.

5.6 Global-in-time solution

In the previous section we have found sufficient conditions on the data of the problem and
on the chosen representation p(t) of D(Tγ(t)) which grant existence and uniqueness of a

6In Ref. [21] the interested reader can find a different proof of the differentiability of the mild solution,
under the same hypothesis, as well as the proof of (5.37).

7Physically meaningful Wigner functions must be real-valued (see Ref. [5]).
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local-in-time, classical solution u(t) of the associated semilinear evolution problem (5.31). A
classical solution w(t) of the original evolution problem (5.30) can be immediately built from
u(t), as stated in the following proposition (the proof is analogous to that of Proposition
5.3.1).

Proposition 5.6.1 Let p : [0,+∞) → X1 be a strongly regular representation of D(Tγ(t))
(see Definition 5.3.1) and let 0 < T ≤ +∞. Then, u : [0, T ) → X1 is a classical solution of
the associated problem (5.31) in [0, T ) if and only if w(t) = u(t) + p(t) is a classical solution
of the original problem (5.30) in [0, T ).

Therefore, the following corollary holds.

Corollary 5.6.1 (Local, classical solution of (5.30)) Let the function t → γ(t) be such
that D(Tγ(t)) has a strongly regular representation p(t) for t ∈ [0,+∞). Let w0 ∈ D(Tγ(0))
and let Ve ∈ C1( [ 0,∞) ; W 1,∞(IRx) ). Then, the original problem (5.30) has a classical
solution in a maximal time interval [0, tmax), with 0 < tmax ≤ +∞.

Proof. Let p be a strongly regular representation of D(Tγ(t)). By Prop. 5.5.1 there exists
a unique classical solution u of (5.31) in a maximal time interval [0, tmax). According to
Prop. 5.6.1, w := u+ p is a classical solution of (5.30) in the same time interval.

Note that, contrary to the linear case, the uniqueness result cannot be used directly to prove
that the solution of (5.30) is independent of the choice of the representation p (see Remark
5.3.1). However, we are going to prove such p-independence result, more in general, for the
mild solution of (5.30), which implies that the same result holds for the classical solution.
Note in fact that the following implications hold:

u = w − p
mild solution of (5.31)

⇐⇒ w = u+ p
mild solution of (5.30)ww� ww�

u = w − p
classical solution of (5.31)

⇐⇒ w = u+ p
classical solution of (5.30)

Definition 5.6.1 (Mild solution of the original problem) Let p be a regular represen-
tation of D(Tγ(t)), let Ve ∈ C( [ 0,∞) ; W 1,∞(IRx) ), let u0 ∈ X1 and let 0 < T ≤ +∞. We
define a mild solution of (5.30) in [0, T ) as a continuous function w : [0, T ) → X1 which
satisfies

w(t) = p(t) + etT0(w0 − p(0))−
∫ t

0

e(t−s)T0p′(s) ds+

+

∫ t

0

e(t−s)T0
[
Tγ(s)w(s) + Θ [Ve(s)] w(s) + F(w(s))

]
ds , (5.38)

This definition has been given in such a way that u := w − p is the mild solution of the
associated problem (5.31), according to Definition 5.5.1. Note, however, that in order to
define the mild solution of the original problem (5.30) we have introduced an arbitrary
element, i.e. the representation p. Thus, the p-independence of the mild solution is not a
priori evident. Nevertheless, the following proposition holds.
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Proposition 5.6.2 Let p : [0,+∞) → X1 be a regular representation of D(Tγ(t)) and let
0 < T ≤ +∞. Then, u : [0, T ) → X1 is a mild solution of the associated problem (5.31) in
[0, T ) if and only if w(t) = u(t) + p(t) is a mild solution of the original problem (5.30) in
[0, T ).
Moreover, the mild solution of (5.30) is unique and independent of the choice of a regular
representation p.

Proof. For the sake of brevity, we prove only the uniqueness statement, since the equiv-
alence statement can be easily checked. Let p1 and p2 be two regular representations of
D(Tγ(t)) and let w1 and w2 be two corresponding solutions of (5.38). We want to show that
w1(t) = w2(t) for all t ∈ [0, T ). From (5.38) we get(

w1 − w2

)
(t) =

(
p1 − p2

)
(t)− etT0

(
p1 − p2

)
(0) +

+

∫ t

0

e(t−s)T0 {Θ [Ve(s)] (w1 − w2)(s) + F(w1(s))− F(w2(s)) } ds+

+

∫ t

0

e(t−s)T0
{

T0(p1 − p2)(s)−
(
p′1 − p′2

)
(s)
}

ds.

Since under our regularity assumptions the identity

d

ds

{
e(t−s)T0

(
p1 − p2

)
(s)
}

= e(t−s)T0

{(
p′1 − p′2

)
(s)− T0

(
p1 − p2

)
(s)
}

holds for every s ∈ [0, t] (see Ref. [4]), then

(
w1 − w2

)
(t) =

∫ t

0

e(t−s)T0

{
Θ [Ve(s)] (w1 − w2)(s) +

+ F(w1(s))− F(w2(s))
}

ds.

Note that, by using (5.11), we have

∥∥(w1 − w2

)
(t)
∥∥
X1
≤
∫ t

0

{
b ‖Ve(s)‖W 1,∞(IR)

∥∥(w1 − w2

)
(s)
∥∥
X1

+

+ ‖F(w1(s))− F(w2(s))‖X1

}
ds,

for all t ∈ [0, T ). Thus, if R > 0 is such that both ‖w1(t)‖X1
≤ R and ‖w2(t)‖X1

≤ R hold
for all t ∈ [0, T ) , since F is Lipschitz-continuous in the ball of radius R (see Lemma 5.5.1),
we obtain∥∥(w1 − w2

)
(t)
∥∥
X1
≤
∫ t

0

{
b ‖Ve(s)‖W 1,∞(IR) + L(R)

} ∥∥(w1 − w2

)
(s)
∥∥
X1

ds,

for all t ∈ [0, T ). Thus, the p-independence statement follows by applying Gronwall’s Lemma.
If we now assume that w1 and w2 are two solutions of (5.38) (with the same p) and repeat
the above proof taking p1 = p2 = p, we also obtain the proof of the uniqueness statement.

Corollary 5.6.2 In the assumptions of Corollary 5.6.1, the classical solution w of the orig-
inal problem (5.30) in [0, tmax) is unique.
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Proof. It follows from Proposition 5.6.2 and from the fact that a classical solution is also
a mild solution.

Now we can prove the main result of this paper, i.e., existence and uniqueness of a global
solution of the affine-semilinear evolution problem (5.30), which is the abstract version of
the one-dimensional W-P system (WP) with b.c. and i.c. (bc).

Theorem 5.6.1 (Global solution of (5.30)) Let u0 ∈ D(T0) be real-valued and satisfy
(5.30b). Let Ve ∈ C1( [0,∞) ; W 1,∞(IRx) ) and let γ ∈ L2

loc([0,∞);Y in
1 ) be such that D(Tγ(t))

has a strongly regular representation p(t) for t ∈ [0,+∞). Then there exists a unique global-
in-time, classical and real-valued solution w : [0,+∞) → X1 of the evolution problem (5.30).

Proof. From Corollary 5.6.1, Corollary 5.6.2 and Corollary 5.5.1, there exists a unique
classical, real-valued solution u of (5.30) in some maximal time interval [0, tmax), with 0 <
tmax ≤ +∞. In order to prove that tmax = +∞, we look for an a priori estimate for ‖w(t)‖X1

for all times t.
If we multiply both left and right hand sides of Eq. (5.30a) by w we find

1

2

d

dt
w2(t) + w(t) vwx(t) = w(t) Θ [Ve(t) + Pw(t)]w(t).

Note that, for Ve real, the integral over v ∈ IRv of the function wΘ [Ve]w (as a function of
v) vanishes, since an integral over IRξ of an odd function of ξ appears (see definition(4.2)).
Thus, if we integrate the above equality with respect to v ∈ IRv and x ∈ (0, l), and integrate
by parts the term containing wx, we get

d

dt
‖w(t)‖2

X0
= −

∫
IRv

[vw2(l, v, t)− vw2(0, v, t)]dv

≤ −
∫ 0

−∞
vw2(l, v, t)dv +

∫ ∞

0

vw2(0, v, t)dv.

(the inequality follows by neglecting something non-positive). The last term of the previous
inequality is the Y in

0 -norm of the boundary datum γ(t) (see definition (5.13)). Then, from
the assumptions on γ we have that

‖w(t)‖2
X0
≤
∫ t

0

‖γ(τ)‖2
Y in

0
dτ =: C2(t) (5.39)

for all t ∈ [0, tmax).
Now, since ‖w(t)‖X1

= ‖w(t)‖X0
+‖z(t)‖X0

, with z(x, v, t) := v w(x, v, t), we need an estimate
for ‖z(t)‖X0

. The equation satisfied by z(t) is

d

dt
z(t) + vzx(t)−Θ [Ve(t) + Pw(t)] z = Ω[Vex(t) + (Pw(t))x]w(t), (5.40)

where

(Ω[φ]w) (x, v) :=
i

4π

∫
IR2

δ+φ(x, ξ)w(x, v′) ei(v−v
′)ξ dξ dv′

δ+φ(x, ξ) := Ve

(
x+

ξ

2

)
+ φ
(
x− ξ

2

)
is a bounded operator from X0 into itself, whose operatorial norm satisfies

‖Ω[φ]‖ ≤ ‖φ‖∞ (5.41)

81



(see Ref. [3]). If we multiply by z the right and the left hand sides of Eq. (5.40) and integrate
in both variables x and v, we obtain

1

2

d

dt
‖z(t)‖2

X0
= −

∫
IR

[v3w2(l, v, t)− v3w2(0, v, t)]dv+

+

∫ l

0

∫
IR

z(x, v, t) Ω[Vx(t) + (Pw(t))x]w(x, v, t) dxdv. (5.42)

By using (5.41) and (5.27) we get

∫ l

0

∫
IR

z(x, v, t) Ω[Vx(t) + (Pw(t))x]w(x, v, t) dxdv ≤

≤
(
‖Ve(t)‖W 1,∞ + α ‖w(t)‖X1

)
‖w(t)‖X0

‖z(t)‖X0
, (5.43)

for all t ∈ [0, tmax), where α := dc(1, 1). Moreover,

−
∫

IR

[v3w2(l, v, t)− v3w2(0, v, t)]dv ≤

≤ −
∫ 0

−∞
v3w2(l, v, t)dv +

∫ ∞

0

v3w2(0, v, t)dv ≤ ‖γ(t)‖Y in
1
, (5.44)

for all t ∈ [0, tmax). Therefore, by using (5.43), (5.44) and (5.39), from Eq. (5.42) we get

1

2

d

dt
‖z(t)‖2

X0
≤ ‖γ(t)‖2

Y in
1

+ C(t)
[
‖Ve(t)‖W 1,∞ + α ‖w(t)‖X1

]
‖z(t)‖X0

≤ ‖γ(t)‖2
Y in

1
+ C(t)

[
‖Ve(t)‖W 1,∞ + α

(
C(t) + ‖z(t)‖X0

) ]
‖z(t)‖X0

= ‖γ(t)‖2
Y in

1
+ C(t) (‖Ve(t)‖W 1,∞ + αC(t)) ‖z(t)‖X0

+ α ‖z(t)‖2
X0
, (5.45)

which is a differential inequality of the type

d

dt
f 2(t) ≤ a(t) + b(t)f(t) + c(t)f 2(t), (5.46)

with a, b and c non-negative and f(t) := ‖z(t)‖X0
. The function f(t) satisfying (5.46) cannot

go to +∞ in a finite time; in fact, if limt→t0 f(t) = +∞, with 0 < t0 < +∞, then a 0 < δ < t0
would exist such that f(t) ≥ 1 for all t0 − δ < t < t0. In such interval we could write

d

dt
f 2(t) ≤ a(t) + d(t)f 2(t),

with d(t) := b(t)+ c(t); but, therefore, by applying Gronwall’s Lemma to the function f 2 we
would get limt→t0 f(t) < +∞, which contradicts limt→t0 f(t) = +∞.
From this result and from (5.39) we can conclude that

lim
t→tmax

‖w(t)‖X1
< +∞, if tmax < +∞.

Thus, from Theorem 1.4 in Chp. 6 of Ref. [26], we have that tmax = +∞.
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5.7 Appendix

An example of strongly regular representation of D(Tγ(t))

In this Appendix we explicitly construct a regular representation of the D(T0)-affine domains
{D(Tγ(t)) | t ≥ 0} (see Def. 5.3.1 and Remark 5.3.1) for a suitable class of inflow data.

Since Ωx is a convex set, the following functions are well defined for all (x, v) ∈ Ωx × IRd
v

with values in [0,+∞):

t+(x, v) := sup{ t ≥ 0 |x+ tv ∈ Ωx }, (5.1a)

t−(x, v) := sup{ t ≥ 0 |x− tv ∈ Ωx }. (5.1b)

Note that t±(x, v) is the time it takes, starting from x ∈ Ωx and traveling with a constant
velocity ±v, to reach the point y = x± t±(x, v)v on ∂Ωx. Recalling (5.14), it is easy to verify
that

t−(x, v) = 0 ⇐⇒ (x, v) ∈ Φin , (5.2a)

t+(x, v) = 0 ⇐⇒ (x, v) ∈ Φout := {(s, v) ∈ ∂Ωx × IRn
v | v ·n(s) < 0} (5.2b)

and, for all (x, v) ∈ Ωx × IRd
v, t ∈ [−t−(x, v), t+(x, v)],

t−(x+ tv, v) = t−(x, v) + t , t+(x+ tv, v) = t+(x, v)− t . (5.3)

For c > 0 let us introduce the cut-off inflow subspaces Y in
k,c ⊂ Y in

k defined as follows:

Y in
k,c := {γ ∈ Y in

k | γ(s, v) = 0 for a.e. v with |v| < c}.

Lemma 5.7.1 Setting, for all γ ∈ Y in
k,c,

(B γ) (x, v) := γ(x− t−(x, v)v, v), ∀ (x, v) ∈ Ωx × IRd
v, (5.4)

defines a bounded operator B : Y in
k,c → Xk.

Proof. For any given γ ∈ Y in
k,c, let us evaluate ‖B γ‖Xk

. To this aim, observe first that, for
all (x, v) such that |v| ≥ c,

0 ≤ t+(x, v), t−(x, v) ≤ diam(Ωx)/c =: tc. (5.5)

Moreover, for every (y, v) ∈ Φin, from (5.2) and (5.3) we easily obtain

(B γ) (x, v) = γ(y, v), ∀x ∈ Ωx s.t. x = y + hv, h > 0. (5.6)

Now, recalling (5.3), we can write

‖B γ‖2
Xk

= ‖B γ‖2
X0

+
∑
|α|=k

α 6=(1,0,...,0)

(
k

α

)∥∥∥vα′ B γ∥∥∥2

X0

=

∫
Φin

v·n(s) ds dv

∫ t+(s,v)

0

|(B γ) (s+ hv, v)|2 dh

+
∑
|α|=k

α 6=(1,0,...,0)

(
k

α

)∫
Vei

v·n(s) ds dv

∫ t+(s,v)

0

∣∣∣vα′ (B γ) (s+ hv, v)
∣∣∣2 dh, (5.7)
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where we used the identity∫
Ωx×IRd

v

f(x, v) dxdv =

∫
Φin

v·n(s) ds dv

∫ t+(s,v)

0

f(s+ tv, v) dt,

which holds for all f ∈ L1(Ωx × IRd
v , dxdv ; IC) (see Lemma 3.2 and Lemma 3.3 of Ref. [30]).

Thus, from (5.5) and (5.6) and (5.7) we have

‖B γ‖2
Xk
≤
∫

Φin

v·n(s)(1 + |v|2)kds dv

∫ t+(s,v)

0

|γ(s, v)|2 dh ≤ tc ‖γ‖2
Y in

k
, (5.8)

which proves the Lemma.

Proposition 5.7.1 Assume that the time-dependent inflow datum γ : [ 0,∞) → Y in
k satisfies

(i) γ ∈ C2([ 0,∞);Y in
k );

(ii) γ(t) ∈ Y in
k,c, for all t ≥ 0.

Then p(t) := B γ(t) (explicitly, p(x, v, t) = γ(x− t−(x, v, )v, v, t)) is a strongly regular repre-
sentation of D(Tγ(t)) such that Tγ(t)p(t) = 0 for all t ≥ 0.

