A two-band diffusive model of electron transport in semiconductors

L. Barletti\(^1\) G. Frosali\(^2\)

\(^1\)Dipartimento di Matematica, Università di Firenze

\(^2\)Dipartimento di Matematica Applicata, Università di Firenze

SIMAI 2008: M15 Mathematical Problems from Semiconductor Industry

Roma, September 15, 2008
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
The quantum kinetic model

The Hamiltonian I

An electron moving in a semiconductor crystal, with two relevant energy bands, is approximately described by the \(k \cdot p \)-type Hamiltonian

\[
H = \begin{pmatrix} -\frac{\hbar^2}{2m}\Delta + \frac{E_g}{2} + V & -\frac{\hbar^2}{m} K \cdot \nabla \\ \frac{\hbar^2}{m} K \cdot \nabla & -\frac{\hbar^2}{2m}\Delta - \frac{E_g}{2} + V \end{pmatrix}
\]

where \(V \) is the “external” electrostatic potential, \(E_g \) is the band-gap and \(K = (K_1, K_2, K_3) \) is the matrix element of the gradient operator between the Bloch functions of the upper (+) and lower (−) band:

\[
K = \int_{\text{lattice cell}} \bar{u}_+(x) \nabla u_-(x) \, dx
\]
The Hamiltonian I

An electron moving in a semiconductor crystal, with two relevant energy bands, is approximately described by the $k\cdot p$-type Hamiltonian

$$H = \left(\begin{array}{cc} -\frac{\hbar^2}{2m} \Delta + E_g/2 + V & -\frac{\hbar^2}{m} K \cdot \nabla \\ \frac{\hbar^2}{m} K \cdot \nabla & -\frac{\hbar^2}{2m} \Delta - E_g/2 + V \end{array}\right)$$

where V is the “external” electrostatic potential, E_g is the band-gap and $K = (K_1, K_2, K_3)$ is the matrix element of the gradient operator between the Bloch functions of the upper (+) and lower (−) band:

$$K = \int_{\text{lattice cell}} \overline{u}_+(x) \nabla u_-(x) \, dx$$
The Hamiltonian II

Putting $\alpha = \hbar K/m$ and $\gamma = E_g/2$, the symbol $h(x, p)$ of H can be written

\[
h(x, p) = \left(\frac{p^2}{2m} + V(x)\right)\sigma_0 + \alpha \cdot p \sigma_2 + \gamma \sigma_3
\]

\[
= h_0(x, p)\sigma_0 + \vec{h}(p) \cdot \vec{\sigma},
\]

where

\[
h_0(x, p) = \frac{p^2}{2m} + V(x), \quad \vec{h}(p) = (0, \alpha \cdot p, \gamma), \quad \vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3).
\]

and σ_i are the Pauli matrices

\[
\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]
Mixed states: the operator description

The quantum statistical state of the system (mixed state) is described by a time-dependent, self-adjoint, positive and trace-class operator $S(t), \ t \geq 0$.

Similarly to the Hamiltonian H, the operator $S(t)$ acts on the Hilbert space $L^2(\mathbb{R}^3, \mathbb{C}^2)$ (i.e. it is a 2×2 matrix of operators).

The evolution of $S(t)$ is given by the von Neumann equation

\[i\hbar \partial_t S(t) = [H, S(t)] \]
The quantum statistical state of the system (mixed state) is described by a time-dependent, self-adjoint, positive and trace-class operator $S(t)$, $t \geq 0$.

Similarly to the Hamiltonian H, the operator $S(t)$ acts on the Hilbert space $L^2(\mathbb{R}^3, \mathbb{C}^2)$ (i.e. it is a 2×2 matrix of operators).

The evolution of $S(t)$ is given by the von Neumann equation

$$i\hbar \frac{\partial}{\partial t} S(t) = [H, S(t)]$$
Mixed states: the Wigner description

The phase-space description of the state $S(t)$ is given by the 2×2 Wigner matrix w, defined by

$$w_{ij}(t) = \text{Op}_\hbar^{-1} [S_{ij}(t)], \quad w_{ij}(t) = w_{ij}(x, p, t),$$

where Op_\hbar^{-1} denotes the Wigner transform (inverse of the Weyl quantization Op_\hbar).

