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The effective-mass approximation

Most of mathematical models of quantum transport in
semiconductor devices makes use of the so-called
effective-mass approximation.

This amounts to substituting the true Hamiltonian
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with the following:
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The effective-mass approximation (continued)

The effctive-mass ten-
sor arises from a
parabolic approximation
of the conduction band:
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In such approximation the electron[hole] belongs
exclusively to the conduction[valence] band.
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Interband devices

The effective-mass approximation is unable to describe
interband tunneling, a quantum effect which plays an
important role in modern devices.

Scheme of the interband
diode developed by P.
Berger’s team (Ohio State
University, USA)
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Multi-band models

We need therefore to go beyond the effective-mass
approximation and consider more suitable models in which
the electron[hole] “feels the presence” of at least two-bands.

Beyond the effective-mass approximation – p.7/28



Multi-band models

We need therefore to go beyond the effective-mass
approximation and consider more suitable models in which
the electron[hole] “feels the presence” of at least two-bands.

1 - two-band Kane model:
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E. Kane, J. Phys. Chem. Solids, 1959
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Multi-band models

We need therefore to go beyond the effective-mass
approximation and consider more suitable models in which
the electron[hole] “feels the presence” of at least two bands.

2 - two-band order-1 M-M model:

�

M-M
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 � ( )* 465 -/. � �
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O. Morandi & M. Modugno, 2004 (to appear).
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Multi-band models (continued)

All these models furnish an approximation of the real
multi-band dispersion relation:
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Multi-band models (continued)

As an example, here is the dispersion relation computed
with the Kane Hamiltonian for GaAs:
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Research program
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Research program

Quantum kinetic theory
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Research program

Quantum kinetic theory
Nonlinear/dissipative Wigner equations
MB Wigner equations
MB thermal equilibrium

Quantum hydrodynamics
MB-QDD
MB-QET
MB-QHD

Spintronics

Applications to electronic devices and BEC
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The Wigner transform

The Wigner transform

9 �;:3< = � � >
� �@? � � A B C D : 
 E
�< : � E
� � � F GIH J (LK E

is a unitary mapping of

M � �N APO N A< Q �
into itself.

It allows a quasi-kinetic formulation of statistical QM.

E. Wigner, Phys. Rev., 1932
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The Wigner equation

The quantum Liouville equation

R � SUT D� V � ( )�+* 	�
 �< D W
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The Wigner equation

The quantum Liouville equation

R � SUT D� V � ( )�+* 	�
 �< D W
is equivalent to the Wigner equation

ST 9 
 �* �YX . = 9 � �F ( V � Z: 
 F (� � [ � � Z: � F (� � [ W 9
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How MB Transport Eqs. should look like?

Single band case (no discrete degrees of freedom):

\]� ^ _ ^ ` ^ �;a � ` ^ �;b � Wigner transform� � � � � � � � � � c 9 �;:3< = �

mixed state Wigner function
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How MB Transport Eqs. should look like?

Single band case (no discrete degrees of freedom):

\]� ^ _ ^ ` ^ �;a � ` ^ �;b � Wigner transform� � � � � � � � � � c 9 �;:3< = �

mixed state Wigner function

Multi-band/spin case (one discrete degree of freedom):

\]� ^ _ ^ ` ^F �;a � ` ^d �;b � Wigner transform� � � � � � � � � � c 9 F d �;:3< = �

mixed state Wigner matrix

where 9 F d �;:3< = � � 9 d F �;:3< = � .
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How MBTE should look like? (contd.)

Now assume

>e R< f e �

and recall that the Pauli matrices

gih � j kk j < g � � k jj k < g � � k l mm k < g A � j kk l j

are a orthonormal basis of

�O �
hermitian matrices over

N

.
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How MBTE should look like? (contd.)

Now assume

>e R< f e �

and recall that the Pauli matrices

gih � j kk j < g � � k jj k < g � � k l mm k < g A � j kk l j

are a orthonormal basis of

�O �
hermitian matrices over

N

.

Thus, we can decompose the Wigner matrix � � 9 F d � as:

n oqp r p oqs r s oqt r t oqu r u

where the functions 9 ^ are real.
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How MBTE should look like? (contd.)

Explicitly:

vwIw
wIwyx

z" { 2) | z 2 2 } z ) ) ~

z 2 { ��� z 2 ) { � � z ) 2z ) { l �+� z 2 ) { � � z ) 2

z C { 2) | z 2 2 l z ) ) ~
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How MBTE should look like? (contd.)

Explicitly:

vwIw
wIwyx

z" { 2) | z 2 2 } z ) ) ~

z 2 { ��� z 2 ) { � � z ) 2z ) { l �+� z 2 ) { � � z ) 2

z C { 2) | z 2 2 l z ) ) ~
Putting

� 9 � �;: � � 9 �:3< = � K =, we have

� 9h � � � � 9 � � � 
 � 9 � � � 
 � 9 A � �< for a pure state,

� 9h � �3� � 9 � � � 
 � 9 � � � 
 � 9 A � �< for a mixed state,

in analogy with Stokes parameters describing a polarized
light beam.
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Interpretation

For

R � �< >< �< �

we have

�@� � \ g F � �
A

^L� h
9 ^ �;:3< = � K : K = �� � g ^ g F �

which, since

�@� � g ^ g F � � �� ^ d, implies
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Interpretation
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R � �< >< �< �

we have

�@� � \ g F � �
A

^L� h
9 ^ �;:3< = � K : K = �� � g ^ g F �

which, since

�@� � g ^ g F � � �� ^ d, implies

9h �;:3< = � K : K =� >

Beyond the effective-mass approximation – p.17/28



Interpretation

For

R � �< >< �< �

we have

�@� � \ g F � �
A

^L� h
9 ^ �;:3< = � K : K = �� � g ^ g F �

which, since

�@� � g ^ g F � � �� ^ d, implies

9h �;:3< = � K : K =� >

and, for

R � >< �< �

,

9 F �;:3< = � K : K =� >
�O “spin” expectation in direction

R
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Interpretation (continued)