Proof. From Eq. (5.8) and assumption (ii), we have that p(t) ∈ Xk for all t ≥ 0. Moreover,
from Eq. (5.6) we have that p(t) is constant along the characteristic lines, i.e.,

v·∇x (B γ) (x, v) = 0, ∀ (x, v) ∈ Ωx × IRd
v, (5.9)

and thus p(t) ∈ D(Tγ(t)), with Tγ(t)p(t) = 0. Finally, since B is bounded from Y in
k,c ⊂ Y in

k

to Xk (Lemma 5.7.1), from assumption (i) we can immediately deduce that p belongs to
C2([ 0,∞);Xk). Thus, p(t) is a strongly regular representation of D(Tγ(t)), according to
Def. 5.3.1.
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Chapter 6

The three-dimensional
Wigner-Poisson system with inflow
boundary conditions

6.1 Introduction

This chapter is devoted the three-dimensional version of problem (WP), namely[
∂

∂t
+ v·∇x −Θ [Ve(t) + V (t)]

]
w(x, v, t) = 0 , (x, v) ∈ Ωx × IR3

v , t ≥ 0, (6.1a)

∆xV (x, t) = n[w](x, t) =

∫
IRn

v

w(x, v, t) dv , x ∈ Ωx , t ≥ 0 , (6.1b)

with the following boundary conditions (b.c.)

w(s, v, t) = γ(s, v, t) , (s, v) ∈ ∂Ωx × IR3
v , v ·n(s) > 0 , t ≥ 0, (6.2a)

V (x, t) = 0, x ∈ ∂Ωx , t ≥ 0, (6.2b)

and initial condition (i.c.)

w(x, v, 0) = w0(x, v), (x, v) ∈ Ωx × IR3
v . (6.2c)

Due to the definition of the pseudo-differential operator, the time-dependent function Ve(t),
which is a datum of our problem is defined in the whole IR3

x. Similarly, we will define an

appropriate extension of the function V, Ṽ such that Ṽ ≡ V on Ωx, Ṽ ≡ 0 outside the set Σ,
where Σ is any open, bounded subset of R3

x, Ωx ⊂ Σ . Accordingly, equations (6.1a), (6.1b)

are nonlinearly coupled in the unknown function w, through the “potential” Ṽ .
Relatively to that problem, we have attained in Manzini C., “On the three-dimensional
Wigner-Poisson problem with inflow boundary conditions”, accepted by Journ. Math. Anal. Appl.
(2004), a local-in-time, well-posedness result.
Observe that the linearized problem has already been solved in the d-dimensional case in
Ref. [22] (cf. Chapter 2). Thus, the only difficulty consists in the definition of the pseudo-
differential operator containing the self-consistent potential at dimension three.
Here follows an outline of the paper: in Section 2 we recall the functional setting and the
preliminary results relative to the density function n, the pseudo-differential operator Θ [Ve]
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and the streaming operator v·∇x. Section 2.1 is devoted to the study of the (weak formula-
tion of the) three-dimensional Poisson problem with homogeneous Dirichlet b.c. . In order
to define the non-linear term in the present three-dimensional case, we will state a result
(Prop.6.2.3), that requires only the available regularity of the potential and the regularity of
the state functions (in Fourier transform). Then, the three-dimensional W-P problem will
have the same structure of the one-dimensional one and the local-in-time solution can be
obtained again by a fixed point argument.
However, we cannot recover a priori estimates as in the one-dimensional case: this fact
depends precisely on the modified estimate we use in order to deal with the self-consistent
potential in the three-dimensional case.

6.2 The functional setting

Let us introduce the Hilbert space X of the C-valued functions, defined on Ωx × IRd
v, with

square summable modulus with respect to the Lebesgue measure in Ωx × IRd
v with weight

(1 + |v|2)2; in symbols:

X := L2( Ωx × IRd
v , (1 + |v|2)2dx dv ; C ),

with the scalar product

< u,w >X :=

(∫
IR3

v

∫
Ωx

u(x, v)w(x, v) (1 + |v|2)2 dx dv

)1/2

.

In our calculations we shall use the following equivalent norm

‖u‖2
X̃

:= ‖u‖2
2 +

3∑
i=1

‖v2
i u‖2

2. (6.3)

Let us observe that

u ∈ X ⇔ (x, η) → (Fvu) (x, η) ∈ L2(Ωx,W
2,2(R3

η)), (6.4)

where we indicate with (Fvu) the Fourier transform of the function u with respect to the
second group of variables v.
The following proposition motivates our choice of the space X for the analysis: it is the
bounded spatial domain version of Lemma 4.1.1

Lemma 6.2.1 Let u ∈ X and n(x) :=
∫

R3
v
u(x, v) dv, for all x ∈ Ωx. Then

‖n‖L2(Ωx,dx) ≤ C ‖u‖X , (6.5)

with C := π.

Remark 6.2.1 The choice of the space X as the state space for our analysis is not opti-
mal, in the sense that we could obtain an analogous estimate to eq. (6.5) even under de-
creased regularity assumption on the function (Fvu) . Precisely, we could assume u ∈ Xk :=
L2( Ωx × IRd

v , (1 + |v|2)kdx dv ; C ), with 3/2 < k < 2 (cf. Prop.2.1 in Ref. [22]). However,
even in the space Xk, we would only obtain a local-in-time wellposedness result for the W-P
problem; on the contrary, the calculations on Prop. 6.2.3 would become more complicated
since they would involve derivatives of fractional order.
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6.2.1 The Poisson problem

The Poisson problem for the self-consistent potential V is

∆xV (x) = n(x) =

∫
R3

v

w(x, v) dv x ∈ Ωx (6.6a)

V (x) = 0 x ∈ ∂Ωx; (6.6b)

in this subsection we can neglect the time variable, since it plays just the role of a parameter.
According to Lemma 6.2.1, for all w ∈ X, the function n in the right hand side of eq. (6.6a)
is well-defined and belongs to L2(Ωx). Then we can introduce a weak version of the prob-
lem (6.6)

3∑
i=1

∫
Ωx

∂xi
V ∂xi

ψ dx =

∫
Ωx

nψ dx ∀ψ ∈ W 1,2
0 (Ωx), (6.7)

where the derivatives are in a weak sense. The most relevant facts about its solution V are
collected in the following proposition (cf. Riesz Thm. and Hilbert Regularity Thm., e.g.,
Thm.6.3.4 in Ref. [13]).

Proposition 6.2.1 For all n ∈ L2(Ωx), there exists a unique V ∈ W 1,2
0 (Ωx), which satisfies

eq. (6.7) and ‖V ‖W 1,2(Ωx) ≤ d ‖n‖L2(Ωx), with d depending only on diam(Ωx). Moreover, if
∂Ωx ∈ C2, then V ∈ W 2,2(Ωx) and

‖V ‖W 2,2(Ωx) ≤ d̃ ‖n‖L2(Ωx), (6.8)

with d̃ depending only on Ωx, and ∆xV (x) = n(x) a.e.x ∈ Ωx.

By the definition of the pseudo-differential operator (cf. eq.(4.2)), the self-consistent potential
has to be appropriately extended outside Ωx. However, we can state the following result:

Corollary 6.2.1 Let w ∈ X and let V be the solution of problem (6.6). Let Σ be any open
and bounded subset of R3

x, such that Ωx ⊂ Σ. There exists a function P [w] ∈ W 2,2(R3
x), such

that P [w](x) = V (x) a.e. x ∈ Ωx and P [w](x) = 0 for all x ∈ R3
x \ Σ. Moreover,

‖P [w]‖W 2,2(R3
x) ≤ D ‖V ‖W 2,2(Ωx).

Proof. By Lemma 6.2.1 the function n ∈ L2(Ωx), then, by Prop. 6.2.1, the solution
V ∈ W 1,2

0 (Ωx)∩W 2,2(Ωx), and we get the result by applying an extension theorem (cf., e.g.,
Thm. 5.4.1 in Ref. [13]).

By the previous discussion and Lemma 6.2.1, one can define a map, which we call again P
for simplicity, whose properties are collected in next corollary.

Corollary 6.2.2 (The self-consistent potential) The map P defined by

P : X → W 2,2(R3
x)

w 7→ Pw := P [w],

where the function P [w] is the extension (in the sense of Corollary 6.2.1) of the solution of
problem (6.6), is linear and bounded, and the following estimate holds

‖Pw‖W 2,2(R3
x) ≤ C D‖w‖X , ∀w ∈ X. (6.9)

The constants C, D in estimate (6.9) are the same in Lemma 6.2.1 and Corollary 6.2.1.
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6.2.2 The pseudo-differential operator

The discussion of the previous sections enables us to give a less formal definition of the
pseudo-differential operator; we will show indeed that this operator is well-defined from the
space X to itself under appropriate regularity assumptions on the potentials, and we will
also point out the role it plays on the Wigner-Poisson problem.
For what the given external potential Ve is concerned, if we call again Ve the extension whose
values are zero outside the bounded spatial domain Ωx, then we can state the following result.

Proposition 6.2.2 If Ve ∈ W 2,∞(R3
x), then the map u 7→ Θ [Ve]u is linear and bounded

from X to itself and there exists B > 0 such that

‖Θ [Ve]u‖X ≤ B ‖Ve‖W 2,∞(R3
x)‖u‖X , ∀u ∈ X. (6.10)

Proof. cf. proof of Prop.2.3 in Ref. [22].

Remark 6.2.2 Let Ve : [0,∞) → W 2,∞(R3
x) represent a time-dependent potential, then the

family of operators {Θ [Ve] (t) := Θ [Ve(t)] , t ≥ 0} constitutes a time-dependent bounded
perturbation, by estimate (6.10).

The previous result is the three-dimensional version of Prop.2.3 in Ref. [22] concerning the
d-dimensional Wigner-Poisson problem; in particular, in the one-dimensional case, it is suf-
ficient to assume V ∈ W 1,∞(Rx) to get the result. Since in the one-dimensional case the
self-consistent potential belongs to W 1,∞, the pseudo-differential operator containing it is
bounded, by Prop.2.3 in Ref. [22].
On the contrary, on the present three-dimensional case, for all w ∈ X, the self-consistent
potential Pw belongs to W 2,2(R3

x) (cf. Corollary 6.2.2), thus it does not satisfy the assump-
tion of Prop. 6.2.2. However, the same conclusion as in Prop. 6.2.2 holds also under weaker
hypotheses, as we shall prove in the next proposition by exploiting the Sobolev Embedding
Theorem (cf. ,e.g., Ref. [13]).

Proposition 6.2.3 If V ∈ W 2,2(R3
x), then the map u 7→ Θ [V ]u is bounded from X to itself

and there exists B > 0 such that

‖Θ [V ]u‖X ≤ B ‖V ‖W 2,2(R3
x)‖u‖X , ∀u ∈ X. (6.11)

Remark 6.2.3 Once we have proved the boundedness of the pseudo-differential operator
Θ[Pw], for all w ∈ X (cf. Corollary 6.2.2), the well-posedness result follows by using exactly
the same arguments of the one-dimensional case; thus, Proposition 6.2.3 is the key point
of the present work. The new idea in it consists in exploiting the “regularity” of the state
functions to which the pseudo-differential operator is applied, instead of the essential bound-
edness of the potential and its derivatives (as in Refs. [22, 24]), in order to get an estimate
of the same type of (6.10).

Proof. Let u ∈ X and V ∈ W 2,2(R3
x).

Since
(Fv (Θ [V ]u) ) (x, η) = i δφ(x, η) (Fvu) (x, η),
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by using the equivalent norm (6.3) and then Plancherel’s Theorem, we can write

‖Θ [V ]u‖2
X̃

=‖Θ [V ]u‖2
2 +

3∑
i=1

‖v2
iΘ [V ]u‖2

2 =

=(2π)6

(
‖δV (Fvu) ‖2

2 +
3∑
i=1

‖∂2
ηi

(δV (Fvu))‖2
2

)
.

Since

∂jηi
δV (x, η) =

{(
1

2

)j
∂ji V

(
x+

η

2

)
−
(
−1

2

)j
∂ji V

(
x− η

2

)}
,

for all i = 1, 2, 3, j ∈ N ∪ {0}, then, by the Leibniz rule and the Minkowski inequality

‖∂2
i (δV (Fvu))‖2 ≤

1

4
‖δ(∂2

ηi
V ) (Fvu) ‖2 + ‖δV ∂2

ηi
((Fvu))‖2+

+

(∫
R6

∣∣∣∂iV (x+
η

2

)
+ ∂iV

(
x− η

2

)∣∣∣2 |∂ηi
(Fvu) |2dxdη

)1/2

.

For all functions f ∈ W 2,2(R3), there exist two constants C1, C2 > 0, independent of f, such
that

‖f‖∞ ≤ C1‖f‖W 2,2 (6.12)

‖∂if‖4 ≤ C2‖∂if‖W 1,2 , (6.13)

by Sobolev Embedding Theorems. Then, if we apply estimate (6.12) to the function V, we
get

‖δV (Fvu) ‖2 ≤ 2‖V ‖∞‖u‖2 ≤ 2C1‖V ‖W 2,2‖u‖2 (6.14a)

‖δV ∂2
ηi

((Fvu))‖2 ≤ 2‖V ‖∞‖∂2
ηi

((Fvu))‖2 ≤ 2C1‖V ‖W 2,2‖v2
i u‖2 (6.14b)

while, by using estimate (6.12) for the function (Fvu) (x, . ) ∈ W 2,2(R3
η), we obtain

‖δ(∂2
ηi
V ) (Fvu) ‖2

2 ≤
∫

Ωx

dx‖ (Fvu) (x, . )‖2
∞

∫
R3

|δ(∂2
i V )(x, η)|2dη

≤ 24C2
1‖∂2

i V ‖2
2

∫
Ωx

dx ‖ (Fvu) (x, . )‖2
W 2,2 = 24C2

1‖V ‖2
W 2,2‖u‖2

X .

(6.15)

Moreover, we can estimate the remaining summand as follows(∫
R6

∣∣∣∂iV (x+
η

2

)
+ ∂iV

(
x− η

2

)∣∣∣2 |∂ηi
(Fvu) |2dxdη

)1/2

≤

≤ 24‖∂iV ‖4

(∫
Ωx

‖∂ηi
(Fvu) (x, . )‖2

4dx

)1/2

≤ 24C2‖∂iV ‖W 1,2

(∫
Ωx

‖∂ηi
(Fvu) (x, . )‖2

W 1,2

)1/2

= 24C2‖V ‖W 2,2‖u‖X ,
(6.16)

where the first inequality is obtained by applying Minkowski and Hölder inequalities in
the variable η, and the second one by using estimate (6.13) both for the functions V and
(Fvu) (x, . ).
Hence, by collecting pieces, we get the result.
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Remark 6.2.4 Observe that, on the right hand side of estimates (6.15) and (6.16), unlike
in estimate (6.14), appear the H2 norm of both the functions (Fvu) and V . Thus, when they
are used to bound ‖Θ[Pw]w‖X , via estimate (6.9) for the self-consistent potential P [w], on
the right hand side will appear the term ‖w‖2

X . This technical point is the reason why we
cannot recover a priori estimates for the solution w of the three-dimensional W-P system
analogously to the one-dimensional case (cf. Thm. 5.6.1, estimate (5.43)).

Finally, by Corollary 6.2.2 and Proposition6.2.3, the operator F is well-defined on X, where

F : X → X

w 7→ Θ[Pw]w;
(6.17)

by estimates (6.11) and (6.9), the operator depends quadratically on the function w ∈ X.
Actually, it can be proved analogously to Lemma 5.5.1 the following result:

Corollary 6.2.3 The operator F defined by (5.29) satisfies the following properties;

1. for all R > 0, F is Lipschitz-continuous on the ball of radius R of the space X and the
Lipschitz constant is L(R) = 2BCDR,

2. F is Frechét-differentiable on every w ∈ X and its Frechét-derivative Lw at w depends
linearly on w and is such that

‖Lw u‖X ≤ 2BCD‖w‖X ‖u‖X ,

for all w and u in X, where the constants B, C, D are the same as in estimates (6.9)
and (6.11).

6.3 Local-in-time well-posedness

In this section we shall present the local-in-time existence and uniqueness result relative to
the three dimensional Wigner-Poisson problem (6.1). Actually, the preliminary results and
the definitions of Section 6.2 allow us to exploit the ideas and the techniques used in the one
dimensional case. Then we shall simply outline the procedure, which is explained in detail in
Ref. [22](as well as in Ref. [21]), and state the three-dimensional version of the propositions
in Sections 5, 6 of that work.