The matrix $w(x, p, t) = w_{ij}(x, p, t)$ is hermitian and, therefore, can be decomposed in the Pauli basis with real coefficients w_k:

$$w = w_0 \sigma_0 + \vec{w} \cdot \vec{\sigma}, \quad \vec{w} = (w_1, w_2, w_3).$$
Mixed states: the Wigner description

The phase-space description of the state $S(t)$ is given by the 2×2 Wigner matrix w, defined by

$$w_{ij}(t) = \text{Op}^{-1}_{\hbar} [S_{ij}(t)], \quad w_{ij}(t) = w_{ij}(x, p, t),$$

where Op^{-1}_{\hbar} denotes the Wigner transform (inverse of the Weyl quantization Op_{\hbar}).

The matrix $w(x, p, t) = w_{ij}(x, p, t)$ is hermitian and, therefore, can be decomposed in the Pauli basis with real coefficients w_k:

$$w = w_0 \sigma_0 + \vec{w} \cdot \vec{\sigma}, \quad \vec{w} = (w_1, w_2, w_3).$$
Wigner equation

It can be proved that the von Neumann equation leads to the following system for the Pauli-Wigner functions \((w_0, \vec{w})\):

\[
\left(\partial_t + \frac{p}{m} \cdot \nabla_x + \Theta \hbar[V] \right) w_0 + \alpha \cdot \nabla_x w_2 = 0,
\]

\[
\left(\partial_t + \frac{p}{m} \cdot \nabla_x + \Theta \hbar[V] \right) \vec{w} + \alpha \cdot \nabla_x w_0 \vec{e}_2 - \frac{2}{\hbar} \hbar(p) \times \vec{w} = 0,
\]

where \(\hbar(p) = (0, \alpha \cdot p, \gamma)\), \(\vec{e}_2 = (0, 1, 0)\) and \(\Theta \hbar[V]\) is the pseudo-differential operator

\[
\Theta \hbar[V] = \frac{i}{\hbar} \left[V \left(x + \frac{i\hbar}{2} \nabla_p \right) - V \left(x - \frac{i\hbar}{2} \nabla_p \right) \right]
\]
Wigner-BGK (WBGK) equation

A model taking account of collisional effects can be obtained by adding BGK-like terms to the previous equations:

\[
\begin{align*}
\left(\partial_t + \frac{p}{m} \cdot \nabla_x + \Theta_{\hbar}[V] \right) w_0 + \alpha \cdot \nabla_x w_2 &= - \frac{w_0 - g_0}{\tau_c} \\
\left(\partial_t + \frac{p}{m} \cdot \nabla_x + \Theta_{\hbar}[V] \right) \vec{w} + \alpha \cdot \nabla_x w_0 \vec{e}_2 - \frac{2}{\hbar} \vec{h}(p) \times \vec{w} &= - \frac{\vec{w} - \vec{g}}{\tau_c}.
\end{align*}
\]

Here, \(\tau_c \) is a relaxation time and \((g_0, \vec{g})\) are suitable local-equilibrium Wigner functions, to be specified later on.
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
Scaled WBGK equation

The scaled version of the WBGK equation reads as follows:

\[
(\tau \partial_t + p \cdot \nabla_x + \Theta_{\epsilon}[V]) w_0 + \epsilon \alpha \cdot \nabla_x w_2 = -\frac{w_0 - g_0}{\tau}
\]

\[
(\tau \partial_t + p \cdot \nabla_x + \Theta_{\epsilon}[V]) \vec{w} + \epsilon \alpha \cdot \nabla_x w_0 \vec{e}_2 - 2\hbar(p) \times \vec{w} = -\frac{\vec{w} - \vec{g}}{\tau}.
\]

Here we have introduced two small, dimensionless, parameters:

\[
\epsilon = \frac{\hbar}{p_0 x_0} - \text{semiclassical \ parameter (scaled relaxation time)},
\]

\[
\tau = \frac{p_0 \tau_c}{m x_0} - \text{diffusive \ parameter (scaled Planck constant)}
\]

(where \(x_0\) and \(p_0 = \sqrt{mk_B T}\) are reference length and momentum).
 scaling the model

