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Introduction

• Many devices work at high-field regimes: Drift-Diffusion models fail. Huge literature about

“corrected” models (F. Poupaud, P. Degond, N. Ben Abdallah, I.M. Gamba, A. Jüngel,

V. Romano, and many others).

Common point: semi-classical approach, i.e. Boltzmann equation for semiconductors .

• Advance in semiconductor technology requires to consider quantum effects at quasi-ballistic

regimes

=⇒ quantum macroscopic models.

• Quantum kinetic description: w(x, v, t), (x, v) ∈ R2d, t > 0 is the electron quasi-distribution

function. Wigner equation is the quantum equivalent of (Liouville) transport equation.

• Wigner-derived macroscopic models are analytically and numerically challenging.

• Goal: present a (rigorous) study of the accuracy of a quantum macroscopic model derived from

the Wigner model via a Chapman-Enskog type procedure in high-field conditions
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Wigner-BGK equation

w = w(x, v, t), (x, v) ∈ R6, t ≥ 0 quasi-distribution function for an electron ensemble.

1/κβ enviroment temperature, V applied potential (also self-consistent).

∂ w

∂t
+ v · ∇xw − Θ[V ]w = −ν(w − weq

) , t > 0 , w(t = 0) = w0 ,

Θ[V ]w(x, v) := iF−1
v

{
1

~

(
V

(
x+

~η
2m

)
− V

(
x−

~η
2m

))
Fvw(x, η)

}
with ν inverse relaxation-time, m effective mass, and F = Fv→η Fourier transform.

since, by Taylor expansion around x,

i

~

(
V

(
x+

~η
2m

)
− V

(
x−

~η
2m

))
=
iη

m
· ∇V (x) +

iη2~2

24m3
η· ∇∆V (x) +O(~4

) ,

then

Θ[V ]w(x, v) = −
1

m
∇V (x)· ∇vw(x, v) +

~2

24m3
∇∆V (x)· ∇v∆vw(x, v) +O(~4

)
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Wigner equation: semiclassical limit

From the Taylor expansion of the pseudo-differential term with respect to η around x

Θ[V ]w
~→0−→ −

1

m
∇xV (x)· ∇vw Vlasov operator.

Θ[V ]w = −
1

m
∇xV (x)· ∇vw +O(~2

) .

Fact:

=⇒
∫
v
k
Θ[V ]w(x, v) dv = −(1/m)

∫
v
k∇V (x)· ∇vw(x, v) dv , k = 0, 1, 2

=⇒ quantum corrections due to Θ[V ] appear for i ≥ 3.

the v-moments of Θ[V ] and of −(1/m)∇xV (x)· ∇v coincide up to 2nd-order moments.

Instead: ∫
v

3
Θ[V ]w dv = −

1

m

∫
v

3∇xV (x)· ∇vw dv +
~2

4m3
n∇x∆xV .
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The thermal equilibrium state

w
eq

(x, v, t) = n(x, t)C e
−βmv2/2

1 + ~2

[
−
β2 ∆V (x)

24m
+
β3

24

d∑
r,s=1

vrvs
∂2V (x)

∂xrxs

]
weq(x, v, t),O(~2)-accurate local thermal equilibrium distribution function (with β, V assigned),∫

w
eq

(x, v, t) dv = n(x, t) :=

∫
w(x, v, t) dv , electron position density.

∫
w

eq
(x, v, t) dv = n(x, t) :=

∫
w(x, v, t) dv ,∫

v w
eq

(x, v, t) dv = 0 ,

∫
v

2
w

eq
(x, v, t) dv =

(
3κθ

m
+

~2

12κθm2
∆V (x)

)
n(x, t)

with θ = 1/(κβ) enviroment temperature. β, V (x) are given!

The electron equilibrium energy density depends on t ONLY through n.
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Derivation of quantum macroscopic models

Questions:

• what are the differences in using −(1/m)∇xV (x)· ∇v in spite of Θ[V ] for the derivation of

quantum macroscopic models?

Remark: quantum corrections due toweq, which isO(~2)-accurate, appear already in 2nd-order

moments: ∫
v ⊗ v weq

dv =
nI

βm
+

β~2

12m2
n∇x ⊗∇xV .

• And in high-field regimes?
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The Macroscopic Quantities

Let us define the first and second order unknown macroscopic quantities, i.e. the fluid velocity and

the energy density

u = u(x, t) :=
1

n

∫
v w(x, v, t) dv

W = W(x, t) :=

∫
v2

2
w(x, v, t) dv

Moreover, we recall that we can split W as

W(x, t) =

∫
(v − u)2

2
w(x, v, t) dv + n

u2

2
=: Wi(x, t) +K(x, t)

• Wi and K indicate internal and kinetic velocity, respectively.

• In case of thermodynamical equilibrium with the bath individuated by weq, from the expressions

for the moments of weq we deduce

=⇒ the fluid velocity is zero, i.e. u
eq

(x, t) ≡ 0

6



The Equilibrium Energy

At the thermodynamical equilibrium the energy density equals

Weq
(x, t) =

n(x, t)

2

(
3κθ

m
+

~2

12m2κθ
∆xV (x)

)
= Weq

i (x, t) .