6.3.1 The affine semi-linear problem

Let us reformulate the three dimensional Wigner-Poisson problem (6.1) with conditions (6.2a),
(6.2b), in terms of the operators introduced in Section 6.2:

d

dt
w(t) = Tγ(t)w(t) + Θ[Ve](t)w(t) + F(w(t)), t ≥ 0 (6.18a)

w(t = 0) = w0 ∈ X, (6.18b)

with the time-dependent boundary datum γ : [0,∞) → Y in, the affine streaming operator
Tγ(t) defined by eqs. (5.15), the pseudo-differential operators Θ[Ve](t) := Θ [Ve(t)] charac-
terised for all t ≥ 0 by Prop. 6.2.2, and the nonlinear operator F (cf. Corollary 6.2.3).
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Our aim is to prove existence and uniqueness of a function w ∈ C1([0, T );X) which satisfies
eqs. (6.18) and such that w(t) ∈ D(Tγ(t)) for all t ∈ [0, T ), with T ≤ ∞. Then, if we choose a
representation p(t) for the family of affine domains {D(Tγ(t)) | t ≥ 0 }, by the decomposition
D(Tγ(t)) = p(t) +D(T0), ∀ t ≥ 0 , we can introduce the following associated problem

d

dt
u(t) = T0u(t) + Θ [Ve] (t)u(t) + F ((u+ p)(t)) +Qp(t), t ≥ 0 (6.19a)

u(t = 0) = w0 − p(0) =: u0, (6.19b)

with the function

Qp(t) := Tγ(t)p(t) + Θ [Ve(t)] p(t)− p′(t), ∀t ≥ 0

and with the unknown function u ∈ C1([0, T );X), such that u(t) ∈ D(T0), for all t ∈ [0, T ).
The associated problem contains the linear streaming operator with null inflow T0, the time-
dependent bounded perturbation Θ [Ve] (t) (cf. Remark 6.2.2), the non-linear operator F and
the source term Qp. First, we will handle this problem in order to recover the solution of
problem (6.18).

6.3.2 Local-in-time solution of the associated problem

After the following definitions, problem (6.19) will prove to be a Lipschitz perturbation of a
linear evolution problem.

Definition 6.3.1 Let p : [0,+∞) → X be a representation of the T0-affine domains
{D(Tγ(t)) | t ≥ 0}. We say that p is regular if p ∈ C1([0,+∞) ;X) and the function t 7→
Tγ(t)p(t) is C([0,+∞) ;X). We say that p is strongly regular if p ∈ C2([0,+∞) ;X) and
t 7→ Tγ(t)p(t) is C1([0,+∞) ;X).

Remark 6.3.1 By the previous definition follows that, if p is a regular representation and
Ve ∈ C( [ 0,∞) ; W 2,∞(R3

x) ), then Qp ∈ C([0,+∞) ;X). Moreover, if p is a strongly regular
representation and Ve ∈ C1( [ 0,∞) ; W 2,∞(R3

x) ), then Qp ∈ C1([0,+∞) ;X).

Let us make precise what we mean by mild solution of the associated problem, before stating
the existence result:

Definition 6.3.2 Let p : [ 0,∞) → X be a regular representation of D(Tγ(t)), let Ve ∈
C( [ 0,∞) ; W 2,∞(R3

x) ), and let u0 ∈ X. A continuous solution u : [0,∞) → X of the
integral equation

u(t) = etT0u0 +

∫ t

0

e(t−s)T0
[
Θ [Ve(s)] u(s) + F

(
(u+ p)(s)

)]
ds+

+

∫ t

0

e(t−s)T0 Qp(s) ds ∀ t ≥ 0,

is called mild solution of problem (6.19).
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Remark 6.3.2 Under the assumptions of Def. 6.3.2, by Remark 6.3.1 and the preliminary
results of the previous section, the map

G : [0,∞)×X → X

G(t, u) := Θ [Ve(t)] u+ F
(
u+ p(t)

)
+Qp(t)

is well-defined for all t ≥ 0 and u ∈ X, is continuous in t and locally Lipschitz continuous in
u, uniformly for bounded t-intervals (cf. Lemma 5.3 in Ref. [22]).

Hence, the announced result.

Proposition 6.3.1 (Local solution of the associated problem) Under the assumptions
of Def. 6.3.2, there exists a unique mild solution of the associated problem (6.19)

d

dt
u(t) = T0u(t) +G(t, u(t)), t ≥ 0

u(t = 0) = u0,

on a maximal time interval [0, tmax), with 0 < tmax ≤ ∞.
Moreover, if Ve belongs to C1([0,∞);W 2,∞(R3)), p : [0,∞) → X is a strongly regular rep-
resentation and u0 belongs to D(T0), then u is the unique solution of the problem (6.19) in
the same time interval.
In addition, if both u0 and p(t), for all t ≥ 0, are real-valued, the same will hold for u(t), for
all t ≥ 0.

Proof. Under the assumptions of the proposition, we can apply Thm.6.1.4 in Ref. [26]
(cf. Remark 6.3.2) and get the first statement in the proposition. The second one can be
proved by using Thm.6.1.5, thanks to the increased regularity assumptions (cf. the proof of
Prop. 5.4 in Ref. [22] for more details). The last assertion simply follows by the fixed point
procedure (cf. Corollary 5.5 in Ref. [22]).

6.3.3 Local-in-time solution of the original problem

In this section we shall obtain the solution of problem (6.18) from the solution of the asso-
ciated problem (6.19), by exploiting the definition of representation.

Proposition 6.3.2 Let p : [0,+∞) → X be a strongly regular representation of D(Tγ(t))
and let 0 < T ≤ +∞. Then, u : [0, T ) → X is a solution of the associated problem (6.19) in
[0, T ) if and only if w(t) = u(t) + p(t) is a solution of the original problem (6.18) in [0, T ).

(cf. Proposition 6.2 in Ref. [21])
Therefore, the following corollary holds.

Corollary 6.3.1 (Local solution of the original problem) Let γ(t) be such that D(Tγ(t))
has a strongly regular and real-valued representation p(t) for t ∈ [0,+∞). Let w0 belong
to D(Tγ(0)) and be real-valued. Let Ve belong to C1( [ 0,∞) ; W 2,∞(R3) ). Then, the prob-
lem (6.18) has a real-valued solution in a maximal time interval [0, tmax), with 0 < tmax ≤
+∞.
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By the formulation of the Corollary, it can be inferred a certain arbitrariness in the choice
of the representation p, however it can be stated the p-independence of the solution of prob-
lem (6.18) (see the discussion in Section 6 in Ref. [22] and Props. 6.4 and 6.5). Moreover, in
the Appendix of Ref. [22] we show, under certain assumptions on the datum γ, an example
of a representation p which satisfies the assumptions in the Corollary above.

We remark that a lower bound for the maximal time interval tmax can be found in Lemma
5.1 in Ref. [21].
In Ref. [22], when dealing with the one-dimensional case, we proved that tmax = ∞ by recov-
ering a priori estimates for ‖w(t)‖2, ‖vw(t)‖2 for all times. In the present three-dimensional
case, we do not succeed in repeating the same strategy because of the kind of estimate we
recover for the pseudo-differential operator with the self-consistent potential in Prop. 6.2.3
(cf. Remark 6.2.4).
Once more, we observe that the equivalence with the Schrödinger formulation (as well as
the density matrices one) is broken by the boundedness of the spatial domain chosen in our
analysis. Thus, we are still working on results assuring the existence of the solution for t on
the whole R+.
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Part IV

The Wigner-Poisson-Fokker-Planck
system
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The model

In this part it is under examination a second quantum kinetic model of charge transport
in a semiconductor device: there, it is taken into account the effect of the interaction of
the particles with the crystal lattice. That is described as a surrounding phonon bath in
thermal equilibrium, the presence of which produces a dissipative phenomenon. Thus, again
the evolution of the particle ensemble is time-irreversible because of the coupling with the
environment, and we are dealing with an open quantum system.
The kinetic model for such a system, namely the Wigner-Fokker-Planck equation, has many
possible applications, as we have anticipated in Section 2.2. For a physical derivation of the
model from the reversible dynamics of a quantum system, the interested reader can refer to
Refs. [11, 17]. There, first of all, it is recovered a Hamiltonian for the coupled system test-
particle and reservoir, which consists of an idealized ensemble of harmonic oscillators. Then,
a kinetic formulation is derived via the Wigner transform, and the equation of interest is
obtained by applying certain asymptotic regimes and “tracing out” the reservoir coordinates
(cf. Section 2.2 for the terminology).
Mathematically speaking, the WFP equation reads

wt + v · ∇xw −Θ[V ]w = βdivv(vw) + σ∆vw + 2γdivv(∇xw) + α∆xw (WFP)

with w = w(x, v, t), (x, v) ∈ IR6, t > 0; thus, it differs from the Wigner one because of the
right hand side, where appear the friction parameter β ≥ 0 and the parameters α, γ ≥ 0,
σ > 0, which constitute the phase-space diffusion matrix of the system. The condition(

α γ + i
4
β

γ − i
4
β σ

)
≥ 0, (C)

guarantees that the system is quantum mechanically correct. More precisely, it guarantees
that the equation for the density matrix corresponding to the quantum system is in Lindblad
form and that the density matrix itself stays a positive operator under temporal evolution
(see Ref. [5] for details).
We mention here the relation between such coefficients and the physical constants of interest,
namely, the coupling constant with the bath ξ, the temperature of the bath T and the scaled
Planck constant ~:

β ∼ ξ , σ ∼ T , γ , α ∼ ~2

T

(cf. Ref. [5]) Since ε := ~ ξ/T is the asymptotic expansion parameter, the FP term can be
regarded as a O(ε3)-accurate description of the dissipative effect (corresponding to a medium
temperature situation), while the version of it with γ = α = 0 is a O(ε2)-accurate description
(at high temperature) and it’s the classical FP term (cf. Refs. [14]). Observe that, in the
classical case, the condition (C) is not satisfied. Another case that, instead, is quantum-
mechanically correct is the one with γ = α = β = 0 and it is a O(ε)-accurate model (at very
high temperature).
In the sequel we shall assume

ασ ≥ γ2 +
β2

16
and ασ > γ2. (C1)

Accordingly, the principle part of the Fokker-Planck term will be uniformly elliptic. Hence,
we expect the equation under consideration to show some parabolic features. In particular, a
reguralization of the initial datum for t > 0, analogously to the classical case (cf. Ref. [13]);
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actually, the presence of a laplacian both in x and v variables should produce “better” dif-
fusive effects in comparison with the classical case: that effect will be indeed recovered.
Precisely, we will consider equation (WFP) self-consistently coupled with the Poisson equa-
tion for the (real-valued) potential V = V (x, t):

−∆V = n[w], x ∈ IR3, t > 0, (P)

with the particle density

n[w](x, t) =

∫
IR3

w(x, v, t) dv.

This potential models the repulsive Coulomb interaction within the considered particle sys-
tem in a mean-field description (cf. the discussion in Part I). Accordingly, the WPFP system
is the quantum generalization of the Vlasov-Poisson-Fokker-Planck system, for the diffusive
transport of charged particles (in plasmas, e.g.). Our aim is to achieve results comparable
to Refs. [8, 9, 16], concerning the classical case.
In the quantum framework, instead, the following discussion will be complementary to
Ref. [5], where the friction-free, hypoelliptic case (with α = β = γ = 0) is analyzed.
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Chapter 7

The three-dimensional
Wigner-Poisson-Fokker-Planck system

7.1 Introduction

In this chapter we will be concerned with the WPFP system we recall here for later reference

∂tw(t) = (−v·∇xw + βdivv(vw) + σ∆vw + 2γdivv(∇xw) + α∆xw + Θ [V [w]]w)(t) (7.1a)

−∆xV (t) = n[w](t) (7.1b)

w(t = 0) = w0, (7.1c)

for the unknown functions w = w(x, v, t), (x, v) ∈ IR6, t ≥ 0 and V = V (x, t), x ∈ IR3, t ≥ 0.
The main analytical challenge in tackling such system is again the proper definition of n[w]
in appropriate Lp spaces (cf. Section 4.1). By adapting L1-techniques from the classical
Vlasov-Fokker-Planck equation, the 3D WPFP system was analyzed in Ref. [5] (local-in-
time solution for the friction-free problem) and Ref. [12] (global-in-time solution). The
latter paper, however, is not a purely kinetic analysis as it requires to assume the positivity
of the underlying density matrix (cf. Remark 3.3.1). In both cases the dissipative structure
of the system allows to control n[w].
In Ref. [7] the 3D WPFP system was reformulated as von-Neumann equations for the density
matrix. This implies n ∈ L1(IR3). While this approach is the most natural, both physically
and in its mathematical structure, it is restricted to whole space cases. Accordingly, its use
for practical applications and numerical analysis seem unfeasible.
Thus, in spite of the various existing well-posedness results for the WPFP problem, there is
a need for a purely kinetic analysis that possibly allows for an extension to boundary-value
problems. And this is the goal of the joint work we will include here, namely Arnold A.,
Dhamo E., Manzini C.,“On the three dimensional Wigner-Poisson-Fokker-Planck problem:
global-in-time solutions and dispersive effects”, preprint in Angewandte Mathematik und In-
formatik 10/04, Univ. Münster (Ref.[4]). The tools used there are closely related to those
used for the classical Vlasov-Poisson-Fokker-Planck equation in the vast body of mathemat-
ical literature from the 1990’s (cf. Refs. [8, 9, 14, 13, 16]).
In particular, the following ones could be important also for other quantum kinetic appli-
cations: In all of the existing literature on Wigner-Poisson problems (except Ref. [31]) the
potential V is bounded, which makes it easy to estimate the operator Θ[V ] in L2. Here, V is
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unbounded and it lies in no Lp-space. However, the operator Θ only involves δV , a poten-
tial difference, which has better decay properties at infinity. This observation gives rise to
new estimates that are crucial for our local-in-time analysis. However, these new estimates
rely as well on the regularizing effect of the FP term, thus they cannot be exploited for the
well-posedness of the (non-diffusive) WP equation.
In order to establish global-in-time solution, we shall extend the use of the dispersive effects
related to the free-streaming operator (cf. Refs. [21, 27, 18] and Chapter 4) to the WPFP
system: we will get, indeed, “better” a priori estimates for the electric field, since the diffu-
sive effects will add to the dispersive ones.
As in the WP case, we shall assume that the initial state lies in a weighted L2-space, but we
shall not require that our system has finite mass or finite kinetic energy. Since the energy
balance will not be used, this also implies that the sign of the interaction potential does not
play a role in our analysis.
For what the weight is concerned, the result in Ref. [4] can be improved, in the sense that it
is not necessary to introduce a x-weight as well, for the well-posedness to hold. Accordingly,
the main theorem of the chapter reads as follows

Theorem 7.1.1 Let w0 ∈ X := L2(IR6; (1 + |v|2)2dxdv) satisfy for some ω ∈ [0, 1)∥∥∥∫ w0(x− ϑ(t)v, v) dv
∥∥∥
L6/5(IR3

x)
≤ CTϑ(t)−ω, ∀ t ∈ (0, T ], ∀T > 0, (B)

with ϑ(t) := 1−e−βt

β
for β > 0, and ϑ(t) = t for β = 0. Then the WPFP equation (7.1)

admits a unique global-in-time mild solution w ∈ YT , ∀ 0 < T <∞, where

YT :=
{
z ∈ C([0, T ];X) |∇xz,∇vz ∈ C((0, T ];X), ‖∇xz(t)‖X+ ‖∇vz(t)‖X≤ Ct−1/2, t ∈ (0, T )

}
.

If, in addition, |x|2w0 ∈ L2(IR6) (i.e. w0 ∈ X1, cf. Section 4.1), then the unique solution

w ∈ ỸT , with

ỸT :=
{
z ∈ C([0, T ];X1)|∇xz,∇vz ∈ C((0, T ];X1), ‖∇xz(t)‖X1+ ‖∇vz(t)‖X1≤ Ct−1/2, t ∈ (0, T )

}
The second statement requires more technical effort to be proved and it is the main result in
Ref. [4]. It deserves some interest to show it in parallel, in view of understanding the different
role played by the “|x|2-moment” with respect to those in the v-variable, and whether the
former can be an alternative to the latter ones. We anticipate that, analogously to the WP
case (cf. Remark 4.1.1), whenever a x-weight is introduced, a symmetric v-weight has to be
included as well1, for the dissipativity of the linear operator to hold.
The chapter is organized as follows: In Section 2 we introduce a weighted L2-space for
the Wigner function w that allows to define n[w] and the nonlinear term Θ[V ]w. In §3
we obtain a local-in-time, mild solution for WPFP using a fixed point argument and the
parabolic regularization of the Fokker-Planck term. In §4 we establish a-priori estimates to
obtain global-in-time solutions: the key point is to derive first Lp-bounds for the electric
field ∇V by exploiting dispersive effects of the free kinetic transport. “Bootstrapping” then
yields estimates on the Wigner function in a weighted L2-space. Finally, we give regularity
results on the solution. The technical proofs of several lemmata are defered to the Appendix.

1but not viceversa,
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7.2 The functional setting

In this section we shall discuss the functional analytic preliminaries for studying the non-
linear problem. First we shall introduce an appropriate “state space” for the Wigner function
w, next, we shall discuss the linear Wigner-Fokker-Planck equation and the dissipativity of
its (evolution) generator A.

7.2.1 State space and self-consistent potential

Let us recall the definition of the following weighted (real valued) L2-spaces (cf. Section 4.1)

X := L2(IR6; (1 + |v|2)2 dx dv),

X1 := L2(IR6; (1 + |x|2 + |v|2)2 dx dv).