Scaled WBGK equation

The scaled version of the WBGK equation reads as follows:

\[
(\tau \partial_t + p \cdot \nabla_x + \Theta_\epsilon [V]) w_0 + \epsilon \alpha \cdot \nabla_x w_2 = -\frac{w_0 - g_0}{\tau}
\]

\[
(\tau \partial_t + p \cdot \nabla_x + \Theta_\epsilon [V]) \vec{w} + \epsilon \alpha \cdot \nabla_x w_0 \vec{e}_2 - 2\hbar(p) \times \vec{w} = -\frac{\vec{w} - \vec{g}}{\tau}.
\]

Here we have introduced two small, dimensionless, parameters:

\[
\epsilon = \frac{\hbar}{p_0 x_0} - \text{semiclassical parameter (scaled relaxation time)}
\]

\[
\tau = \frac{p_0 \tau_c}{m x_0} - \text{diffusive parameter (scaled Planck constant)}
\]

(where \(x_0\) and \(p_0 = \sqrt{mk_B T}\) are reference length and momentum).
Physical regime

We want to study the behaviour of the system when τ and ϵ are small.

The physical meaning is that we assume to be in a diffusive (many collisions) and semiclassical (small Planck constant) regime.

Moreover, we are assuming that the bands are “almost parabolic” (which is the case, e.g., of a semiconductor superlattice). In fact, the scaled energy bands are:

$$E_{\pm}(p) = \frac{1}{2} |p|^2 \pm \epsilon \sqrt{(\alpha \cdot p)^2 + \gamma^2} = \frac{1}{2} |p|^2 \pm \epsilon |\vec{h}(p)|.$$
Physical regime

We want to study the behaviour of the system when τ and ϵ are small. The physical meaning is that we assume to be in a *diffusive* (many collisions) and *semiclassical* (small Planck constant) regime.

Moreover, we are assuming that the bands are “almost parabolic” (which is the case, e.g., of a semiconductor superlattice). In fact, the scaled energy bands are:

$$E_{\pm}(p) = \frac{1}{2} |p|^2 \pm \epsilon \sqrt{(\alpha \cdot p)^2 + \gamma^2}$$

$$= \frac{1}{2} |p|^2 \pm \epsilon |\vec{h}(p)|.$$
We want to study the behaviour of the system when τ and ϵ are small.

The physical meaning is that we assume to be in a *diffusive* (many collisions) and *semiclassical* (small Planck constant) regime.

Moreover, we are assuming that the bands are “almost parabolic” (which is the case, e.g., of a semiconductor superlattice). In fact, the scaled energy bands are:

$$E_{\pm}(p) = \frac{1}{2} |p|^2 \pm \epsilon \sqrt{(\alpha \cdot p)^2 + \gamma^2}$$

$$= \frac{1}{2} |p|^2 \pm \epsilon |\vec{h}(p)|.$$
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
First of all, we study the system in the “quantum diffusive” limit:

\[\tau \rightarrow 0, \quad \epsilon \sim 1. \]

To this aim we adopt the Chapman-Enskog method.

We need to choose a suitable local equilibrium, represented by the Wigner functions \((g_0, \tilde{g}) \), used to define the BGK collisional operator in the WBGK equation.
First of all, we study the system in the “quantum diffusive” limit:

\[\tau \to 0, \quad \epsilon \sim 1. \]

To this aim we adopt the *Chapman-Enskog method*.

We need to choose a suitable local equilibrium, represented by the Wigner functions \((g_0, \tilde{g})\), used to define the BGK collisional operator in the WBGK equation.
Quantum diffusive limit

First of all, we study the system in the “quantum diffusive” limit:

$$\tau \to 0, \quad \epsilon \sim 1.$$

To this aim we adopt the *Chapman-Enskog method*.

We need to choose a suitable local equilibrium, represented by the Wigner functions \((g_0, \tilde{g})\), used to define the BGK collisional operator in the WBGK equation.
Local equilibrium I

We assume that *collisions do not produce band-crossing*.