In the case of Kane or M-M model:

g A � > �
� � > is the observable “band index”
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Interpretation (continued)

In the case of Kane or M-M model:

g A � > �
� � > is the observable “band index”

The Wigner function 9 A can thus be given a local meaning:

� 9 A �� 9h � � local expectation of band-index.
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Dynamics

The Kane Hamiltonian can be decomposed as follows:

��� Z � � � 	
 � [ g�h � R -. � g � 
 � , g A

where we put

�� � � >

.

Assume for simplicity that we are describing electrons in a
bulk crystal (constant

� , and
-

.)

Thus the dynamics of Wigner functions is given by the
following set of equations.
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Dynamics (continued)

vwIwywIwIwyw
wIwIwywIwywIx

Z SUT 
 =. �X 
 R ��� [ 9h � � -. �X 9 �

Z S�T 
 =. �X 
 R �7� [ 9 � � � � , 9 � 
 � -/. = 9 A

Z SUT 
 =. �X 
 R �7� [ 9 � � � -. �X 9h 
 � , 9 �

Z SUT 
 =. �X 
 R �7� [ 9 A � � � -/. = 9 �

where

��� � � Z: 
 F (� � [ � � Z: � F (� � [
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Plane-wave dynamics

A statistical superimposition of plane waves corresponds in
the Wigner picture to a space-homogeneous Wigner
function.

Assuming space-homogeneity and

� �;: � � ���. : , the
previous equations reduce to

vwIwywIwywIwIw
wywIwIwywIwywIx

Z ST � ���. � [ 9h � �

Z ST � ���. � [ 9 � � � � , 9 � 
 � -. = 9 A

Z ST � ���. � [ 9 � � � , 9 �

Z ST � ���. � [ 9 A � � � -/. = 9 �
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Plane-wave dynamics (continued)

Putting

�9� � � 9 �< 9 �< 9 A � and

��� � = � � � � �< � -. =< � , �

the “spinorial part” of the previous system can be presented
in the following simple form:

Z SUT � ���. � [ �9 � �� � = ��� �9

���. � �9 � momentum drift

�� � = � � �9 � band transitions
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Plane-wave dynamics (continued)

Path of a plane wave on the Poincaré sphere:
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Moment equations

For

R � �< >< �< �

, define the local averages:

� F �;: � � 9 F �;:3< = � K =

f F �;: � � = 9 F �;:3< = � K =

� F �;: � � = � = 9 F �;:3< = � K =
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Order-0 moment equations

vwywIwywIw
wIwIwywIwyx

S�T �h 
 � . fh � � � . - � �

S�T � � 
 � . f � � � � , � � 
 � -/. f A

S�T � � 
 � . f � � � � . - �h 
 � , � �

S�T � A 
 � . f A � � � -. f �
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Order-0 moment equations

vwywIwywIw
wIwIwywIwyx

S�T �h 
 � . fh � � � . - � �

S�T � � 
 � . f � � � � , � � 
 � -/. f A

S�T � � 
 � . f � � � � . - �h 
 � , � �

S�T � A 
 � . f A � � � -. f �

Continuity equation for the total density:

SUT �h 
 � . � fh 
 - � � � � �
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Order-0 moment equations

vwywIwywIw
wIwIwywIwyx

S�T �h 
 � . fh � � � . - � �

S�T � � 
 � . f � � � � , � � 
 � -/. f A

S�T � � 
 � . f � � � � . - �h 
 � , � �

S�T � A 
 � . f A � � � -. f �

Continuity equation for the total density:

SUT �h 
 � . � fh 
 - � � � � �

� � - � � = interband current

Beyond the effective-mass approximation – p.25/28



Order-1 moment equations

vwywIwywIw
wIwIwywIwyx

ST fh 
 � . �h 
 � � �h � � � . - � f �

ST f � 
 � . � � 
 � � � � � � � , f � 
 � -/. � A

ST f � 
 � . � � 
 � � � � � � � . - � fh 
 � , f �

ST f A 
 � . � A 
 � � � A � � � -/. � �

Where:� F � d � ¡ d �¢� 
 £ � � F � 
 � F ¤ F,

£ � � F � � � ( )¥ � � � � F � ¦§ ¢� ¨ ¡ ¦§ ¢� ¨¢� = Bohm term

¤ F = “temperature” term
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Two-band Madelung equations

Theorem. If

� 9h < 9 �< 9 �< 9 A � are the Wigner functions of a
pure state, then the temperature terms vanish:

¤ F © �< R � �< >< �< � ª
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Two-band Madelung equations

Theorem. If

� 9h < 9 �< 9 �< 9 A � are the Wigner functions of a
pure state, then the temperature terms vanish:

¤ F © �< R � �< >< �< � ª
Therefore, the order-0 and order-1 moment equations are a
closed system yelding Madelung-like equations for the
Kane model, equivalent to the Schrödinger equation.

E. Madelung, Zeitschr. f. Phys., 1926
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Conclusions
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Conclusions

We have discussed the meaning of the multi-band
approach to quantum transport in semiconductor
devices.

We have focused our attention on the description of a
2-B system by means of Wigner functions.

We have seen the form of 2-B transport equations for
the Kane model.

We have seen the form of 2-B Madelung-like QHD
equation for the Kane model.
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