Obviously, X1 ↪→ X and, by Lemmata 4.1.1, 4.1.2 it follows

w ∈ X ⇒ n[w] ∈ L2(IR3) (7.2)

w ∈ X1 ⇒ n[w] ∈ Lp(IR3),
3

2
< p ≤ 2 . (7.3)

In this framework the following estimates for the self-consistent potential hold.

Proposition 7.2.1 Let w ∈ X1. Then, the (Newton potential) solution V = V [w] of the
equation −∆xV [w] = n[w], x ∈ IR3, satisfies

‖∇V [w]‖Lr(IR3) ≤ C‖n[w]‖Lp(IR3), 3 < r ≤ 6,
1

p
=

1

r
+

1

3
. (7.4)

Proof. Since V = − 1
4π|x| ∗ n, we have ∇V = x

4π|x|3 ∗ n, and the estimate follows from the
generalized Young inequality.

According to Lemma 4.1.1, in particular,

w ∈ X ⇒ ‖∇V [w]‖L6(IR3) ≤ C‖n[w]‖L2(IR3) . (7.5)

Remark 7.2.1 Note that n ∈ Lp(IR3), 3/2 < p ≤ 2, does not yield a control of V in any
Lr−space (via the generalized Young inequality). However, the operator Θ[V ] involves only
the function δV, which is slightly “better behaved”.

Omitting the time-dependence we have

δV (x, η) = V (x+
η

2
)− V (x− η

2
) =

1

4π

∫
IR3

n[w](x− η
2
− ξ)− n[w](x+ η

2
− ξ)

|ξ|
dξ

=
1

4π

∫
IR3

f(y; η)n[w](x− y) dy,

with the “dipole-kernel” f(y; η) :=
(

1
|y− η

2
| −

1
|y+ η

2
|

)
.
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Proposition 7.2.2 For all w ∈ X1 and fixed η ∈ IR3, we have

‖δV [w](., η)‖L∞(IR3
x) ≤ Cr|η|2−

3
r ‖n[w]‖Lr(IR3), 3/2 < r ≤ 2. (7.6)

Proof. By using the triangle inequality,

|f(y; η)| ≤ |η|
|y − η

2
||y + η

2
|
,

and the transformation y = |η|x, we estimate for 3/2 < p < 3

‖f(. ; η)‖p
Lp(IR3)

= |η|3−p
∫
IR3

dx(
|x− e

2
||x+ e

2
|
)p < ∞,

where e ∈ IR3 is some unit vector (due to the rotational symmetry of ‖f(.; η)‖p
Lp(IR3)

with

respect to η). Young inequality then gives

∀w ∈ X, δV (., η) ∈ Lq(IR3), 6 < q ≤ ∞,

∀w ∈ X1, δV (., η) ∈ Lq(IR3), 3 < q ≤ ∞ ,

and, in particular,

‖δV (. ; η)‖L∞(IR3) ≤ Cr|η|2−
3
r ‖n[w]‖Lr(IR3), for 3/2 < r ≤ 2.

Accordingly, for all w ∈ X,

‖δV (. ; η)‖L∞(IR3) ≤ Cr|η|
1
2‖n[w]‖L2(IR3) . (7.7)

In most of the literature the pseudo-differential operator Θ is defined on L2(IRd
v) for bounded

potentials V, cf. [24, 23, 3]. For our nonlinear problem (7.1), however, V ∈ L∞(IR3) does
not hold. Alternatively, we will use Eq. (7.6) and, as a compensation, it is necessary to
assume some additional regularity of the Wigner function. Moreover, we shall exploit the
regularity of the elements of the weighted space in Fourier transform, in combination with
Prop. 7.2.1(cf. Prop. 6.2.3, [22], for a similar strategy).
We remark that we are presenting a modified version of Prop. 2.6 in Ref. [4]; precisely,
we shall prove that the nonlinear term Θ[V [w]]w has values in X, by exploiting only the
informations (7.2), (7.5), (7.7) about the potential V [w] .

Proposition 7.2.3 Let u ∈ X and ∇vu ∈ X Then, the linear operator

z 7−→ Θ[V [z]]u,

with the function V [z] = − 1
4π|x| ∗ n[z], is bounded from the space X into itself and satisfies

‖Θ[V [z]]u‖X ≤ C{ ‖u‖X + ‖∇vu‖X} ‖z‖X , ∀z ∈ X (7.8)

Proof. To estimate ‖Θ[V [z]]u‖X we shall consider separately the two terms of the equiva-
lent norm

‖u‖2
X = ‖u‖2

2 +
3∑
i=1

‖v2
i u‖2

2.
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First, by denoting û := Fv→ηu, we get

‖Θ[V [z]]u‖2
2 =

∫∫
|δ(V [z])(x, η)û(x, η)|2dx dη ≤

∫∫
‖δ(V [z])(. , η)‖2

∞|û(x, η)|2dη dx

≤ C‖z‖2
X

∫∫ (
|η|1/2|û(x, η)|

)2
dη dx ≤ C‖z‖2

X

(
‖u‖2

2 + ‖∇vu‖2
2

)
, (7.9)

by applying first the Plancherel Theorem, then Hölder’s inequality in the x variable, the
estimates (7.2), (7.6) for the function δV [z], and finally, Young inequality and the Plancherel
Theorem to the last integral.
For the second term of ‖Θ[V [z]]u‖X we shall use

v2
iΘ[V ]w(x, v) =

1

4
Θ[∂2

i V ]w(x, v) + Ω[∂iV ](viw)(x, v) + Θ[V ]v2
iw(x, v), (7.10)

with the pseudo-differential operator

Ω[V ] := i(δ+V )

(
x,
∇v

i

)
, (δ+V )(x, η) := V

(
x+

η

2

)
+ V

(
x− η

2

)
. (7.11)

Here and in the sequel we use the abreviation ∂i := ∂xi
. (7.10) is now estimated:

‖v2
iΘ[V [z]]u‖2 ≤ 1

4
‖δ(∂2

i V [z])û‖2 + ‖δ+(∂iV [z])∂ηi
û‖2 + ‖δV [z]∂2

ηi
û‖2 (7.12)

The first two terms of (7.12) can be estimated as follows:

‖δ(∂2
i V [z])û‖L2(IR6) ≤ 2‖∂2

i V [z]‖L2(IR3
x)‖û‖L2(IR3

x;L∞(IR3
η))

≤ C‖z‖X‖(1 + |v|2)u‖L2(IR6),

by applying Hölder’s inequality, (7.2) and the Sobolev imbedding û(x, . ) ∈ H2(IR3
η) ↪→

L∞(IR3
η).

‖δ+(∂iV [z])∂ηi
û‖L2(IR6) ≤ C‖∂iV [z]‖L6(IR3

x)‖∂ηi
û‖L2(IR3

x;L3(IR3
η))

≤ C‖z‖X‖(1 + v2
i )u‖2, (7.13)

by the Sobolev imbedding and ∇ηû(x, . ) ∈ H1(IR3
η) ↪→ L3(IR3

η), and by estimate (7.4) for
∇V [z] and (7.2). For the last term of (7.12) we estimate as in (7.9):

‖δV [z]∂2
ηi
û‖2

2 ≤
∫∫

‖δV [z](. , η)‖2
∞|∂2

ηi
û(x, η)|2dη dx

≤ C‖z‖2
X

∫∫ (
|η|1/2∂2

ηi
û(x, η)

)2
dη dx

≤ C‖z‖2
X

(
‖∂2

ηi
û‖2

2 + ‖η∂2
ηi
û‖2

2

)
≤ C‖z‖2

X

(
‖∂2

ηi
û‖2

2 + ‖∂2
ηi

(ηû)‖2
2 + ‖∂ηi

û‖2
2

)
≤ C‖z‖2

X

(
‖(1 + v2

i )u‖2
2 + ‖v2

i∇vu‖2
2

)
,

by interpolation and integration by parts.
This concludes the proof of estimate (5.11).
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Remark 7.2.2 The previous proposition shows that the bilinear map

(z, u) 7−→ Θ[V [z]]u

is well-defined for all z, u ∈ X, subject to ∇vu ∈ X. The unusual feature of the above
proposition is the boundedness of this map with respect to the function z appearing in the self-
consistent potential V [z]. This is in contrast to most of the existing literature ([3, 23, 24]),
where the boundedness of the pseudo-differential operator Θ[V [z]] (with z fixed) is used.
However, this can only hold for bounded potentials V .

Remark 7.2.3 Observe that if, in the proposition the space X is substituted with the space
X1, the result holds as well and with the same proof, except for adding the following estimate

‖x2
iΘ[V [z]]u‖2

2 ≤ C‖z‖2
X

∫∫ (
x2
i |η|1/2|û(x, η)|

)2
dη dx

≤ C‖z‖2
X

(
‖x2

iu‖2
2 + ‖x2

i∇vu‖2
2

)
, i = 1, 2, 3 ,

since

‖u‖2
X1

:= ‖u‖2
2 +

3∑
i=1

(
‖x2

iu‖2
2 + ‖v2

i u‖2
2

)
(cf. Ref. [4]).

7.2.2 Dissipativity of the linear equation

In our subsequent analysis we shall first consider the linear Wigner-Fokker-Planck equation,
i.e. Eq. (7.1) with V ≡ 0: we shall consider in parallel the cases in which the state space is
X1, as in Ref. [4], and X. Roughly speaking, the proofs of the Lemmata in the case X, are
the same as those in Ref. [4], except for omitting the parts related to the x-weight.
The generator of this evolution problem is the unbounded linear operator A1 : D(A1) −→ X1,
respectively, its extension A : D(A) −→ X,

A1u := −v · ∇xu+ βdivv(vu) + σ∆vu+ 2γdivv(∇xu) + α∆xu = Au, (7.14)

defined on

D(A1) = {u ∈ X1 | v · ∇xu, v · ∇vu,∆vu, divv∇xu,∆xu ∈ X1}
⊂ D(A) = {u ∈ X | v · ∇xu, v · ∇vu,∆vu, divv∇xu,∆xu ∈ X}

Clearly, C∞0 (IR6) ⊂ D(A1). Hence, D(A1) is dense in X1 (and in X), while D(A) is dense in
X. Next we study whether the operator A is dissipative on the (real) Hilbert space X, i.e. if

< Au, u >X ≤ 0, ∀u ∈ D(A) (7.15)

holds; respectively, whether A1 is dissipative on the (real) Hilbert space X1.

Lemma 7.2.1 Let the coefficients of the operator A1 satisfy ασ ≥ γ2. Then A− κI, respec-
tively, A1 − κ1I, with

κ :=
3

2
β + 9σ , κ1 :=

3

2
+

3

2
β + 9α+ 9σ (7.16)

are dissipative in X, respectively in X1.
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The proof is lengthy but straigthforward and deferred to the Appendix. By Theorem 1.4.5b

of [26] their closure, A− κI = A− κI , A1 − κ1I are also dissipative.
A straightforward calculation using integrations by parts yields

< A1u,w >X1 = < u,B1w >X1 + < u,B2w >X1 , ∀u,w ∈ D(A1),

with

B1w = v · ∇xw − βv · ∇vw + σ∆vw + 2γdivv(∇xw) + α∆xw,

< u,B2w >X1 =
3∑
i=1

(
4

3

∫∫
x3
i viwu+

8

3
γ

∫∫
x3
iwvi

u+
8

3
α

∫∫
x3
iwxi

u

+
12

3
α

∫∫
x2
iwu−

4

3
β

∫∫
v4
iwu+

8

3
σ

∫∫
v3
iwvi

u

+
12

3
σ

∫∫
v2
iwu+

8

3
γ

∫∫
v3
iwxi

u

)
.

Analogously, it can be computed

< Au,w >X = < u,B
′

1w >X + < u,B
′

2w >X , ∀u,w ∈ D(A),

with

B
′

1w = v · ∇xw − βv · ∇vw + σ∆vw + 2γdivv(∇xw) + α∆xw,

< u,B
′

2w >X =
3∑
i=1

(
−4

3
β

∫∫
v4
iwu+

8

3
σ

∫∫
v3
iwvi

u

+
12

3
σ

∫∫
v2
iwu+

8

3
γ

∫∫
v3
iwxi

u

)
.

Hence, A∗1|D(A1) – the restriction of the adjoint of the operator A1 to D(A1) – is given by
A∗1 = B1 +B2. A

∗
1 is densly defined on D(A∗1) ⊇ D(A1), and hence A1 is a closable operator

(cf. Theorem VIII.1.b of [28]). Its closure A1 satisfies (A1)
∗ = A∗1 (cf. [28], Theorem VIII.1.c).

Analogous considerations hold by substituting A1 with A and A∗1 with A∗ = B
′
1 +B

′
2.

Since < A∗1u, u > = < A1u, u >, < A∗u, u > = < Au, u >,the following lemma on the dissi-
pativity of the operator A∗1 restricted to D(A1), respectively, A∗ restricted to D(A), holds.

Lemma 7.2.2 Let the coefficients of the operator A1 satisfy ασ ≥ γ2. Then A∗ |D(A) −κI
and A∗1|D(A1) −κ1Iare dissipative.

Next we consider the dissipativity of this operator on its proper domain D(A∗) (respectively,
D(A∗1)), which, however, is not known explicitly. To this end we shall use the following
technical lemma whose proof is defered to the appendix. The arguments are inspired by [3],
[7], but there are also similar results for FP-type operators in [19, 20], e.g.

Lemma 7.2.3 Let P = p(x, v,∇x,∇v) where p is a quadratic polynomial and

D(P ) := C∞0 (IR6) ⊂ X1.

Then P̄ is the maximum extension of P in the sense that

D(P̄ ) := {u ∈ X1| the distribution Pu ∈ X1} .
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We now apply Lemma 7.2.3 to P = A∗ − κI, P1 = A∗1 − κ1I, which are dissipative on
D(P ) ⊂ D(A), D(P1) ⊂ D(A1). Since A∗, A∗1 are closed, we have D(A∗1) = D(P1) = {u ∈
X1 |A∗1u ∈ X1} and A∗1 − κ1I is dissipative on all of D(A∗1) and, analogously, D(A∗) =
D(P ) = {u ∈ X |A∗u ∈ X} and A∗ − κI is dissipative on all of D(A∗).

Applying Corollary 1.4.4 of [26] to A − κI,A1 − κ1I (with (A)∗ = A∗), then implies that
A− κI,A1− κ1I generate a C0 semigroup of contractions on X, respectively X1 and the C0

semigroups generated by A,A1 satisfies

‖etA1u‖X1 ≤ 4eκ1t‖u‖X1 , u ∈ X1, t ≥ 0

and
‖etAu‖X ≤ 4eκt‖u‖X , u ∈ X, t ≥ 0. (7.17)

7.3 Existence of the local-in-time solution

In this section we shall use a contractive fixed point map to establish a local solution of the
WPFP system. To this end the parabolic regularization of the linear WFP equation will be
crucial to define the self-consistent potential term.
We remark that, in the sequel, we will just consider the case in which the state space is X.
However, every statement can be written and proved with X1, instead of X.

7.3.1 The linear equation

First let us consider the linear equation

wt = Aw(t), t > 0, w(t = 0) = w0 ∈ X. (7.18)

By the discussion in Subsection 7.2.2, its unique solution w(t) = etAw0 satisfies

‖w(t)‖X ≤ 4eκt‖w0‖X , ∀ t ≥ 0. (7.19)

Actually, the solution of the equation can be expressed as

w(x, v, t) =

∫∫
w0(x0, v0)G(t, x, v, x0, v0) dx0 dv0, ∀ (x, v) ∈ IR6, (7.20)

where the Green’s function G satisfies (in a weak sense) the equation (7.18) and the initial
condition

lim
t→0

G(t, x, v, x0, v0) = δ(x− x0, v − v0),

for any fixed (x0, v0) ∈ IR6 (cf. Def. 2.1 and Prop. 3.1 in [29]).
The Green’s function reads

G(t, x, v, x0, v0) = e3βtF (t,X−t(x, v)− x0, Ẋ−t(x, v)− v0), (7.21)

with

F (t, x, v) =
1

(2π)3 (4λ(t)ν(t)− µ2(t))3/2
· exp

{
−ν(t)|x|

2 + λ(t)|v|2 + µ(t)(x · v)
4λ(t)ν(t)− µ2(t)

}
.
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The characteristic flow Φt(x, v) = [Xt(x, v), Ẋt(x, v)] of the first order part of (7.14), is given
for β > 0 by

Xt(x, v) = x+ v

(
1− e−βt

β

)
,

Ẋt(x, v) = ve−βt,

and Φt(x, v) = [x+vt, v], for β = 0. The asymptotic behaviour of the functions λ(t), ν(t), µ(t)
for small t is described (also for β = 0) by

λ(t) = αt+ σ
[
e2βt−4eβt+3

2β3 + 1
β2 t
]

+ γ
[

2
β
t− 2

β2 (e
βt − 1)

]
∼ αt, t→ 0,

ν(t) = σ e2βt−1
2β

∼ σt, t→ 0,

µ(t) = σ
(

1−eβt

β

)2

+ γ 2(1−eβt)
β

∼ −2γt, t→ 0.