• The kinetic energy is zero and in the expression for Weq
i we can recognize the classical term

proportional to the temperature (the phonon one!) with the additional one which depends on

the quantum correction F ~ to the classical Maxwellian F .

• We stress that in the state of thermodynamical equilibrium weq the function Weq
i depends on

time just through the function n, since we assume both θ and V constants with respect to

time.
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High-field Wigner-BGK equation

εwt + ε v · ∇xw −Θ[V ]w = −ν(w − weq
) , t > 0 , w(t = 0) = w0 ,

is the equation in the high-field scaling, where

ε ≈
tV

t0
≈
tC

t0

with tV , tC, t0 characteristic times.

External potential and interaction with the enviroment are the dominant mechanisms in the

evolution and balance each other.

At the leading order, ε = 0, the solution of (ν −Θ[V ])w = νweq is

w
(0)

:= (νI −Θ[V ])
−1
νw

eq
= νF−1

( Fweq

ν − i δV

)
The inverse operator (ν − Θ[V ])−1 is defined in the Fourier space as the multiplication by the

factor ν(ν − iδV (x, η))−1, which exists and is bounded for all V since ν > 0.
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Moments at the Leading Order

ε = 0 ⇒ Θ[V ]w
(0)

= ν(w
(0) − weq

)

Then the moments of w(0) are∫
w

(0)
dv = n∫

v w
(0)
dv = −

∇xV

νm
n

∫
v ⊗ v w(0)

dv =

(
κθI
m

+ 2
∇xV

νm
⊗
∇xV

νm
+

~2

12m2κθ
∇x ⊗∇xV

)
n

∫
v
v2

2
w

(0)
dv = −

∇xV

νm

(
d kθ

2m
+
|∇xV |2

ν2m2
+

~2

24m2kθ
∆xV

)
n+

~2

8m3ν
∇x∆xV n

We remark that, at the leading order, u(0) = −
∇xV

νm
(x) is a nonzero-fluid velocity state. The

velocity field is constant: in the high-field regime the fluid velocity reaches its saturation value.
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Kinetic Energy at the Leading Order

The kinetic energy K(0) = n
2(x, t)

|∇xV |2

(νm)2
(x), as a consequence

W(0)
= W(0)

i +K(0)
=
n

2

(
3κθ

m
+
|∇xV |2

(νm)2
+

~2

12m2κθ
∆xV

)
+
n

2

|∇xV |2

(νm)2
.

In the internal energy it appears a contribute due the external field, which is peculiar of the

high-field assumption:
n

2

|∇xV |2

(νm)2
,

Instead, in case of a nonzero-fluid velocity equilibrium function weq(x, v − w, t), the related

energy density Weq
w is

Weq
w = Weq

w,i +K
eq
w =

n

2

(
3κθ

m
+

~2

12m2κθ
∆xV

)
+
n

2
w

2
.

A field contributes in modifying the internal energy W(0)
i if it has the same order of magnitude as

the interaction with the enviroment.
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Remark

• A nonzero fluid velocity generally only affects the kinetic term of the energy, but in the high-field

regime, where u = −
∇xV

νm
, this term also appears in the internal energy.

• The fact that the internal energy density at the physical regime of interest, W(0)
i , is different

from the equilibrium internal energy density, both in case of a zero-fluid velocity, Weq, and in

case of nonzero-fluid velocity w, Weq
w,i, induced us to consider the internal energy as the second

macroscopic function of interest for our investigation.

• The functionW(0)
i depends on time just through the function n, whereas the fluid velocity u(0)

does not depend on time.
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At high-field regime, the system is completely characterized by the velocity field (determined by

the applied potential), by the temperature θ, due to the contact with phonons, and by the position

density n, which is the only one subject to time-evolution.

From high-field Wigner-BGK equation we can obtain evolution equations for n and W(0) by

considering w ' w(0) and taking v-moments.

Then the energy density W(0) can change on time only because of transport. More explicitly,

∂n

∂t
−∇x ·

(
n
∇xV

νm

)
= 0 ,

∂W(0)

∂t
−∇x ·

(
W(0)∇xV

νm

)
+∇x ·

(
~2

8m3ν
∇x∆xV n

)
= 0 .

Let us repeat that the equations above describe only transport, since the electrons are in a regime

of drift-collision balance.

On the contrary of low-field case, diffusive term and heat-flux term will appear in the two equations

respectively only as O(ε) corrections via the Chapman-Enskog procedure.
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Redistributing the energy density as

W(0)
=

∫ |v − u(0)|2

2
w

(0)
dv +

n|u(0)|2

2
= W(0)

i +
n

2

|∇xV |2

(νm)2
,

with

W(0)
i =

n(x, t)

2

(
3κθ

m
+
|∇xV |2(x)

(νm)2
+

~2

12m2κθ
∆xV (x)

)
,

Consequently, the equations read as follows:

∂n

∂t
−∇x ·

(
n
∇xV

νm

)
= 0 ,

∂W(0)
i

∂t
−∇x ·

(
W(0)

i

∇xV

νm

)
+∇x ·

(
~2

8m3ν
∇x∆xV n

)
= 0 .

