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We study the two-band k-p model of electron transport in periodic potentials by
means of a spinorial Wigner function, resulting from the decomposition of the
Wigner matrix into Pauli-matrices components. The physical informations con-
tained into the four Wigner functions obtained in this way, as well as their dynam-
ics and local balance laws, are discussed.

1. Introduction

The recent, extraordinary achievements of nano-technologies made possible
to conceive, and in many cases realize, electronic devices based on purely
quantum principles. The usual semiclassical approach to charge transport
in semiconductors is not sufficient any more to describe such a new genera-
tion of devices and, correspondingly, quantum transport theory is becoming
quite a popular subject in the community of engineers, mathematicians and
physicists interested in semiconductor devices.

The quantum dynamics of an electron in a semiconductor crystal (or, in
general, of a particle in a periodic potential) is described by a Hamiltonian
operator of the following form:

h2

HZ_%A_‘_VPBI‘—FVJ (1)

where m is the electron “bare” mass, Vjer is the periodic potential gener-
ated by the ions of the crystal lattice and V' is the non-periodic part of
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the potential (accounting e.g. for doping and/or external bias). Note that
here we are neglecting lattice vibrations (phonons), electron-electron inter-
actions and heterostructure effects, i.e. step-like potentials appearing at the
interfaces between two layers of different semiconductor materials (we shall
briefly comment on this in Remark 1.1).

Even in such a simplified framework, the Hamiltonian (1) is, in general,
far too complicated for modeling purposes. Rather, it can be used to deduce
simpler approximated models. The simplest of such models is given by the
“effective-mass Hamiltonian”, which has the following form:

2
Hep = —% VIMIV 4+ V. (2)

Here, the effect of the periodic potential Ve is approximately taken into
account by the effective-mass tensor M, arising from a parabolic approxi-
mation of the energy band under consideration (conduction/valence) near
an extremum point.! The physical meaning of such approximation is that
a particle in a periodic potential behaves, in first approximation, as a free
particle with a different (and, possibly, direction-dependent) mass. The
simple form of H,,, implies that, in the effective-mass approximation, the
charge carrier “sees” only its typical energy band (conduction for electrons,
valence for holes). For this reason such model is unable to describe effects,
like the interband tunneling, that become very important when, due to the
particular device architecture, two or more bands of the energy spectrum
are actually available to the carrier.

A refined model, capable to describe the effect of two bands, is the
so-called two-band k-p Hamiltonian® (sometimes referred to as the “Kane
Hamiltonian”), which has the following form:

~EA+E,+V -E K.V
Hy, = . . . (3)
EK.v —LA+V
Note that, here, the effect of the periodic potential is taken into account
by the parameters E,, which is the so called direct energy-gap, and K =
(K4, K2, K3), which is the matrix element of the gradient operator between
the Bloch functions of the two bands!:?

K= / uc(z)Vuy(z) dz
lattice cell

(here and in the following, the subscripts ¢ and v stand for conduction and
valence).
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Remark 1.1. We have already mentioned that here we are neglecting het-
erostructure potentials, assuming to be dealing with a “bulk crystal”. This
implies that the parameters F, and K are constant. In the engineering
literature it is customary to introduce heterostructure potentials by simply
letting F, depend on the space variable. Moreover, we are also neglecting
electron-electron interactions: these can be approximately taken into ac-
count by letting the external potential V' depend self-consistently by the
electron density, through a Poisson equation.

In the following we shall study the quantum system described by Hamil-
tonian (3) in the framework of the Wigner formulation of quantum
34,56 There are at least two good reasons for this choice. The
first one is that the Wigner formalism is particularly suited to quantum
statistics (and it is clear that one needs quantum statistics when dealing
with a flow of many electrons through a device). The second reason is that
the Wigner function ‘tries very hard to be a joint density for momentum
and position®’. Thus, Wigner functions allow a “quasi-kinetic” formulation
of quantum mechanics and this makes the physical content of the Wigner
picture be somehow more intuitive than that of the density-matrix picture.

mechanics.

The following analysis is inspired by the Wigner-function analysis of
spin systems;” however, to the best of our knowledge, the application of
these techniques to k-p Hamiltonians is new.

2. The spinorial Wigner function

The two-band k-p Hamiltonian (3) acts in the Hilbert space H :=
L?(R3,C?), whose unitary elements v = (11,%2) € H represent the pure
states of the system (wave functions). The mixed states of the system are
represented by self-adjoint, positive and trace-class operators on H, called
density operators. Any density operator S admits a unique integral repre-
sentation

(Sv); = Z/Rs pii (z,y)¢(y) dy,

where p = (p;;) is called the density matriz associated to the mixed state®.
The Wigner matriz w = (w;;) associated to p is defined by”®?