And hence:
f(t) := 4λ(t)ν(t)− µ2(t) ∼ 4(ασ − γ2)t2 > 0.

With these preliminaries, the following parabolic reguralization result can be deduced.

Proposition 7.3.1 For each parameter set {α, β, γ, σ}, there exist two constants
B = B(α, β, γ, σ) and T0 = T0(α, β, γ, σ), such that the solution of the linear equation (7.18)
satisfies

‖∇vw(t)‖X ≤ Bt−1/2eκt‖w0‖X , ∀ 0 < t ≤ T0, (7.22)

‖∇xw(t)‖X ≤ Bt−1/2eκt‖w0‖X , ∀ 0 < t ≤ T0, (7.23)

for all w0 ∈ X.

The proof is similar to [13] and it will be defered to the Appendix.

Remark 7.3.1 (a) Observe that the functions ∇xw,∇vw ∈ C((0,∞);X). The local bound-
edness of ∇xw,∇vw on any interval (τ, τ + T0] follows from (7.19) and Prop. 7.3.1.
(b) Note that the strategy of the next section will not work in the degenerated parabolic case
ασ− γ2 = 0, since the decay rates of Prop. 7.3.1 would then be t−3/2, which is not integrable
at t = 0. Alternative strategies for this degenerate case were studied in [5].

7.3.2 The non-linear equation: local solution

Our aim is to solve the following non-linear initial value problem

wt(t) = Aw(t) + Θ[V [w(t)]]w(t), ∀ t > 0, w(t = 0) = w0 ∈ X, (7.24)

where the pseudo-differential operator Θ is formally defined by (WFP) and the potential
V [w(t)] is the (Newton potential) solution of the Poisson equation

−∆xV (t, x) = n[w(t)](x) =

∫
IR3

w(t, x, v) dv, x ∈ IR3, (7.25)
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for all t > 0. Actually, if we assume w(t) ∈ X for all t ≥ 0, then the function n[w(t)] is
well-defined for all t ≥ 0 (cf. Eq. (7.2)), and the solution V [w(t)] satisfies the estimates of
Propositions 7.2.1, 7.2.2 for all t ≥ 0.

The Propositions 5.2.2 and 7.3.1 motivate the definition of the Banach space

YT :=
{
z ∈ C([0, T ];X) |

∇xz, ∇vz ∈ C((0, T ];X) with ‖∇xz(t)‖X + ‖∇vz(t)‖X ≤ Ct−1/2 for t ∈ (0, T )
}
,

endowed with the norm

‖z‖YT
:= sup

t∈[0,T ]

‖z(t)‖X + sup
t∈[0,T ]

‖t1/2∇xz(t)‖X + sup
t∈[0,T ]

‖t1/2∇vz(t)‖X ,

for every fixed 0 < T <∞. We shall obtain the (local-in-time) well-posedness result for the
problem (7.24) by introducing a non-linear iteration in the space YT , with an appropriate
(small enough) T.

Remark 7.3.2 In case we want to asses an analogous result by working with the state space
X1, we have to introduce the space

ỸT :=
{
z ∈ C([0, T ];X1) | ∇xz,∇vz ∈ C((0, T ];X1), ‖∇xz(t)‖X1+ ‖∇vz(t)‖X1≤ Ct−1/2, t ∈ (0, T )

}
,

as in Ref.[4]

For a given w ∈ YT we shall now consider the linear Cauchy problem for the function z,

zt = Az(t) + Θ[V [z(t)]]w(t), ∀ t ∈ (0, T ], z(t = 0) = w0 ∈ X, (7.26)

with 0 < T ≤ T0 and T0 is defined in Prop. 7.3.1. According to Prop. 5.2.2 the (time-
dependent) operator Θ[V [. ]]w(t) is, for each fixed t ∈ (0, T0], a well-defined, linear and
bounded map on X, which we shall consider as a perturbation of the operator A.

Lemma 7.3.1 For all w0 ∈ X and w ∈ YT , with T ≤ T0, the initial value problem

zt = Az(t) + Θ[V [z(t)]]w(t), ∀ t ∈ (0, T ], z(t = 0) = w0,

has a unique mild solution z ∈ C([0, T ];X), which satisfies

z(t) = etAw0 +

∫ t

0

e(t−s)AΘ[V [z(s)]]w(s) ds, ∀ t ∈ [0, T ]. (7.27)

Moreover, the solution z belongs to the space YT .

Proof. The first assertion follows directly by applying (a trivial extension of) Thm. 6.1.2
in [26]:
For any fixed w ∈ YT , the function g(t, .) := Θ[V [.]]w(t) is a bounded linear operator on X
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for all t ∈ (0, T ), and it satisfies g ∈ L1((0, T );B(X)) ∩ C((0, T ];B(X)) (by Prop. 7.2.3).
Moreover, by estimates (7.17), (5.11), the following inequalities hold

‖z(t)‖X ≤ 4eκt‖w0‖X + 4

∫ t

0

eκ(t−s)C{ ‖w(s)‖X + ‖∇vw(s)‖X}‖z(s)‖X ds (7.28)

≤ 4eκt‖w0‖X + 4CeκT‖w‖YT

∫ t

0

(1 + s−1/2)‖z(s)‖X ds, (7.29)

for all t ∈ [0, T ]. Then, by Gronwall’s Lemma,

‖z(t)‖X ≤ 4eκT‖w0‖X
[
1 + 4C‖w‖YT

e(κT+4CeκT ‖w‖YT
(T+2T 1/2))(t+ 2t1/2)

]
, (7.30)

for all t ∈ [0, T ]. By differentiating equation (7.27) in the v-direction, we obtain

∇vz(t) = ∇ve
tAw0 +

∫ t

0

∇ve
(t−s)Ag(s, z(s)) ds, ∀ t ∈ [0, T ]. (7.31)

Using the estimates (7.22), (5.11), and (7.30) then yields

‖∇vz(t)‖X ≤ Bt−1/2eκt‖w0‖X

+B‖w‖YT

∫ t

0

(t− s)−1/2eκ(t−s)C{ 1 + s−1/2} ‖z(s)‖X ds

≤ Bt−1/2eκt‖w0‖X + 4BCe2κT‖w0‖X‖w‖YT

[
π + 2t1/2

+ 4C‖w‖YT
e(κT+4CeκT ‖w‖YT

(T+2T 1/2))
(

4t1/2 +
3

2
πt+

4

3
t3/2
)]

, (7.32)

for all t ∈ [0, T ]. The continuity in time of ∇vz can be derived from (7.31) by using Remark
7.3.1 and the fact that g(t, z(t)) ∈ C((0, T ];X).

By differentiating Eq. (7.27) in the x-direction, we get the same estimate for ‖∇xz(t)‖X , by
exploiting (7.23) and (7.30). Hence, the function z belongs to the space YT .

We now define the (affine) linear map M on YT (for any fixed 0 < T ≤ T0):

w 7−→Mw := z,

where z is the unique mild solution of the initial value problem (7.26). According to Lemma
7.3.1, z ∈ YT . Next we shall show that M is a strict contraction on a closed subset of YT ,
for T sufficiently small. This will yield the local-in-time solution of the non-linear equation
(7.24).

Proposition 7.3.2 For any fixed w0 ∈ X, let R > max{4, B}eκ‖w0‖X , with the constant B
defined in Prop. 7.3.1. Then there exists a τ := τ(‖w0‖X , B) > 0 such that the map M,

(Mw)(t) = etAw0 +

∫ t

0

e(t−s)AΘ[V [Mw(s)]]w(s) ds, ∀ t ∈ [0, τ ], (7.33)

is a strict contraction from the ball of radius R of Yτ into itself.
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Proof. By (the proof of) Lemma 7.3.1, the function z = Mw ∈ Yτ satisfies (7.30). Under
the assumption ‖w‖Yτ ≤ R, this estimate reads

‖Mw(t)‖X ≤ 4eκτ‖w0‖X
[
1 + 4CRe(κτ+4CReκτ (τ+2τ1/2))(t+ 2t1/2)

]
, ∀t ∈ [0, τ ].

If we assume

4eκτ‖w0‖X
[
1 + 4CRe(κτ+4CReκτ (τ+2τ1/2))(τ + 2τ 1/2)

]
≤ R

3
, (7.34)

then ‖Mw(t)‖X ≤ R
3
. Similar to (7.32) we have

‖∇vMw(t)‖X ≤ Bt−1/2eκt‖w0‖X + 4BCRe2κτ‖w0‖X
[
π + 2t1/2

+ 4CRe(κτ+4CReκτ (τ+2τ1/2))
(

4t1/2 +
3

2
πt+

4

3
t3/2
)]
.

If we assume

Beκτ‖w0‖X + 4BCRe2κτ‖w0‖X
[
πτ 1/2 + 2τ +

+ 4CRe(κτ+4CReκτ (τ+2τ1/2))
(

4τ +
3

2
πτ 3/2 +

4

3
τ 2

)]
≤ R

3
, (7.35)

then

t1/2‖∇vMw(t)‖X ≤ R

3
, ∀ t ∈ [0, τ ].

Under the condition (7.35) the same decay also holds for ‖∇xMw(t)‖X .

Let us now choose

τ := min

{
1,

(
R/3− 4eκ‖w0‖X

48CR‖w0‖Xe2κ+12CReκ

)2

,

(
R/3−Beκ‖w0‖X

4BCRe2κ‖w0‖X
[
π + 2 + 4CRe(κ+12CReκ)(3

2
π + 16

3
)
])2

 , (7.36)

which is positive since max{4, B}eκ‖w0‖X < R. Then, the estimates (7.34) and (7.35) hold,
and hence the operator M maps the ball of radius R of Yτ into itself.

To prove contractivity we shall estimate ‖Mu−Mw‖Yτ for all u,w ∈ Yτ with ‖u‖Yτ , ‖w‖Yτ ≤
R. Since

Mu(t)−Mw(t) =

∫ t

0

e(t−s)AΘ[V [(Mu−Mw)(s)]]u(s) ds

+

∫ t

0

e(t−s)AΘ[V [Mw(s)]](u− w)(s) ds, ∀ t ∈ [0, τ ],

by analogous estimates,

‖Mu(t)−Mw(t)‖X ≤ 4CR eκτ
{∫ t

0

(1 + s−1/2) ‖(Mu−Mw)(s)‖X ds

+ ‖u− w‖Yτ

∫ t

0

(1 + s−1/2) ds

}
,
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and, by applying Gronwall’s Lemma:

‖Mu(t)−Mw(t)‖X ≤ 4CReκτ
[
t+ 2t1/2+

+ 4CRe(κτ+4CReκτ (τ+2τ1/2))
(

2t+ 2t3/2 +
1

2
t2
)]

‖u− w‖Yτ , ∀ t ∈ [0, τ ].

By using 0 ≤ t ≤ τ ≤ 1, we obtain

‖Mu(t)−Mw(t)‖X ≤ 4CR eκ
[
3 + 18CRe(κ+12CReκ)

]
τ 1/2‖u− w‖Yτ . (7.37)

Similarly,

‖∇vMu(t)−∇vMw(t)‖X ≤ CBRekτ
{∫ t

0

(t− s)−1/2(1 + s−1/2) ‖(Mu−Mw)(s)‖X ds

+

∫ t

0

(t− s)−1/2(1 + s−1/2) ds‖u− w‖Yτ

}
,

and, by using estimate (7.37),

‖∇vMu(t)−∇vMw(t)‖X ≤ CBReκτ
[
1 + 4CR eκ

(
3 + 18CRe(κ+12CReκ)

)
τ 1/2

]
·
(
π + 2t1/2

)
‖u− w‖Yτ , ∀ t ∈ [0, τ ].

Then, by exploiting 0 < τ ≤ 1,

t1/2‖∇vMu(t)−∇vMw(t)‖X ≤ CBReκ(π + 2)
[

1 + 4CR eκ

·
(
3 + 18CRe(κ+12CReκ)

)]
τ 1/2‖u− w‖Yτ . (7.38)

The same holds for t1/2‖∇xMu(t)−∇xMw(t)‖X .
When choosing τ > 0 small enough, estimates (7.37), (7.38) imply

‖Mu−Mw‖C([0,τ ];X) ≤ C‖u− w‖C([0,τ ];X),

for some C < 1, and the assertion is proved.

Corollary 7.3.1 There exists a tmax ≤ ∞ such that the initial value problem (7.24) has a
unique mild solution w in YT , ∀T < tmax, which satisfies

w(t) = etAw0 +

∫ t

0

e(t−s)AΘ[V [w(s)]]w(s) ds, ∀ t ∈ [0, T ]. (7.39)

Moreover, if tmax <∞, then
lim

t↗tmax

‖w(t)‖X = ∞.

Proof. The solution of the problem is the fixed point of the map M previously introduced.
By Prop. 7.3.2 this solution exists for a time interval of length τ (depending only on ‖w0‖X)
and it belongs to the space Yτ . Since, in particular, w(τ) ∈ X, the solution can be repeatedly
continued up to the maximal time tmax. It will then belong to YT , ∀T < tmax.
If the second assertion of the corollary would not hold, there would be a sequence of times
tn ↑ tmax such that ‖w(tn)‖X ≤ C for all n. Then, by solving a problem with the initial value
w(tn), with tn sufficiently close to tmax, we would extend the solution up to a certain time
tn + τ(‖w(tn)‖X) > tmax. This construction would contradict our definition of tmax.
The uniqueness of the mild solution follows by arguments analogous to those in the proof of
Thm. 6.1.4 in [26].
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Remark 7.3.3 Note that the last statement in the thesis of the Corollary 7.3.1 differs from
the standard setting (cf. Thm. 6.1.4 in [26]). For tmax < ∞ we conclude the ‘explosion’ of
w(t), t → tmax in X and not only in Yt. This is due to the parabolic regularization of the
problem (7.24).

Observe that an analogous result holds by substituting the space X with X1 and YT with
ỸT .

7.4 Global-in-time solution, a-priori estimates

In this section we shall exploit dispersive effects of the free transport equation to derive an
a-priori estimate on the electric field. This is the key ingredient for proving the main result
of the paper, the global solution for the WPFP system:

Theorem 7.4.1 Let w0 ∈ X satisfy for some ω ∈ [0, 1)∥∥∥∫ w0(x− ϑ(t)v, v) dv
∥∥∥
L6/5(IR3

x)
≤ CTϑ(t)−ω, ∀ t ∈ (0, T ], ∀T > 0, (B)

with ϑ(t) := 1−e−βt

β
for β > 0, and ϑ(t) = t for β = 0. Then the WPFP equation (7.24)

admits a unique global-in-time mild solution w ∈ YT , ∀ 0 < T <∞.

In order to prove that tmax = ∞ , we have to show that ‖w(t)‖X is finite for all t ≥ 0
(cf. Corollary 7.3.1). To this end, we shall derive a-priori estimates for ‖w(t)‖2, ‖|v|2w(t)‖2.
Thus, the proof of Thm. 7.4.1 will be a consequence of a series of Lemmata, in particular of
Lemma 7.4.1 and Lemma 7.4.4.

In case we want to prove the analogous result in ỸT , under the additional assumption |x|2w0 ∈
L2, we have just to obtain an a priori bound for ‖|x|2w(t)‖2 as well. To that aim we will
prove Lemma 7.4.5.
In the sequel, w(t) denotes the unique mild solution for 0 ≤ t ≤ T, for an arbitrary 0 < T <
tmax.

Lemma 7.4.1 For all w0 ∈ X, the mild solution of the WPFP equation (7.24) satisfies

‖w(t)‖2
2 ≤ e3βt‖w0‖2

2, ∀ t ∈ [0, T ]. (7.40)

Proof. Roughly speaking, this follows from the dissipativity of the operator A − 3β
2

in
L2(IR6) (cf. (7.2)) and the skew-symmetry of the pseudo-differential operator. However,
since we are dealing only with the mild solution of the equation, the proof requires an
approximation of w by classical solutions.
Since the solution satisfies w ∈ YT , ∀T < tmax, Prop. 5.2.2 shows that the function f(t) :=
Θ[V [w(t)]]w(t), t ∈ (0, tmax) is well defined and it is in C((0, tmax);X)∩L1((0, T );X), ∀ 0 <
T < tmax.
For 0 < T < tmax fixed, let us consider the following linear inhomogeneous problem:

d

dt
y(t) = Ay(t) + f(t), t ∈ [0, T ], y(t = 0) = w0 ∈ X. (7.41)

112



Its mild solution in [0, T ] is the function w, due to the uniqueness of the mild solution
of problem (7.24). For this linear problem, we can apply Thm. 4.2.7 of [26]: The mild
solution w is the uniform limit (on [0, T ]) of classical solutions of problem (7.41). More
precisely, there is a sequence {wn0}n∈IN ⊂ D(A), wn0 → w0 in X, and a sequence {fn(t)} ⊂
C1([0, T ];X), fn(t) → f(t) in L1((0, T );X). And the classical solutions yn ∈ C1([0, T ];X) of
the corresponding problems

d

dt
yn(t) = Ayn(t) + fn(t), t ∈ [0, T ], yn(t = 0) = wn0 , (7.42)

converge in C([0, T ];X) to the solution w of problem (7.41).