Hence, the BGK operator is assumed to locally conserve the two band densities:

\[
n_{\pm}(x, t) = (N_{\pm}w)(x, t) = \int_{\mathbb{R}^3} \left[w_0(x, p, t) \pm \vec{v}(p) \cdot \vec{w}(x, p, t) \right] dp
\]

where

\[
\vec{v}(p) = \frac{\vec{h}(p)}{|\vec{h}(p)|} = (0, \alpha \cdot p, \gamma)/\sqrt{(\alpha \cdot p)^2 + \gamma^2}.
\]

Then, \(g = (g_0, \vec{g}) \) should satisfy the moment condition

\[
N_{\pm}g = n_{\pm} = N_{\pm}w
\]
Local equilibrium I

We assume that collisions do not produce band-crossing. Hence, the BGK operator is assumed to locally conserve the two band densities:

\[
 n_{\pm}(x, t) = (N_{\pm}w)(x, t) = \int_{\mathbb{R}^3} \left[w_0(x, p, t) \pm \vec{\nu}(p) \cdot \vec{w}(x, p, t) \right] dp
\]

where

\[
 \vec{\nu}(p) = \frac{\vec{h}(p)}{|\vec{h}(p)|} = (0, \alpha \cdot p, \gamma) / \sqrt{(\alpha \cdot p)^2 + \gamma^2}.
\]

Then, \(g = (g_0, \vec{g}) \) should satisfy the moment condition

\[
 N_{\pm}g = n_{\pm} = N_{\pm}w
\]
Local equilibrium I

We assume that \textit{collisions do not produce band-crossing.} Hence, the BGK operator is assumed to locally conserve the two band densities:

\[
 n_{\pm}(x, t) = (N_{\pm} w)(x, t) = \int_{\mathbb{R}^3} \left[w_0(x, p, t) \pm \vec{\nu}(p) \cdot \vec{w}(x, p, t) \right] dp
\]

where

\[
 \vec{\nu}(p) = \frac{\vec{h}(p)}{|\vec{h}(p)|} = (0, \alpha \cdot p, \gamma)/\sqrt{(\alpha \cdot p)^2 + \gamma^2}.
\]

Then, \(g = (g_0, \bar{g}) \) should satisfy the moment condition

\[
 N_{\pm} g = n_{\pm} = N_{\pm} w
\]
Local equilibrium II

By using the *quantum maximum-entropy principle* it can be shown that two “band chemical potentials” $\mu_{\pm}(x, t)$ exist such that the (scaled) local-equilibrium Wigner function $g^\epsilon = (g_0^\epsilon, \tilde{g}^\epsilon)$ is given by

$$g^\epsilon = \text{Op}_\epsilon^{-1} \left[\exp(-H_{\mu}^\epsilon) \right]$$

where H_{μ}^ϵ is the quantization of

$$h_{\mu}^\epsilon(x, p, t) = [h_0(x, p) + \mu_0(x, t)]\sigma_0 + \epsilon|\tilde{h}(p)| + \mu_s(x, t)]\vec{\nu}(p) \cdot \vec{\sigma},$$

and

$$\mu_0 = \mu_+ + \mu_-, \quad \mu_s = \mu_+ - \mu_-.$$
The moment condition

\[\mathcal{N}_\pm g = n_\pm = \mathcal{N}_\pm w \]

allows (in principle) to express \(\mu_\pm \) in function of \(n_\pm \).

Then,

\[g^\epsilon(x, p, t) = g^\epsilon(n_+(x, t), n_-(x, t), p) \]

and \(g^\epsilon \) can be used to close the momentum system by means of the Chapman-Enskog (C-E) procedure.
Local equilibrium III

The moment condition

\[
\mathcal{N}_\pm g = n_\pm = \mathcal{N}_\pm w
\]

allows (in principle) to express \(\mu_\pm \) in function of \(n_\pm \).