1

wi;(r, p) := @rhy? /R3 Pij (r + g,r - g) e~ % P/h e, 4)
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for i,57 = 1,2 and (r,p) € R® x R®. The mapping p — w is the
Wigner transformation®*%° and turns out to be a unitary transformation
of L2(R3 x R®, C%2) into itself. Moreover, the self-adjointness of the density
operator S, which is reflected by the property p;;j(z,y) = pji(y,z) of the
density matrix p, implies that the Wigner matrix w is a 2 x 2 complex,

hermitian matrix for any fixed (r,p):
w(r,p) = w*(r,p), (r,p) € R® x R3. (5)

Thus, recalling that the Pauli matrices

oo (YO o _(01y (0= _ _ (10
°~ o1/ " \1o) TP \io) TP \o-1)°

are a orthonormal basis of the real vector space of 2 x 2 hermitian matrices
with respect to the scalar product (A,B) = 3 tr (AB), we can uniquely
decompose the Wigner matrix w with respect to such basis:

3
'LU(T,p) = Zwk(rap) Ok, (Tap) € ]RB X R35 (6)
k=0

where the functions wy = wg(r,p) are real-valued for k£ = 0,1,2,3. These
will be the four Wigner functions associated to our physical system.

Proposition 2.1. Let (wy)(r) := [yswi(r,p) dp be the “local average” of
wg. Then

(wo)? = (w1)? + (w2)? + (ws)?, for a pure state,

(wo)? > (w1)” + (w2)? + (ws)®,  for a mized state. ™

Proof. We have that (w;;)(r) = pi;(r,r). In the case of a pure state,
pij (z,y) = ¥ (2)Y;(y), with (1,v2) € H. Thus, the first of (7) follows
from

(wo)*(r) = ((wn) + (wa) + (ws)?) (r) = det (Yi(r)i5(r)) =0.  (8)

The mixed states have the form p = > 72 App,, where > 22, A = 1,
Ar > 0 and each p,, is a pure-state density matrix as above. By using (8)
and the fact that det (tA+ (1 —¢)B) >0if A >0, B> 0and ¢ € [0,1],
we can inductively prove the second of (7) for a mixed state of the form
p= Eszl ArpPy- The general result follows by taking the limit N — co. O

It is worth to remark that (7) are the same equations obeyed by the Stokes
parameters describing a polarized light beam.!?
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Now, let A be a self adjoint operator acting on H (representing therefore
a physical observable of our system) of the form

3
A=a? = Z a o. (9)
k=0

Here a;” denotes the Weyl quantization® of the symbol aj, = ay(r,p) (for
each fixed k, a;? is an operator acting in L*(R*,C)) and a°? is the corre-
sponding matrix-valued symbol. If w;, are the Wigner functions associated
to the density operator S as above, then it can be proved that?

1 3
3 TN =3 [ axtrp)untrp)dr dp (10)

Eq. (10) relates the expected value Tr(SA) of the observable A in the mixed
state S with a “quasi-classical” expression involving the symbols aj and the
Wigner functions wg. Note, in particular, that wo carries the information
relevant to purely non-spinorial observables (e.g. position and momentum).

3. Application to the two-band k-p Hamiltonian
Using Pauli matrices, the two-band k-p Hamiltonian (3) can be written
h2
Hkp:(—%A—I—V)O'O_?:EQ'VO'Q—FQO';;, (].].)
where we put a := hK/m and g := E, /2 for brevity. Note that Hy, = h°?,
where the matrix-valued symbol h is given by
h(r,p) = ho(r,p)oo +a-por+gos (12)

and ho(r,p) := % + V(r). The “free” k-p Hamiltonian (i.e. with V' = 0)
has a dispersion relation given by the eigenvalues of (11) with V' = 0:

) = Lt @R B = - @ (19

(see Fig. 1). Two (non unitary) eigenvectors are

_ ia-p _ (9 V(a-p)?+g?
zbc(p)—(g_ (a_p)2+g2), «pv(p)—( o )

2@Note that we denoted with “tr” the trace of a 2 X 2 complex matrix and with “Tr” trace
of an operator acting on #.
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Figure 1. Plot of the energy eigenvalues Ec(p) and E.(p) given by (13). Here the
momentum variable p is assumed to be scalar. The energy unit is the electron Volt and
the momentum unit is pg = 3.8 x 10725 Kgm/sec. For the crystal parameters we used
the values Eg = 1.42eV and K = 1.3 x 1019 m—1, corresponding to the I'-point of GaAs

(the values are taken from Refs. 11 and 12).

from which we can compute the eigenprojections

_be@evdp) o P 8% (p)
We(@)® v v ()]

so that the k-p symbol (12) can be written

h(r,p) = Ec(p) we(p) + Ev(p) 7v(p) + V(r)oo.