We shall need these approximating classical solutions yn in order to justify the derivation of
the a-priori estimate: Multiplying both sides of (7.42) by yn(t) and integrating yields

1

2

d

dt
‖yn(t)‖2

2 ≤ 3β

2
‖yn(t)‖2

2 +

∫∫
yn(t)fn(t) dx dv,

since the operator A− 3β
2

is dissipative in L2(IR6) (cf. (7.2)). By integrating in t and letting
n→∞, we have

‖w(t)‖2
2 ≤ ‖w0‖2

2 + 3β

∫ t

0

‖w(s)‖2
2 ds+ 2

∫ t

0

∫∫
w(s)f(s) dx dv ds, ∀ t ∈ [0, T ].

The second integral is equal to zero since the pseudo-differential operator Θ is skew-symmetric.
Hence, applying Gronwall’s Lemma yields

‖w(t)‖2
2 ≤ e3βt‖w0‖2

2, ∀ t ∈ [0, T ]. (7.43)

In order to recover similar estimates for ‖|v|2w(t)‖2, and in case for ‖|x|2w(t)‖2, we first need
a-priori bounds for the self-consistent field E = ∇V . To this end, we are going to exploit
dispersive effects of the free streaming operator. We shall adapt to the Wigner-Poisson-
Fokker-Planck problem the strategies introduced for the Wigner-Poisson case in Section 4.3,
inspired by the (classical) Vlasov-Poisson problem ([21, 27]) and the Vlasov-Poisson-Fokker-
Planck problem ([8, 9, 16]).

7.4.1 A-priori estimates for the electric field: the WPFP case

According to Corollary 7.3.1, the mild solution of the WPFP problem satisfies for all t ∈ [0, T ]
(0 < T < tmax)

w(x, v, t) =

∫∫
G(t, x, v, x0, v0)w0(x0, v0) dx0 dv0

+

∫ t

0

∫∫
G(s, x, v, x0, v0)(Θ[V ]w)(x0, v0, t− s) dx0 dv0 ds

with the Green’s function G from (7.21). According to [29] we have∫
IR3

G(t, x, v, x0, v0) dv = R(t)−3/2N

(
x− x0 − ϑ(t)v0√

R(t)

)
,
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with

N (x) := (2π)−3/2 exp

(
−|x|

2

2

)
, (7.44)

ϑ(t) =
1− e−βt

β
= O(t), for t→ 0, (7.45)

R(t) := 2αt+ σ

[
4e−βt − e−2βt + 2βt− 3

β3

]
+ 4γ

[
e−βt + βt− 1

β2

]
= O(t), for t→ 0.

(7.46)

By exploiting the redefinition (4.33) of the pseudo-differential operator, we obtain the fol-
lowing expression for the density n[w]

n[w](x, t) =

∫
IR3

w(x, v, t) dv

=
1

R(t)3/2

∫∫
N

(
x− x0 − ϑ(t)v0√

R(t)

)
w0(x0, v0) dx0 dv0

+

∫ t

0

1

R(s)3/2

∫∫
N

(
x− x0 − ϑ(s)v0√

R(s)

)
divv0 (Γ[∇x0V ]w) (x0, v0, t− s) dx0 dv0 ds

=
1

R(t)3/2

∫∫
N

(
x− x0√
R(t)

)
w0(x0 − ϑ(t)v0, v0) dx0 dv0

+

∫ t

0

ϑ(s)

R(s)2

∫∫
(∇xN )

(
x− x0 − ϑ(s)v0√

R(s)

)
· (Γ[∇x0V ]w) (x0, v0, t− s) dx0 dv0 ds

= n0(x, t) + n1(x, t),

where

n0(x, t) :=
1

R(t)3/2
N

(
x√
R(t)

)
∗x nϑ0(x, t) , with nϑ0(x, t) :=

∫
w0(x− ϑ(t)v, v) dv,

n1(x, t) :=

∫ t

0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x divx

∫ (
Γ[∇xV ]w

)
(x− ϑ(s)v, v, t− s) dv ds. (7.47)

Correspondingly, we can split the field (with λ = 1
4π

):

E0(x, t) := λ
x

|x|3
∗x n0(x, t) =

1

R(t)3/2
N

(
x√
R(t)

)
∗xEϑ

0 (x, t), (7.48)

with Eϑ
0 (x, t) := λ

x

|x|3
∗x nϑ0(x, t),

E1(x, t) := λ
x

|x|3
∗x n1(x, t). (7.49)

Remark 7.4.1 (The density) Note that the splitting of the density (and of the electric
field) is the same as in [8, 9, 16]: analogously, in the WPFP case the two components of the
decomposition (n0, n1, as well as E0, E1) are smoothed versions (in fact, convolutions with a
Gaussian) of those appearing in the WP case (cf. Section 4.3). Actually, the density nϑ0(x, t)
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(which is convoluted with the Gaussian to give n0) already differs from the corresponding
term in the WP case because the shift contains the function ϑ, which is due to friction (and
analogously for Eϑ

0 (x, t).

From Lemma 4.3.3 we directly get∥∥∥∫
IR3

v

(Γ[E]u) (x−ϑ(s)v, v, t−s) dv
∥∥∥
L2(IR3

x)
≤ Cϑ(s)−3/2‖E(t−s)‖2‖u(t−s)‖2 , ∀ t ≥ s > 0.

(7.50)

Remark 7.4.2 (The density (cont.)) In spite of the convolution with the Gaussian in its
definition, we cannot derive any estimates for the density; precisely, the problematic term
is n1. Indeed, in order to estimate ‖n1(. , t)‖2 from its definition (7.47), the use of (7.50),
together with the L1-norm of (∇xN )(x/

√
R(s)) does not give an integrable function of s.

To derive an L2-estimate on the field we shall proceed as in the WP case (Lemma 4.3.4,
Proposition 4.3.1).

Lemma 7.4.2 Let w be the mild solution of the WPFP equation (7.24) and let w0 ∈ X
satisfy (B) for some ω ∈ [0, 1). For any fixed T > 0 the electric field then satisfies ∇xV ∈
VT,ω− 1

2
and the following estimates hold:

1. for 2 ≤ p ≤ 6, θ = 3(p−2)
2p

‖E0(t)‖p ≤ C(T )‖w0‖θX‖nϑ0(t)‖1−θ
L6/5 = O(t−ω(1−θ)), ∀ t ∈ (0, T ]; (7.51)

2.

‖E1(t)‖2 ≤ C

(
T, ‖w0‖2 , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
t

1
2
−ω, ∀ t ∈ (0, T ]. (7.52)

Proof. The estimate for ‖E0(t)‖p, p ∈ [2, 6] is obtained by applying first the generalized
Young inequality and then the Young inequality to the expression (7.48)

‖E0(t)‖p ≤ C

∥∥∥∥ 1

R(t)3/2
N

(
x√
R(t)

)
∗x nϑ0(x, t)

∥∥∥∥
q

≤ C

∥∥∥∥∥ 1

R(t)3/2
N

(
x√
R(t)

)∥∥∥∥∥
1

‖nϑ0(x, t)‖q

= C‖nϑ0(t)‖q, with q =
3p

p+ 3
∈ [6/5, 2].

Next we interpolate nϑ0 between L2 and L6/5, use (7.2) and the dissipativity of the operator
−v·∇x − 3

2
in X (cf. Lemma 7.2.1):

‖nϑ0(t)‖q ≤ C‖w0(x− ϑ(t)v, v)‖θX‖nϑ0(t)‖1−θ
6/5

≤ C e
3
2
θϑ(t)‖w0‖θX‖nϑ0(t)‖1−θ

6/5 ,
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with θ = 5
2
− 3

q
. Hence

‖E0(t)‖p ≤ C(T )‖w0‖θX‖nϑ0(t)‖1−θ
L6/5 .

We rewrite the function E1(x, t) as

(E1)j(x, t) = λ

3∑
k=1

−3xjxk + δjk|x|2

|x|5
∗x
∫ t

0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x Fk(x, t, s) ds, (7.53)

with Fk(x, t, s) :=

∫
(Γk[E0 + E1]w) (x− ϑ(s)v, v, t− s) dv,

For estimating it we exploit classical properties of the convolution with the kernel 1
|x| and

apply the Young inequality:

‖E1(t)‖2 ≤ C

∫ t

0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)
∗x F (x, t, s)

∥∥∥∥
2

ds

≤ C

∫ t

0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)∥∥∥∥
1

‖F (x, t, s)‖2 ds

≤ C(T )‖w0‖2

∫ t

0

‖E0(t− s)‖2 + ‖E1(t− s)‖2√
ϑ(s)

ds,

where the last inequality follows from (7.50) and the L2–a-priori estimate on the solution w
(cf. Lemma 7.4.1). By applying the estimate (7.51) to ‖E0(t)‖2, we get

‖E1(t)‖2 ≤ C(T )‖w0‖2

(
sup
t∈(0,T ]

{
ϑ(t)ω‖nϑ0(t)‖L6/5

}∫ t

0

ϑ(s)−
1
2ϑ(t− s)−ω ds

+

∫ t

0

‖E1(t− s)‖2√
ϑ(s)

ds

)
, (7.54)

where the function ϑ(s) = O(s) as s→ 0. Thus the integrals are finite.
To establish a solution of (7.53) we introduce the fixed point map

(ME)j(x, t) := λ

3∑
k=1

−3xjxk + δjk|x|2

|x|5
∗x

∗x
∫ t

0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x
∫

(Γk[E0 + E]w) (x− ϑ(s)v, v, t− s) dv ds.

By using 0 < ϑ(T )
T
t ≤ ϑ(t), ∀ t ∈ (0, T ] and (7.54), a simple fixed point argument as in the

proof of Lemmma 4.3.4 with the contractivity estimate:

‖MnE(t)−MnẼ(t)‖2 ≤

(
C

√
T

ϑ(T )
‖w0‖2

)n
t

n+1
2
−ω π

n
2 Γ
(

3
2
− ω

)
Γ
(
n+3

2
− ω

) sup
s∈(0,T ]

(
sω−

1
2‖E(s)− Ẽ(s)‖2

)
shows that the linear equation (7.53) has a unique solution E1 ∈ VT,ω− 1

2
. Hence ∇xV =

E0 + E1 ∈ VT,ω− 1
2

and Gronwall’s Lemma then yields estimate (7.52).
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Remark 7.4.3 For the derivation of the a-priori bound on ‖E‖2, we proceed analogously
to the WP case: accordingly, we did not use any moments of w (neither in x nor v), nor
pseudo-conformal laws (cf. [8, 9, 27, 16] for the classical analogue, i.e. VPFP). Moreover,
the convolution with the Gaussian did not play a role there; the estimate (7.52) relies just
on the dispersive effect of the free-streaming operator. The parabolic regularization will be
exploited in the “post-processing” Proposition 7.4.1.

The above lemma was the first crucial step towards proving global existence of the WPFP
solution. Next we shall extend this estimates on the field E to a range of Lp-norms:

Proposition 7.4.1 Let w be the mild solution of the WPFP equation (7.24) and let w0 ∈ L2

satisfy (B) for some ω ∈ [0, 1) and ‖w(t)‖2 = ‖w0‖2. Then, we have for any fixed T > 0,
for all p ∈ [2, 6):

‖E1(t)‖Lp ≤ Cr

(
T, ‖w0‖2, sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
t

3
2p
− 1

4
−ω, ∀ t ∈ (0, T ]. (7.55)

Proof. We shall estimate E1(t) (cf. (7.53)) by using classical properties of the convolution
by the kernel 1

|x| and the following∥∥∥∥∥N
(

x√
R(s)

)∥∥∥∥∥
q

= CR(s)
3
2q , ∀ 1 ≤ q ≤ ∞ . (7.56)

Namely,

‖E1[w](t)‖Lp(IR3
x) ≤ C

∫ t

0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)
∗x F (x, t, s)

∥∥∥∥
Lp(IR3

x)

ds

≤ C

∫ t

0

R(s)
3
2q
− 3

2√
ϑ(s)

(
‖E0(t− s)‖2 + ‖E1[w](t− s)‖2

)
‖w(t− s)‖2 ds,

where the latter inequality is the Young one with 1 + 1/p = 1/q + 1/2 (thus, p ≥ 2) and for
the L2-norm we have used Lemma 4.3.3. Then, by applying Lemma 7.4.2 and the assumed
conservation of the L2-norm, we get

‖E1[w](t)‖Lp(IR3
x) ≤ C

(
T, sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

}
, ‖w0‖L2(IR6)

)
.

·
∫ t

0

R(s)
3
2q
− 3

2√
ϑ(s)

(
ϑ(t− s)−ω + (t− s)

1
2
−ω
)
ds

Since ϑ(t) = O(t) , R(t) = O(t) for t → 0 (cf. (7.45), (7.46)), the last integral is finite for
all t > 0 and for 3/(2q) − 2 > −1 ⇔ 3/(2p) − 5/4 > −1 ⇔ p < 6. In fact the integral is

O(t
3
2p
− 1

4
−ω).

Remark 7.4.4 Proposition 7.4.1 provides a non-trivial interval of Lp-estimates for the elec-
tric field in the WPFP case. This is due to the regularizing effect of the FP term. We remark
that the corresponding Gaussian is “better behaved” than the classical one, since the quantum
FP operator is uniformly elliptic in both x and v variables. On the other hand, exactly as
in the WP case, the range of Lp-estimates for the WPFP equation is smaller in compari-
son to the counterpart VPFP and that depends again on the non-negativity of the classical
distribution function.
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Remark 7.4.5 We observe that the assumption “ Let w be the mild solution of the WPFP
equation (7.24) with w0 ∈ L2 and ‖w(t)‖2 = ‖w0‖2” could be substituted by “Let w0 ∈ X and
w(t) be the mild solution of the WPFP equation (7.24)”, which exists by Corollary 7.3.1, for
all t ∈ [0, T ] and satisfies (7.40). However, we want to stress that, analogously to Prop. 4.3.1
for the WP case (cf. Remark 4.3.4, as well), no weighted L2-norm, or equivalently, no in-
formation about the density n, is necessary for the estimate for the electric field E1 to be
proved, once the existence of a mild solution in L2, which satisfies (7.40) is assumed.
The assessment of the global-in-time well-posedness result for the WPFP problem in L2, un-
der the assumption w0 ∈ L2 satisfying (B) is currently in progress.

7.4.2 A-priori estimates for the weighted L2-norms

A first consequence of the a-priori estimates for the electric field is the following

Lemma 7.4.3 For all w0 ∈ X such that (B) holds for some ω ∈ [0, 1), the mild solution of
the WPFP equation (7.24) satisfies

‖vw(t)‖2
2 ≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
, ∀ t ∈ [0, T ]. (7.57)

Proof. In order to justify the derivation of this a-priori estimate we need again the ap-
proximating classical solutions yn introduced in the proof of Lemma 7.4.1. Mutiplying both
sides of (7.42) by v2

i yn(t) and integrating yields

1

2

d

dt
‖viyn(t)‖2

2 =

∫∫
v2
i yn(t)Ayn(t) dx dv +

∫∫
v2
i yn(t)fn(t) dx dv.

By analogous calculations as in the proof of Lemma 7.2.1 (cf. also (7.4)) we get,∫∫
|v|2yn(t)Ayn(t) dx dv ≤ 3σ‖yn(t)‖2

2 +
β

2
‖vyn(t)‖2

2,

and hence

1

2

d

dt
‖vyn(t)‖2

2 ≤ 3σ‖yn(t)‖2
2 +

β

2
‖vyn(t)‖2

2 +

∫∫
|v|2yn(t)fn(t) dx dv, ∀ t ∈ [0, T ].

By integrating in t, letting n→∞, and using (7.40), we have

‖vw(t)‖2
2 ≤ ‖vw0‖2

2 +
2σ

β
(e3βt − 1)‖w0‖2

2 + β

∫ t

0

‖vw(s)‖2
2 ds

+ 2

∫ t

0

∫∫
|v|2w(s)f(s) dx dv ds, ∀ t ∈ [0, T ].