Then,

\[
g^\epsilon(x, p, t) = g^\epsilon(n_+(x, t), n_-(x, t), p)
\]

and \(g^\epsilon \) can be used to close the momentum system by means of the Chapman-Enskog (C-E) procedure.
Chapman-Enskog procedure I

We can now apply the C-E method to the WBGK equation, that we rewrite in compact form

\[\tau \partial_t w + T_\epsilon w = \frac{g_\epsilon - w}{\tau}, \]

where

\[T_\epsilon w = \left(\begin{array}{c}
(p \cdot \nabla_x + \Theta_\epsilon [V]) w_0 + \epsilon \alpha \cdot \nabla_x w_2 \\
(p \cdot \nabla_x + \Theta_\epsilon [V]) \tilde{w} + \epsilon \alpha \cdot \nabla_x w_0 \tilde{e}_2 - 2\hat{h}(p) \times \tilde{w}
\end{array} \right). \]

Expanding \(w = w^{(0)} + \tau w^{(1)} + \cdots \), we obtain

\[w^{(0)} = g_\epsilon, \]

\[w^{(1)} = -T_\epsilon w^{(0)} = -T_\epsilon g_\epsilon. \]
Chapman-Enskog procedure I

We can now apply the C-E method to the WBGK equation, that we rewrite in compact form

\[\tau \partial_t w + T_\epsilon w = \frac{g^\epsilon - w}{\tau}, \]

where

\[T_\epsilon w = \begin{pmatrix}
(p \cdot \nabla_x + \Theta_\epsilon [V]) w_0 + \epsilon \alpha \cdot \nabla_x w_2 \\
(p \cdot \nabla_x + \Theta_\epsilon [V]) \tilde{w} + \epsilon \alpha \cdot \nabla_x w_0 \tilde{e}_2 - 2\tilde{h}(p) \times \tilde{w}
\end{pmatrix}. \]

Expanding \(w = w^{(0)} + \tau w^{(1)} + \ldots \), we obtain

\[w^{(0)} = g^\epsilon, \]
\[w^{(1)} = -T_\epsilon w^{(0)} = -T_\epsilon g^\epsilon. \]
Applying N_\pm to both sides of the WBGK equation we get an equation for $n_\pm = N_\pm w$

$$\tau \partial_t n_\pm + N_\pm T_\epsilon w = 0$$

Now, substituting $w \approx w^{(0)} + \tau w^{(1)} = g^\epsilon - \tau T_\epsilon g^\epsilon$, at first order we obtain

$$\partial_t n_\pm = N_\pm T_\epsilon T_\epsilon g^\epsilon,$$

which is (in principle) a closed equation because $g^\epsilon = g^\epsilon(n_+, n_-, p)$.

Such equation is our quantum diffusive model of two-band electron transport in semiconductors.
Applying \mathcal{N}_\pm to both sides of the WBGK equation we get an equation for $n_\pm = \mathcal{N}_\pm w$

$$\tau \partial_t n_\pm + \mathcal{N}_\pm T_\epsilon w = 0$$

Now, substituting $w \approx w^{(0)} + \tau w^{(1)} = g^\epsilon - \tau T_\epsilon g^\epsilon$, at first order we obtain

$$\partial_t n_\pm = \mathcal{N}_\pm T_\epsilon T_\epsilon g^\epsilon,$$

which is (in principle) a closed equation because $g^\epsilon = g^\epsilon(n_+, n_-, p)$.

Such equation is our quantum diffusive model of two-band electron transport in semiconductors.
Applying N_\pm to both sides of the WBGK equation we get an equation for $n_\pm = N_\pm w$

$$\tau \partial_t n_\pm + N_\pm T_\epsilon w = 0$$

Now, substituting $w \approx w^{(0)} + \tau w^{(1)} = g^\epsilon - \tau T_\epsilon g^\epsilon$, at first order we obtain

$$\partial_t n_\pm = N_\pm T_\epsilon T_\epsilon g^\epsilon,$$

which is (in principle) a closed equation because $g^\epsilon = g^\epsilon(n_+, n_-, p)$.

Such equation is our quantum diffusive model of two-band electron transport in semiconductors.
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
Semiclassical expansion of the diffusive model

The quantum diffusive model

\[
\partial_t n_\pm = \mathcal{N}_\pm T_\epsilon T_\epsilon g^\epsilon,
\]

is extremely complicated, especially due to the structure of \(g^\epsilon = g^\epsilon(n_+, n_-, p)\).

However, in most applications the parameter \(\epsilon\) (left untouched so far) is very small and, therefore, the previous model should be semiclassically expanded.