me(p)

)

Carrying out the computations explicitly, we get

Te(p) = 500+ — gy + g a3,
2 2y/(a-p)? + g2 2y/(a-p)? + ¢
1 a-p g
m(p) = ;00 — oy — o3.
2 2y/(a-p)* + ¢ 2y/(a-p)* + ¢
Introducing the vectors
= . B -
Bp)=0,a-p,9), )= 2L, &= (01,05,00)

(15)
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7
the preceding expressions can be rewritten in the concise form
1 1 1 1
= — _n .G = — I . 1
me(p) = 500+ 57(p) -G, my(p) =500 —5ilp) & (16)
and the symbol h(r,p) in the following “spin-like” form:
h(’f’,p) = hO(Tap) oo+ E(p) ‘0. (17)

The operators w2? and w2 (acting on H) are the projections on the two
band-subspaces of the free k-p Hamiltonian (note that they are not spectral
projection for the full k-p Hamiltonian, i.e. with V' # 0). Let us now
consider the band-index operator b°? defined by the symbol

b(p) := we(p) — wv(p) = 7i(p) - & (18)
Clearly, b°? has eigenvalues 1 (for electrons in the conduction band) and
-1 (for electrons in the valence band). Note that the band-index operator
b°? has the form (9). Thus, from (18) and (10) we have that the expected
value of the band index, in the mixed state described by the four Wigner
functions wy, of Sec. 2, is given by

1 -
5 Te(b )=I§ / ii(p) - i, p) dr dp, (19)

where we put @ = (wy,ws,ws3). This equation attaches a physical meaning
to the “spinorial part” @ of the Wigner functions defined in the previous
section. Note that we can interpret the function 7i(p) - @(r,p) as a “band-
index density in phase-space”.

4. The k-p dynamics of Wigner functions

The evolution equation for the Wigner functions wy = wg(t) is deduced
from the evolution equation for the corresponding density operator S(t),
i.e, from the quantum Liouville equation

ih0; S(t) = [Hip, S(t)], (20)

where [A, B] := AB — BA, as usual. There is no room here to track all
the computations that lead from (20) to the evolution equations for wq
and @ = (wy,wa,ws3). So, let us just show the final result, which reads as
follows:

@ +v-Vy+0Oy)w = -V, B'@ (21a)

2 —
(6t+U'vr+@V)w:EBAIE—VT-BIWO (21b)
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where v := p/m and B’ is the matrix (0B;/0p;). At the right-hand sides of
Egs. (21) we just find the standard Wigner-equation operator® v-V, + Oy,
where Oy is the pseudo-differential operator®

Oy = %[V(w%vp) —V(r—%v,))], (22)

ﬁ /R6 e’i(P_p,)'E/ﬁ f(’f', £) u(r,p') d§ dp,

with
[f(r, —ihV )u] (r, p) :=

The first term at the right-hand side of Eq. (21b) generates a precession
of & around the vector %B, where we recall that B = B(p) = (0, a - p, g).
The last terms of Egs. (21) couple wg with . Since Vpﬁ =(0,,0), i.e

000
BI = a1 09 Q3 5
000

then we simply have V,.- B'# = a- V,wy and V,.- B'wg = a- V,.(0,wq, 0).
Note, therefore, that the direct coupling takes place only through the second
component wy of W. Written component-wise, Eqs. (21) read as follows:

(04 vV +Oy)wy =—a-V,ws
(O +v-V,+Oy)w; :__w2+72ia pws

< (O +v-V,+Oy)wy =—a-V, wo+%gw1 (23)
( +v-V, +®v)w3:——a pw;.

If we now assume V = 0 and g = 0, then the system (23) take the simple
form

fCEXE V)woz—a vV, ws
Oy +v- V)wl——a pws

< (O +v-V,)ws = —a- V,wo (24)
( +v- V)wgz—ga pw;.

Note that the vanishing band-gap, g = 0, makes wg and ws decoupled from
w; and wz. The system for wg and w, is a couple of transport equations
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9
which can be easily solved; the general solution is
wo(r,p,) = 3 [ +u)(r — vet,p) + (uf — w§)(r — vut,p)] -
ws(r,p,1) = 5 [(0§ + ) (r — vet, ) — (uf ~ud)(r — vt )]

where w, w§ are arbitrary initial data for wg, w2 and we put

D p
Ve I=Uv+a=—+aq, Vy ISU—Q=— —aq.
m m

Thus, we can observe that the initial Wigner functions are split into two
packets which propagate with different p-dependent velocities, v, and vy.
This is due to the fact that the electron is, at each time, in a superposition
of two energy-band states (valence and conduction) and the two bands have
different dispersion relations, Eq. (13), i.e. two different group velocities.
Note that in the simple case we are considering, i.e. g = 0, the band-index
density function is simply ws (in fact @ = (0,1,0)); thus ws represents the
“presence” of the electron in conduction (ws > 0) and valence (w2 < 0)
bands.