Using again the skew-symmetry of the pseudo-differential operator and the Hölder inequality
yields ∫ t

0

∫∫
viw(s)vif(s) dx dv ds =

1

2

∫ t

0

∫∫
viw(s)Ω[∂iV [w(s)]]w(s) dx dv ds

≤ 1

2

∫ t

0

‖viw(s)‖2 ‖Ω[∂iV [w(s)]]w(s)‖2 ds,
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with the operator Ω defined in (7.11). Estimating as in (7.13) and using the Sobolev in-
equality we obtain for t ∈ [0, T ]:

‖Ω[∂iV [w(t)]]w(t)‖L2(IR3
x×IR3

v) ≤ C‖∂iV [w(t)]]ŵ(t)‖L2(IR3
x×IR3

η)

≤ C‖∂iV [w(t)]]‖3‖ŵ(t)‖L2(IR3
x;L6(IR3

η))

≤ C‖∂iV [w(t)]]‖3‖∇ηŵ(t)‖L2(IR3
x×IR3

η)

≤ C‖∂iV [w(t)]]‖3‖vw(t)‖2, (7.58)

where ŵ(x, η, t) := Fv→η(w(x, v, t)). Finally, using estimates (7.51),(7.55) with p = 3 yields

‖vw(t)‖2
2 ≤ C(T )

(
‖vw0‖2

2 + ‖w0‖2
2

)
+ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})

·
∫ t

0

(
s−

ω
2 + s−ω+ 1

4 + β
)
‖vw(s)‖2

2 ds, t ∈ [0, T ], (7.59)

and the Gronwall Lemma gives the result.

With this result we can proceed to derive the a-priori estimate for ‖|v|2w(t)‖2.

Lemma 7.4.4 For all w0 ∈ X such that (B) holds for some ω ∈ [0, 1), the mild solution of
the WPFP equation (7.24) satisfies

‖|v|2w(t)‖2
2 ≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
, ∀ t ∈ [0, T ]. (7.60)

Proof. In order to control the term ‖|v|2w(t)‖2, we shall use the same strategy as in the
Lemmata 7.4.1 and 7.4.3. Multiplying both sides of (7.42) by v4

i yn(t) and integrating we get
by using (7.4) and repeating the same limit procedure as in the previous lemma:

1

2

d

dt

3∑
i=1

∫∫
v4
iw(t)2 dx dv ≤ 9σ‖w(t)‖2

2 +

(
3σ − 1

2
β

) 3∑
i=1

∫∫
v4
iw(t)2 dx dv

+
3∑
i=1

∫∫
v4
iw(t)f(t) dx dv, ∀ t ∈ [0, T ].

By integrating in t, using C1|v|4 ≤
∑
v4
i ≤ C2|v|4 and (7.40), we have

‖|v|2w(t)‖2
2 ≤ C

(
‖|v|2w0‖2

2 +
6σ

β
(e3βt − 1)‖w0‖2

2 + (6σ − β)

∫ t

0

‖|v|2w(s)‖2
2 ds

+2
3∑
i=1

∫ t

0

∫∫
v4
iw(s)f(s) dx dv ds

)
, ∀ t ∈ [0, T ]. (7.61)

Using again the skew-symmetry of the pseudo-differential operator Θ, the equation (7.10)
and the Hölder inequality, we have∫ t

0

∫∫
v2
iw(s)v2

i f(s)dx dv ds ≤ 1

4

∫ t

0

‖v2
iw(s)‖2 ‖Θ[∂2

i V [w(s)]]w(s)‖2 ds

+

∫ t

0

‖v2
iw(s)‖2 ‖Ω[∂iV [w(s)]]viw(s)‖2 ds. (7.62)
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Since ŵ(x, . , t) ∈ H2(IR3
η), the Gagliardo-Nirenberg inequality yields for t ∈ [0, T ]

‖ŵ(x, . , t)‖L∞(IR3
η) ≤ C‖ŵ(x, . , t)‖1/2

L6(IR3
η)
‖|̂v|2w(x, . , t)‖1/2

L2(IR3
η)

≤ C‖v̂w(x, . , t)‖1/2

L2(IR3
η)
‖|̂v|2w(x, . , t)‖1/2

L2(IR3
η)
. (7.63)

Using

‖∆V [w(t)]‖2 = ‖n[w(t)]‖2 = C‖ŵ(. , η = 0, t)‖L2(IR3
x) ≤ C

(∫
‖ŵ(x, . , t)‖2

L∞(IR3
η) dx

)1/2

,

(7.63), the Hölder inequality, and (7.57) we can estimate:

‖Θ[∂2
i V [w(t)]]w(t)‖2 ≤ C‖∆V [w(t)]‖2

(∫
‖ŵ(x, . , t)‖2

L∞(IR3
η) dx

)1/2

≤ C

∫
‖ŵ(x, . , t)‖2

∞ dx

≤ C

∫
‖v̂w(x, . , t)‖L2(IR3

η) ‖|̂v|2w(x, . , t)‖L2(IR3
η) dx

≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
‖|v|2w(t)‖2. (7.64)

For the second term of the r.h.s. of (7.62) we proceed as in (7.58) and use the estimates
(7.51), (7.55):

‖Ω[∂iV [w(t)]]viw(t)‖2 ≤ C‖∂iV [w(t)]‖3‖v̂iw(t)‖L2(IR3
x;L6(IR3

η))

≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})(
t−

ω
2 + t−ω+ 1

4

)
‖|v|2w(t)‖2, ∀ t ∈ [0, T ].

(7.65)
Analogously to (7.59), combining the estimates (7.62), (7.64) and (7.65) the Gronwall Lemma
gives the assertion.

Finally, we can obtain an a-priori estimate for the term ‖|x|2w(t)‖2.

Lemma 7.4.5 For all w0 ∈ X1 such that (B) holds for some ω ∈ [0, 1), the mild solution
of the WPFP equation (7.24) satisfies

‖|x|2w(t)‖2
2 ≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
, ∀ t ∈ [0, T ]. (7.66)

Proof. To control ‖|x|2w(t)‖2, we shall use again the strategy of the Lemmata 7.4.1, 7.4.3
and 7.4.4. We multiply both sides of equation (7.42) by x4

i yn(t), integrate and get by using
(7.3) and repeating the same limit procedure as in the lemmata above:

1

2

d

dt

3∑
i=1

∫∫
x4
iw(t)2 dx dv ≤ 9α‖w(t)‖2

2 +

(
3

2
+

3

2
β + 3α

) 3∑
i=1

∫∫
x4
iw(t)2 dx dv

+
1

2

3∑
i=1

∫∫
v4
iw(t)2 dx dv +

3∑
i=1

∫∫
x4
iw(t)f(t) dx dv,
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∀ t ∈ [0, T ]. Due to the skew-symmetry of Θ the last integral disappears. Then, by integrating
in t, using C1|x|4 ≤

∑
x4
i ≤ C2|x|4 and (7.40), we have

‖|x|2w(t)‖2
2 ≤ C(T )

(
‖|x|2w0‖2

2 + ‖w0‖2
2 +

∫ t

0

‖|x|2w(s)‖2
2 ds+

∫ t

0

‖|v|2w(s)‖2
2 ds

)
. (7.67)

Using the a-priori estimate (7.60) and the Gronwall Lemma we obtain (7.66).

Proof of Theorem 7.4.1.
The Lemmata 7.4.1, 7.4.4 and 7.4.5 show that

‖w(t)‖X ≤ C

(
T, ‖w0‖X , sup

s∈(0,T ]

{
ϑ(s)ω‖nϑ0(s)‖L6/5

})
, ∀ t ∈ [0, T ], ∀ 0 < T < tmax,

with C being continuous in T ∈ [0, tmax]. Then, Corollary 7.3.1 shows that the mild solution
w exists on [0,∞).

In conclusion, it holds as well

Theorem 7.4.2 Let w0 ∈ X1 satisfy for some ω ∈ [0, 1)

∥∥∥∫ w0(x− ϑ(t)v, v) dv
∥∥∥
L6/5(IR3

x)
≤ CTϑ(t)−ω, ∀ t ∈ (0, T ], ∀T > 0, (B)

with ϑ(t) := 1−e−βt

β
for β > 0, and ϑ(t) = t for β = 0. Then the WPFP equation (7.24)

admits a unique global-in-time mild solution w ∈ ỸT , ∀ 0 < T <∞.

7.4.3 Regularity

The following result concerns the smoothness of the solution of WPFP, the macroscopic
density and the force field, for positive times.

Corollary 7.4.1 Under the assumptions of Theorem 7.4.1, the mild solution of the WPFP
equation (7.24) satisfies

w ∈ C((0,∞); C∞B (IR6)),

n(t), E(t) ∈ C((0,∞); C∞B (IR3)).

Proof. Obviously, w(t) ∈ C(IR6) ∀t > 0, because of the Green’s function representation in
(7.39), (7.20). If we differentiate equation (7.24) with respect to xi and, resp., vi, we obtain
the following linear, inhomogeneous problems for any fixed t1 > 0.

zt(t) = Az(t) + Θ[V [z(t)]]w(t) + Θ[V [w(t)]]z(t), ∀ t > t1, z(t1) = ∂xi
w(t1) ∈ X,

yt(t) = Ay(t) + βy(t)− ∂xi
w(t) + Θ[V [w(t)]]y(t), ∀ t > t1, y(t1) = ∂vi

w(t1) ∈ X.

By arguments analogous to Lemma 7.3.1, there exists a unique mild solution

z = ∂xi
w ∈ C([t1,∞);H1(IR6; (1 + |v|2)2 dx dv)). (7.68)
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By an induction procedure, the derivatives ∇α
x∇β

vw, for α, β ∈ IN3, |α| + |β| = m > 1
are also mild solutions of similar problems with additional well-defined inhomogeneities and
with initial times 0 < t1 < t2 < ... < tm. This yields ∇α

x∇β
vw ∈ C([tm,∞);H1(IR6; (1 +

|v|2)2 dx dv)), and thus ∇α
x∇β

vw ∈ C((0,∞);X). Hence, the statement about smoothness of
the density and the electric field is straightforward from Eq.(7.2) and 7.2.1 and Sobolev
embeddings.

7.5 Appendix

The Proofs are the same as in Ref. [4]. They can be easily adapted to the “simpler” case in
which the state space is X, by omitting the parts relative to the x-weight.

Proof of Lemma 7.2.1

For u ∈ D(A) we have

< Au, u >X1 = < Au, u >L2(IR6) +
3∑
i=1

∫∫
x4
iuAu+

3∑
i=1

∫∫
v4
i uAu, (7.1)

where
∫∫
f denotes the integral

∫
IR3

∫
IR3f(x, v) dv dx . Using integrations by parts we shall

calculate the three terms on the right hand side separately.

< Au, u >L2(IR6) =
3∑
i=1

(
−
∫∫

viuxi
u+ β

∫∫
(viu)vi

u

+σ

∫∫
uvivi

u+ 2γ

∫∫
uxivi

u+ α

∫∫
uxixi

u

)
≤

3∑
i=1

[
3β

∫∫
u2 + β

∫∫
viuvi

u− σ

∫∫
u2
vi

+γ

(
ε

∫∫
u2
xi

+
1

ε

∫∫
u2
vi

)
− α

∫∫
u2
xi

]
=

3

2
β‖u‖2

2 +
(γ
ε
− σ

)
‖∇vu‖2

2 + (εγ − α) ‖∇xu‖2
2.

With ε = γ
σ

we obtain

< Au, u >L2(IR6) ≤
3

2
β‖u‖2

2. (7.2)
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Next we estimate the second term of (7.1):

3∑
i=1

∫∫
x4
iuAu =

3∑
i,j=1

(
−
∫∫

x4
i vjuxj

u+ β

∫∫
x4
i (vju)vj

u

+σ

∫∫
x4
iuvjvj

u+ 2γ

∫∫
x4
iuxjvj

u+ α

∫∫
x4
iuxjxj

u

)
≤

3∑
i,j=1

[
2

3

∫∫
x3
i viu

2 + β

∫∫
x4
iu

2 + β

∫∫
x4
i vjuvj

u− σ

∫∫
x4
iu

2
vj

+γ

(
ε

∫∫
x4
iu

2
xj

+
1

ε

∫∫
x4
iu

2
vj

)
− α

∫∫
x4
iu

2
xj
− 4

3
α

∫∫
x3
iuxi

u

]
≤

3∑
i=1

(
2

∫∫
x3
i viu

2 +
3

2
β

∫∫
x4
iu

2 + 6α

∫∫
x2
iu

2

)
,

where we chose ε = γ
σ

in the last step. With an interpolation inequality this yields

3∑
i=1

∫∫
x4
iuAu ≤ 9α‖u‖2

2 +

(
3

2
+

3

2
β + 3α

) 3∑
i=1

∫∫
x4
iu

2 +
1

2

3∑
i=1

∫∫
v4
i u

2. (7.3)

We proceed similarly for the third term of (7.1):

3∑
i=1

∫∫
v4
i uAu =

3∑
i,j=1

(
−
∫∫

v4
i vjuxj

u+ β

∫∫
v4
i (vju)vj

u

+σ

∫∫
v4
i uvjvj

u+ 2γ

∫∫
v4
i uxjvj

u+ α

∫∫
v4
i uxjxj

u

)
≤

3∑
i,j=1

[
β

∫∫
v4
i u

2 + β

∫∫
v4
i vjuvj

u− σ

∫∫
v4
i u

2
vj

−4

3
σ

∫∫
v3
i uvi

u+ γ

(
ε

∫∫
v4
i u

2
xj

+
1

ε

∫∫
v4
i u

2
vj

)
− α

∫∫
v4
i u

2
xj

]
≤

3∑
i=1

(
−1

2
β

∫∫
v4
i u

2 + 6σ

∫∫
v2
i u

2

)

≤ 9σ‖u‖2
2 +

(
−1

2
β + 3σ

) 3∑
i=1

∫∫
v4
i u

2, (7.4)

by choosing ε = γ
σ

and by an interpolation.

Collecting the three estimates yields

< Au, u >X1 ≤
(

3

2
β + 9α+ 9σ

)
‖u‖2

2

+

(
3

2
+

3

2
β + 3α

) 3∑
i=1

∫∫
x4
iu

2

+

(
1

2
+ 3σ

) 3∑
i=1

∫∫
v4
i u

2

≤
(

3

2
+

3

2
β + 9α+ 9σ

)
‖u‖2

X̃
.
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Thus, the operator A− κ1I is dissipative in X1.

Proof of Lemma 7.2.3

To prove the assertion we shall construct for each f ∈ D(P ) ⊂ L2(IR6) a sequence {fn} ⊂
D(P ) such that fn → f in the graph norm
‖f‖P = ‖f‖L2 + ‖|x|2f‖L2 + ‖|v|2f‖L2 + ‖Pf‖L2 + ‖|x|2Pf‖L2 + ‖|v|2Pf‖L2 .

To shorten the proof we shall consider here only the case

P = θ + νv · ∇x + µx · ∇v + βv · ∇v + α∆x + σ∆v + γdivv∇x

(cf. the definition of the operator A in (7.14)), but exactly the same strategy extends to the
case, where P is a general quadratic polynomial.

First we define the mollifying delta sequence

φn(x, v) := n6φ(nx, nv), n ∈ IN, x, v ∈ IR3,

where

φ ∈ C∞0 (IR6), φ(x, v) ≥ 0,∫∫
φ(x, v)dxdv = 1, and suppφ ⊂ {|x|2 + |v|2 ≤ 1}.

By definition we have the following properties:

(I) φn → δ in D′(IR6),

(II) 1
n
∂xi
φn,

1
n
∂vi
φn → 0 in D′(IR6), i = 1, 2, 3,

(III) (x, v)α∂β(x,v) [(x, v)γφn(x, v)] → 0 in D′(IR6), with α, β, γ ∈ IN6
0 multi-indexes

and |γ| > 0, since (x, v)γφn → 0 in D′(IR6).

The cutoff sequence is

ψn(x, v) := ψ

(
|(x, v)|
n

)
, n ∈ IN, x, v ∈ IR3,

where ψ satisfies

ψ ∈ C∞0 (IR), 0 ≤ ψ(z) ≤ 1, suppψ ⊂ [−1, 1], ψ|[− 1
2
, 1
2
] ≡ 1,

and
|ψ(j)(z)| ≤ Cj, ∀z ∈ IR, j = 1, 2.

The sequence ψn has the following properties:

(IV) ψn → 1 pointwise,

(V) (x, v)α∂β(x,v)ψn(x, v) = 1
n

(x,v)α(x,v)β

|(x,v)| ψ′
(
|(x,v)|
n

)
, with α, β ∈ IN6

0,

|α| = |β| = 1, are supported in the annulus
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supp
(
ψ′
(
|(x,v)|
n

))
= {(x, v) | n/2 ≤ |(x, v)| ≤ n} =: Vn,

and they are in L∞(IR6), uniformly in n ∈ IN.

(VI) n∂α(x,v)ψn(x, v) = (x,v)α

|(x,v)|ψ
′
(
|(x,v)|
n

)
, with α ∈ IN6

0, |α| = 1,

are uniformly bounded in L∞(IR6).