First of all, we have \(T_\epsilon = T_0 + \epsilon T_1 + \cdots\), with

\[
T_0 w = (p \cdot \nabla_x - \nabla V \cdot \nabla p) \left(\begin{array}{c} w_0 \\ \vec{w} \end{array} \right) - 2 \left(\begin{array}{c} 0 \\ \vec{h}(p) \times \vec{w} \end{array} \right)
\]
Semiclassical limit

Semiclassical expansion of the diffusive model

The quantum diffusive model

\[\partial_t n_\pm = \mathcal{N}_\pm T_\epsilon T_\epsilon g^\epsilon, \]

is extremely complicated, especially due to the structure of \(g^\epsilon = g^\epsilon(n_+, n_-, p). \)

However, in most applications the parameter \(\epsilon \) (left untouched so far) is very small and, therefore, the previous model should be semiclassically expanded.

First of all, we have \(T_\epsilon = T_0 + \epsilon T_1 + \cdots \), with

\[T_0 w = (p \cdot \nabla_x - \nabla V \cdot \nabla p) \left(\frac{w_0}{\vec{w}} \right) - 2 \left(\frac{0}{\vec{h}(p) \times \vec{w}} \right) \]
Semiclassical expansion of the diffusive model

The quantum diffusive model

\[\partial_t n_{\pm} = \mathcal{N}_{\pm} \, T_{\epsilon} \, T_{\epsilon} \, g^\epsilon, \]

is extremely complicated, especially due to the structure of \(g^\epsilon = g^\epsilon(n_+, n_-, p) \).

However, in most applications the parameter \(\epsilon \) (left untouched so far) is very small and, therefore, the previous model should be semiclassically expanded.

First of all, we have \(T_{\epsilon} = T_0 + \epsilon T_1 + \cdots \), with

\[T_0 w = (p \cdot \nabla_x - \nabla V \cdot \nabla p) \begin{pmatrix} w_0 \\ \vec{w} \end{pmatrix} - 2 \begin{pmatrix} 0 \\ \vec{h}(p) \times \vec{w} \end{pmatrix} \]
Moreover, it can be shown that

\[g^{\varepsilon} = g^{(0)} + \varepsilon g^{(1)} + \varepsilon^2 g^{(2)} + \ldots \]

where \(g^{(0)} \) is given by

\[g^{(0)} = \frac{1}{2} \left(\begin{array}{c} \phi_+ + \phi_- \\ (\phi_+ - \phi_-) \vec{v} \end{array} \right) \]

with

\[\phi_{\pm} = \phi_{\pm}(x, p, t) = (2\pi)^{-3/2} n_{\pm}(x, t) e^{-p^2/2} \]
Semiclassical diffusive model

Then, at order 0 in ϵ we can write

$$\partial_t n_{\pm} = \mathcal{N}_\pm T_0 T_0 g^{(0)}$$

which can be explicitly computed and yields the semiclassical diffusive model:

$$\left\{ \begin{aligned} \partial_t n_+ &= \Delta n_+ + \text{div}(\nabla V n_+) + \omega(V)(n_- - n_+) \\ \partial_t n_- &= \Delta n_- + \text{div}(\nabla V n_-) - \omega(V)(n_- - n_+) \end{aligned} \right.$$

where

$$\omega(V) = \frac{\gamma^2 (\alpha \cdot \nabla V)^2}{2(2\pi)^{3/2}} \int \frac{e^{-p^2/2}}{(\alpha \cdot p)^2 + \gamma^2} \, dp$$
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
Numerical experiments

Parameter values

We performed some numerical experiments (in the one-dimensional case) with the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference length (x_0)</td>
<td>(0.5 \times 10^{-7}) m;</td>
</tr>
<tr>
<td>temperature (T)</td>
<td>300 K</td>
</tr>
<tr>
<td>typical collision time (\tau_c)</td>
<td>(10^{-14}) sec</td>
</tr>
<tr>
<td>reference time (computed) (t_0)</td>
<td>(5.5 \times 10^{-11}) sec</td>
</tr>
<tr>
<td>band gap (E_g)</td>
<td>0.1 eV</td>
</tr>
<tr>
<td>effective mass (m^*)</td>
<td>0.9</td>
</tr>
<tr>
<td>(\alpha) (computed from (E_g) and (m^*))</td>
<td>(3.1 \times 10^4) m/sec</td>
</tr>
</tbody>
</table>

In this case

\[\tau = 0.014, \quad \epsilon = 0.034. \]
Simulations

In the following simulations we inject electrons from the left in the upper band.