If g # 0, the dynamics is more complicated and Egs. (23) cannot be solved
explicitly. In Figure 2 we show an example in dimension 1. We solved
numerically Eqs. (23), with V' = 0, supplying it with the initial datum

O(r,p) = o _i _ b
YO P) = oxA.A, PP\ T2A2 T 2A2 ) (26)
w(l)(rap) = Wg(rap) = wg(r,p) =0,

with A,A, = fi/2. This represents a mixed state (recall Proposition 2.1)
consisting of a Gaussian wave packet centered in the origin of phase-space
and equally distributed between the two bands (note, in fact, that the band-
index density vanishes everywhere). The four figures are contour plots in
phase-space (the level sets being logarithmically spaced) of the pseudo-
distribution wq(r,p,t) at successive values of ¢. The first plot is just the
initial datum. In the second plot the solution appears to be quite similar
to the g = 0 case, Egs. (25): the conduction-part and the valence-part
of the packet evolve according to its own dispersion relation (13). In the
last two plots more complicated patterns appear, due to interference effects
between the c-part and the v-part of the packet. The continuous line on
the left-hand side of each plot represents the (half) local position density

(wo)(r,t) = [*°°wo(r, p,t) dp (see Eq. (10)).
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Figure 2. Evolution of the Gaussian wave-packet (26). The pseudo-distribution in
phase-space wq is represented by the contour plots while the position density (wo),
obtained by integrating wo with respect to p, is represented by the continuous lines at
the left-hand side of each figure. The value of crystal parameters E, and K, as well as the
momentum unit pg, are the same of Fig. 1. The length and time units are, respectively,
ro = 4.2 x 10719m and 1015 sec.

5. Balance equations

The pseudo-differential operator (22) can be formally expanded in a Taylor
series of odd powers:

2\ k=1 Tk
Zh VTV(T) k
Oy =— 3 (5) 2V
|k| odd

where we used the standard multi-index notations: k := (ki1, k2, k3), |k| :=
k1 +kotks, k! := k1! ko! k3!, Thus, for any given multi-index s = (s1, s2, $3),
integration by parts yields

k<s  ,.x k=1 ok
s _ ’Lh VTV(T) s—k
/p Oyu(r,p)dp = lklz;ld (5) T/p u(r,p)dp,  (27)
o]
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where k < s means k; < s; for i = 1,2,3 (here and in the remainder of the
paper the integrations are always intended to be over p € R®).

Let now (fo, f) be a R*-valued function defined on phase-space. If we
multiply Eq. (21a) by fo, Eq. (21b) by f and add the resulting equations
together, we obtain

O (f0w0+f-u7)+Vr-v(f0w0+f-u'f)+VT-B’(_’w0+fozﬁ)
+f0®vw0+f-®vw=%f-§/\w. (28)

By using (27) and (28), it is easy to deduce balance laws for the local
densities of physical quantities carried by our system (recall Eq. (10)).

By substituting (1,0) for (fo, f) in Eq. (28), and integrating with re-
spect to p, we see from (27) that the potential terms vanish and obtain the
continuity equation

dp+V,-j=0, (29a)

where p := (wo) = [wo dp is (half) the position density and the current j
is given by

f::/(vw0+B'u7) dpz/(vw0+aw2)dp. (29b)

Note that the current fis determined by a standard term [ vwq dp and by
a spinorial component « f wy dp, which is a correction that accounts for the
different velocities of the c-part and the v-part of the electron.

From (17) we have that the observable “pseudo-kinetic energy”, i.e.
the non-potential part of energy, corresponds to the symbol (fo, f ) =
(p*/2m, g(p)) The (half) pseudo-kinetic energy density is, therefore, given

by

pert)i= [ [ 2 wntript) + B0)- atrp)] a0

N

If we substitute (p2/2m, B(p)) for (fo, f) into (28), integrate with respect
to p and observe that Eq. (27) yields

P’ p
/ — Ovwodp =V, V(r)- / — wo dp
2m m

/E Oyi@dp = V,V(r) -/B’u’)’dp,
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then we obtain the following balance law for pg:
dpp+Vr-je=F-J, (31a)

where F(r) := —V,V(r) is the force field, j is given by (29b) and the
pseudo-kinetic energy current jE is given by

2 2

75 ::/u L dp+/B’ P 5+ Buw)dp.  (31b)
2m 2m

Note that Eq. (31a) has the familiar form of energy-balance laws: the

change of energy density is due to the local energy flow V., ;E as well
as to a “Joule heating” term F - .
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