(VII) ∂α(x,v)ψn(x, v) = (x,v)α

n2|(x,v)|2ψ
′′
(
|(x,v)|
n

)
+
(

1
n2|(x,v)| −

(x,v)α

n3|(x,v)|3

)
ψ′
(
|(x,v)|
n

)
,

with |α| = 2 have support on Vn and converge uniformly to 0 in L∞(IR6).

We now define the approximating sequence

fn(x, v) := (f ∗ φn)(x, v) · ψn(x, v), n ∈ IN,

where ‘∗’ denotes the convolution in x and v.
By construction we have fn ∈ C∞0 (IR6) = D(P ).

Since we can split our operator as

P =
3∑
i=1

[
θ

3
+ νvi∂xi

+ µxi∂vi
+ βvi∂vi

+ α∂2
xi

+ σ∂2
vi

+ γ∂vi
∂xi

]

=
3∑
i=1

p̃(xi, vi, ∂xi
, ∂vi

),

we shall in the sequel only consider

P̃ = p̃(y, z, ∂y, ∂z), y, z ∈ IR

acting in one spatial direction y = xj and one velocity direction z = vj.
We have to prove that fn(x, v) → f(x, v) in the graph norm

‖f‖P̃ = ‖f‖L2 + ‖|x|2f‖L2 + ‖|v|2f‖L2 + ‖P̃ f‖L2 + ‖|x|2P̃ f‖L2 + ‖|v|2P̃ f‖L2 .

According to the 6 terms of the graph norm we split the proof into 6 steps:

Step 1: By applying (P1) and (P4), we have

fn → f in L2(IR6).

Step 2: For the second term of the graph norm we write

x2
i fn = (x2

i f ∗ φn)ψn + 2(xif ∗ xiφn)ψn + (f ∗ x2
iφn)ψn.

The first summand converges to x2
i f in L2(IR6) and both the second and the third terms

converge to 0 by (III), since also xif belongs to L2(IR6) by interpolation.

Step 3: For the third term of the graph norm the same argument as in previous step can
be used. Hence we have

fn → f in X.

125



Step 4: To prove that P̃ fn → P̃ f in L2(IR6) we write:

P̃ fn =
θ

3
(f ∗ φn)ψn + ν(zfy ∗ φn)ψn + µ(yfz ∗ φn)ψn + β(zfz ∗ φn)ψn

+α(fyy ∗ φn)ψn + σ(fzz ∗ φn)ψn + γ(fyz ∗ φn)ψn + r1
n(y, z)

= (P̃ f ∗ φn)ψn + r1
n(y, z).

As we shall show, all thirteen terms of the remainder

r1
n = ν(f ∗ ∂y(zφn))ψn + ν(f ∗ φn)z∂yψn + µ(f ∗ y∂zφn)ψn

+µ(f ∗ φn)y∂zψn + β(f ∗ ∂z(zφn))ψn + β(f ∗ φn))z∂zψn

+2α(f ∗ (
1

n
∂yφn))(n∂yψn) + α(f ∗ φn))(∂2

yψn) + 2σ(f ∗ 1

n
∂zφn)n∂zψn

+σ(f ∗ φn)∂2
zψn + γ(f ∗ (

1

n
∂zφn))(n∂yψn) + γ(f ∗ (

1

n
∂yφn))(n∂zψn)

+γ(f ∗ φn)∂y∂zψn

converge to 0 in L2(IR6).
The first, the third and the fifth terms converge to 0 in L2(IR6) by (III).
In the second, fourth and the sixth terms, exploiting (V) we have

‖(f ∗ φn)(z∂yψn)‖L2(R6) ≤ C‖f ∗ φn − f‖L2(Vn) + ‖f‖L2(Vn) → 0, (7.5)

because ‖f‖L2(R6) = ‖f‖L2(B1/2(0)) +
∑∞

k=0 ‖f‖L2(V
2k ).

For what the seventh, ninth, eleventh and twelfth terms are concerned, we can exploit (VI)
and then (II).
The remaining terms can be handled thanks to (VII).

Step 5: To prove that |x|2P̃ fn → |x|2Pf in L2(IR6) we write:

x2
i P̃ fn =

θ

3
(x2

i f ∗ φn)ψn + ν(x2
i zfy ∗ φn)ψn + µ(x2

i yfz ∗ φn)ψn + β(x2
i zfz ∗ φn)ψn

+α(x2
i fyy ∗ φn)ψn + σ(x2

i fzz ∗ φn)ψn + γ(x2
i fyz ∗ φn)ψn + r2

n(y, z)

= (x2
i P̃ f ∗ φn)ψn + r2

n(y, z).
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The remainder r2
n can be split in the following way (y = xj, z = vj):

r2
n,θ =

2

3
θ(xif ∗ yφn)ψn +

θ

3
(f ∗ x2

iφn)ψn

r2
n,ν = 2ν(zxif ∗ ∂y(xiφn))ψn − 2νδij(zf ∗ xiφn)ψn + ν(zf ∗ ∂y(x2

iφn))ψn

+ν(x2
i f ∗ z∂yφn)ψn + 2ν(xif ∗ xiz∂yφn)ψn + ν(f ∗ x2

i z∂yφn)ψn

+ν(x2
i f ∗ φn)z∂yψn + 2ν(xif ∗ xiφn)z∂yψn + ν(f ∗ x2

iφn)z∂yψn

r2
n,µ = 2µ(xiyf ∗ ∂z(xiφn))ψn + µ(yf ∗ ∂z(x2

iφn))ψn + µ(x2
i f ∗ y∂zφn)ψn

+2µ(xif ∗ xiy∂zφn)ψn + µ(f ∗ x2
i y∂zφn)ψn + µ(x2

i f ∗ φn)y∂zψn
+2µ(xif ∗ xiφn)y∂zψn + µ(f ∗ x2

iφn)y∂zψn

r2
n,β = 2β(xizf ∗ xi∂zφn)ψn − 2β(xif ∗ xiφn)ψn + β(zf ∗ x2

i∂zφn)ψn − β(f ∗ x2
iφn)ψn

+β(x2
i f ∗ ∂z(zφn))ψn + 2β(xif ∗ xi∂z(zφn))ψn + β(f ∗ x2

i∂z(zφn))ψn

+β(x2
i f ∗ φn)z∂zψn + 2β(xif ∗ xiφn)z∂zψn + β(f ∗ x2

iφn)z∂zψn

r2
n,α = 2α(xif ∗ ∂2

y(xiφn))ψn − 4αδij(f ∗ ∂y(xiφn))ψn + α(f ∗ ∂2
y(x

2
iφn))ψn

+2α(x2
i f ∗

1

n
∂yφn)n∂yψn + 4α(xif ∗

xi
n
∂yφn)n∂yψn + 2α(f ∗ x

2
i

n
∂yφn)n∂yψn

+α(x2
i f ∗ φn)∂2

yψn + 2α(xif ∗ xiφn)∂2
yψn + α(f ∗ x2

iφn)∂
2
yψn

r2
n,σ = 2σ(xif ∗ xi∂2

zφn)ψn + σ(f ∗ x2
i∂

2
zφn)ψn + 2σ(x2

i f ∗
1

n
∂zφn)n∂zψn

+4σ(xif ∗
xi
n
∂zφn)n∂zψn + 2σ(f ∗ x

2
i

n
∂zφn)n∂zψn + σ(x2

i f ∗ φn)∂2
zψn

+2σ(xif ∗ xiφn)∂2
zψn + σ(f ∗ x2

iφn)∂
2
zψn

r2
n,γ = 2γ(xif ∗ ∂y(xi∂zφn))ψn − 2γδij(f ∗ xi∂zφn)ψn + γ(f ∗ ∂y∂z(x2

iφn))ψn

+γ(x2
i f ∗

1

n
∂zφn)n∂yψn + 2γ(xif ∗

xi
n
∂zφn)n∂yψn + γ(f ∗ x

2
i

n
∂zφn)n∂yψn

+γ(x2
i f ∗

1

n
∂yφn)n∂zψn + 2γ(xif ∗

xi
n
∂yφn)n∂zψn + γ(f ∗ x

2
i

n
∂yφn)n∂zψn

+γ(x2
i f ∗ φn)∂y∂zψn + 2γ(xif ∗ xiφn)∂y∂zψn + γ(f ∗ x2

iφn)∂y∂zψn.

By the properties (I)-(VII) and estimate like (7.5), it can be easily seen that each term
converges to 0 in L2(IR6).

Step 6: In analogy to |x|2P̃ fn, the sequence |v|2P̃ f can be split as

v2
i P̃ fn = (v2

i P̃ f ∗ φn)ψn + r3
n(y, z).

Due to the symmetry of the operator P̃ in x and v, the terms of the remainder r3
n can be

obtained from r2
n by interchanging y and z (and changing the coefficients), except for the

following term

v2
i [βz∂z ((f ∗ φn)ψn)] = β(v2

i zfz ∗ φn)ψn + r3
n,β,

where

r3
n,β = 2β(vizf ∗ ∂z(viφn))ψn − 2β(1 + δij)(vif ∗ viφn)ψn + β(zf ∗ ∂z(v2

i φn))ψn

−β(f ∗ v2
i φn)ψn + β(v2

i f ∗ ∂z(zφn))ψn + 2β(vif ∗ vi∂z(zφn))ψn
+β(f ∗ v2

i ∂z(zφn))ψn + β(v2
i f ∗ φn)z∂zψn + 2β(vif ∗ viφn)z∂zψn

+β(f ∗ v2
i φn)z∂zψn
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converges to 0 in L2(IR6), since (I)-(VII) and (7.5) can be used.

Proof of Proposition 7.3.1

First, we shall prove the following estimates on the derivatives of the Green’s function (7.21):

|∇vG(t, x, v, x0, v0)| ≤ b
G(t, x

2
, v

2
, x0

2
, v0

2
)

√
t

, ∀ t ≤ t0, (7.6)

|∇xG(t, x, v, x0, v0)| ≤ b′
G(t, x

2
, v

2
, x0

2
, v0

2
)

√
t

, ∀ t ≤ t1. (7.7)

with b = b(α, γ, σ), t0 = t0(α, β, σ, γ), b
′ = b′(α, γ, σ) and t1 = t1(α, β, σ, γ). The v-derivative

of G is given by

∇vG(t, x, v, x0, v0) = G(t, x, v, x0, v0)

−
(
µ(t)eβt − 2ν(t) e

βt−1
β

)
(x− eβt−1

β
v − x0)

f(t)

−

(
2λ(t)eβt − µ(t) e

βt−1
β

)
(eβtv − v0)

f(t)

 . (7.8)

For all real a, b, c > 0 such that c/
√
a ≤ b

√
2e, one easily verifies that

c|x| ≤ bea|x|
2

, ∀x ∈ IR3. (7.9)

Since α, σ > 0, we have for t > 0 small enough

ν(t)− 1

2
µ(t) > 0, λ(t)− 1

2
µ(t) > 0.

In order to apply the estimate (7.9) to the two terms inside the squared bracket in (7.8) we
shall use for t small:

c1√
a1

:=

√
t

f(t)

∣∣∣µ(t)eβt − 2ν(t) e
βt−1
β

∣∣∣√
3
4

ν(t)− 1
2
µ(t)

f(t)

∼ 2γ√
3(ασ − γ2)(σ + γ)

≤ b1
√

2e,

with b1 = γ/
√

3(ασ − γ2)(σ + γ). Similarly,

c2√
a2

:=

√
t

f(t)

∣∣∣2λ(t)eβt − µ(t) e
βt−1
β

∣∣∣√
3
4

λ(t)− 1
2
µ(t)

f(t)

∼ 2α√
3(ασ − γ2)(α+ γ)

≤ b2
√

2e,

with b2 = α/
√

3(ασ − γ2)(α+ γ). Then, there exists some t0 > 0 such that, for all t ≤ t0,
the two inequalities can be combined with b = max{b1, b2} to give∣∣∣∣∣∣
(
µ(t)eβt − 2ν(t) e

βt−1
β

)(
x− eβt−1

β
v − x0

)
+
(
2λ(t)eβt − µ(t) e

βt−1
β

)
(eβtv − v0)

f(t)

∣∣∣∣∣∣√t ≤
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≤
√
t

f(t)

{∣∣∣∣µ(t)eβt − 2ν(t)
eβt − 1

β

∣∣∣∣ ∣∣∣∣x− eβt − 1

β
v − x0

∣∣∣∣+ ∣∣∣∣2λ(t)eβt − µ(t)
eβt − 1

β

∣∣∣∣ |eβtv − v0|
}

≤ b exp


(
ν(t)− 1

2
µ(t)

) ∣∣∣x− eβt−1
β
v − x0

∣∣∣2 +
(
λ(t)− 1

2
µ(t)

) ∣∣eβtv − v0

∣∣2
4
3
f(t)


≤ b exp


ν(t)

∣∣∣x− eβt−1
β
v − x0

∣∣∣2 + λ(t)
∣∣eβtv − v0

∣∣2 + µ(t)
(
x− eβt−1

β
v − x0

)
·
(
eβtv − v0

)
4
3
f(t)

.
Hence,

|∇vG(t, x, v, x0, v0)| ≤ b
G(t, x, v, x0, v0)√

t

× exp

3

4

ν(t)
∣∣∣x− eβt−1

β
v − x0

∣∣∣2 + λ(t)
∣∣eβtv − v0

∣∣2 + µ(t)
(
x− eβt−1

β
v − x0

)
·
(
eβtv − v0

)
f(t)


and the decay (7.6) follows by comparison with (7.21).

Next we consider the x-derivative of the Green’s function,

∇xG(t, x, v, x0, v0) = G(t, x, v, x0, v0)

−2ν(t)(x− (eβt−1)
β

v − x0) + µ(t)(eβtv − v0)

f(t)

 .
Analogously, the decay (7.7) follows by exploiting that for t small enough

√
t

f(t)
2ν(t)√

3
4

ν(t)− 1
2
µ(t)

f(t)

∼ 2σ√
3(ασ − γ2)(σ + γ)

≤ b′1
√

2e,

√
t

f(t)
|µ(t)|√

3
4

λ(t)− 1
2
µ(t)

f(t)

∼ 2γ√
3(ασ − γ2)(α+ γ)

≤ b′2
√

2e,

with appropriate b′1(α, γ, σ), b′2(α, γ, σ).

Since

etAw0(x, v) =

∫∫
G(t, x, v, x0, v0)w0(x0, v0) dx0 dv0,

we have

|∇ve
tAw0(x, v)| ≤

∫∫
|∇vG(t, x, v, x0, v0)| |w0(x0, v0)| dx0 dv0

≤ bt−1/2

∫∫
G
(
t,
x

2
,
v

2
,
x0

2
,
v0

2

)
|w0(x0, v0)| dx0 dv0

= 64b t−1/2

∫∫
G(t, x̃, ṽ, x̃0, ṽ0)|w0(2x̃0, 2ṽ0)| dx̃0 dṽ0

= 64b t−1/2etAw̃0(x̃, ṽ), ∀ t ≤ t0. (7.10)
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Here we used the decay (7.6), and we put x̃ = x
2
, ṽ = v

2
and w̃0(x̃, ṽ) = |w0(2x̃, 2ṽ)|.

The assertion (7.22) follows directly by applying the estimate (7.19) to (7.10) and choosing
T0 = min{t0, t1}.
The estimate (7.23) can be obtained analogously.
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[12] Cañizo J.A., López J.L., Nieto J., Global L1-theory and regularity for the 3D
nonlinear Wigner-Poisson-Fokker-Planck system, J. Diff. Eq. 198, 356-373 (2004).

[13] Carpio A., Long time behavior for solutions of the Vlasov-Poisson-Fokker-Planck
equation, Math. Meth. Appl. Sci. 21, 985-1014 (1998).

131



[14] Carrillo J.A., Soler J., Vázquez J.L., Asymptotic behaviour and selfsimilarity for
the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 141,
99-132 (1996).

[15] Castella F., L2 solutions to the Schrödinger-Poisson system: existence, uniqueness,
time behaviour, and smoothing effects, Math. Models Methods Appl. Sci. 7(8),
1051-1083 (1997).

[16] Castella F., The Vlasov-Poisson-Fokker-Planck System with Infinite Kinetic En-
ergy, Indiana Univ. Math. J. 47(3), 939-964 (1998).

[17] Castella F., Erdös L., Frommlet F., Markowich P.A., Fokker-Planck equations as
scaling limits of reversible quantum systems, J. Stat. Physics 100(3/4), 543-601
(2000).

[18] Castella F., Perthame B., Strichartz’ estimates for kinetic transport equations, C.
R. Acad. Sci. 332(1), 535-540 (1996).

[19] Helffer B., Nier F., Hypoellipticity and spectral theory for Fokker-Planck operators
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