In the “transient” case the input is switched on for a small amount of time while, in the “stationary” case, the input is stationary and the system reaches a steady state.
Numerical experiments

Constant field (transient)
Numerical experiments

Constant field (stationary)

L. Barletti, G. Frosali (Università di Firenze)

Quantum drift-diffusion modeling

SIMAI 2008 28 / 37
Constant field + step (transient)
Numerical experiments

Constant field + step (stationary)

L. Barletti, G. Frosali (Università di Firenze)

Quantum drift-diffusion modeling

SIMAI 2008 30 / 37
Constant field + well (transient)

L. Barletti, G. Frosali (Università di Firenze)
Numerical experiments

Constant field + well (stationary)

L. Barletti, G. Frosali (Università di Firenze)

Quantum drift-diffusion modeling
Outline

1. The quantum kinetic model
2. Scaling the model
3. Quantum diffusive limit
4. Semiclassical limit
5. Numerical experiments
6. Conclusions and future work
Conclusions

- We have investigated the electron transport in a two-band semiconductor device.

- Starting at the kinetic from a kinetic Wigner-BGK equation, using the quantum maximum-entropy principle and the C-E method, we have first obtained a quantum diffusive model ($\tau \to 0, \epsilon \sim 1$).

- Then, the model has been semiclassically expanded ($\epsilon \to 0$) and we have obtained, at order 0, a drift-diffusion system with a (potential-dependent) generation/recombination-like coupling term.
Conclusions

- We have investigated the electron transport in a two-band semiconductor device.

- Starting at the kinetic from a kinetic Wigner-BGK equation, using the quantum maximum-entropy principle and the C-E method, we have first obtained a quantum diffusive model ($\tau \to 0$, $\epsilon \sim 1$).

- Then, the model has been semiclassically expanded ($\epsilon \to 0$) and we have obtained, at order 0, a drift-diffusion system with a (potential-dependent) generation/recombination-like coupling term.
Conclusions

- We have investigated the electron transport in a two-band semiconductor device.

- Starting at the kinetic from a kinetic Wigner-BGK equation, using the quantum maximum-entropy principle and the C-E method, we have first obtained a quantum diffusive model \((\tau \to 0, \epsilon \sim 1)\).

- Then, the model has been semiclassically expanded \((\epsilon \to 0)\) and we have obtained, at order 0, a drift-diffusion system with a (potential-dependent) generation/recombination-like coupling term.
Future work

- We wish to do more serious numerical experiments, by nonlinearly coupling the drift-diffusion system with the Poisson equation for the potential V.

- We wish to perform a rigorous analysis of the diffusive and semiclassical limit by adapting the Mika-Banasiak theory.

- We wish to consider more terms in the semiclassical expansion (this should lead to $O(\hbar^2)$ Bohm-potential-like terms).
Future work

- We wish to do more serious numerical experiments, by nonlinearly coupling the drift-diffusion system with the Poisson equation for the potential V.

- We wish to perform a rigorous analysis of the diffusive and semiclassical limit by adapting the Mika-Banasiak theory.

- We wish to consider more terms in the semiclassical expansion (this should lead to $O(\hbar^2)$ Bohm-potential-like terms).
Future work

- We wish to do more serious numerical experiments, by nonlinearly coupling the drift-diffusion system with the Poisson equation for the potential V.

- We wish to perform a rigorous analysis of the diffusive and semiclassical limit by adapting the Mika-Banasiak theory.

- We wish to consider more terms in the semiclassical expansion (this should lead to $O(\hbar^2)$ Bohm-potential-like terms).
Third School and Workshop on “Mathematical Methods in Quantum Mechanics”
Bressanone (Italy) - February 16 - 21, 2009

http://www.mmqm.unimo.it/
Thank you!