Next steps: we shall derive via a Chapman-Enskog procedure corrections of O(ε) for the previous

equations, in order to picture a physical regime “close to” the high-field one. We shall obtain

modifications to the evolution equations for the unknown n and W , coming from the inclusion of

contributions of order ε in the computation of the fluxes.
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The Chapman-Enskog procedure

The procedure consists of two steps:

First, we assume that the microscopic unknown w depends on time only through the macroscopic

quantities. Since among the unknown n and W(0)
i , the only t-dependent function is n (W(0)

i

depends on time only through n), we express

∂w

∂t
=
∂w

∂n

∂n

∂t
. (1)

Secondly, we assume that the macroscopic unknown n is an O(1) quantity, while we use instead

the following expansion

w =

∞∑
k=1

ε
k
w
k ∼ w

(0)
+ εw

(1)
.

to compute the other v-moments.

Let us compute the 0th-order moment of the high-field Wigner-BGK equation. We obtain the

continuity equation for n
∂

∂t

∫
wdv +∇x ·

∫
vwdv = 0
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This allows us to express
∂w

∂t
in (1) as

∂w

∂t
=
∂w

∂n

(
−∇x ·

∫
vwdv

)
.

By substituting this expression in the Wigner equation, we obtain

ε

(
∂w

∂n

(
−∇x ·

∫
vwdv

))
+ ε v · ∇xw = Θ[V ]w − ν(w − weq) ,

Then we expand the unknown w ∼ w(0) + εw(1).

At the 0-th order in ε, we obtain

Θ[V ]w(0) − ν(w(0) − weq) = 0 ,
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whose solution is given formally by

w
(0)

= (ν −Θ[V ])
−1
νw

eq

= F−1

(
νFweq

ν − iδV (x, η)

)
(x, v, t) = n(x, t)M(x, v) ,

where

M(x, v) := F−1

(
νF(F + ~2F ~)

ν − iδV (x, η)

)
(x, v) .

At the first order in ε

∂w(0)

∂n

(
−∇x ·

∫
vw

(0)
dv
)

+ v · ∇xw
(0)

= (Θ[V ]− ν)w(1)
,

Taking into account
∂w(0)

∂n
= M , we obtain

M∇x ·
(
n
∇xV

νm

)
+ v · ∇xw

(0)
= (Θ[V ]− ν)w(1)

,

Then we have
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w(1) = ∇x ·
(
n
∇xV

νm

)
(Θ[V ]− ν)−1

M + (Θ[V ]− ν)−1 (v · ∇x(nM)) .

Thus, we can rewrite the continuity equation with unknown n by using the expressions for w(0)

and w(1). We get a correction of order O(ε) for the continuity equation.

∂n

∂t
+∇x ·

∫
vw

(0)
dv + ε∇x ·

∫
vw

(1)
dv = 0 . (2)

In order to write Eq. (2) in a more explicit form, we need the moments of w(1):∫
w

(1)
dv = 0

∫
v w

(1)
dv = −

1

ν
∇x·

(
n

(
κθI
m

+ 2
∇xV

νm
⊗
∇xV

νm
+

~2

12m2κθ
∇x ⊗∇xV

))

+
1

ν
∇x ·

(
n
∇xV

νm

)∇xV

νm
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Then Eq. (2) can be rewritten as

∂n

∂t
−∇x ·

(
n
∇xV

νm

)
+
ε

ν
∇x ·

(∇xV

νm
∇x ·

(
n
∇xV

νm

))

−
ε

ν
∇x · ∇x

((
κθI
m

+ 2
∇xV

νm
⊗
∇xV

νm
+

~2

12m2κθ
∇x ⊗∇xV

)
n

)
= 0 .

This is a drift equation with an O(ε)-diffusive correction.

Observe that by splitting the following term as

ε

ν
∇x ·

(∇xV

νm
∇x ·

(
n
∇xV

νm

))
=
ε

ν

∆xV

νm
∇x ·

(
n
∇xV

νm

)
+
ε

ν

∇xV

νm
·∆x

(
n
∇xV

νm

)
,

we derive the following high-field corrected version of the (classical) mobilty coefficient µcl =

1/(νm)

µhf :=
1

νm

(
1 +

ε

ν
∆xV

)
.
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Corrections to the conservation equations

We want to get O(ε)-corrections for the equation for the energy density W . We start from

ε
∂W
∂t

+ ε∇x·
∫
v
v2

2
w dv +

∇xV

m
· (nu) = −ν(W −Weq) ,

that is the 2nd-order moment of the high-field Wigner-BGK equation. Two “closure” strategies are

feasible, then we shall obtain two corrected version the system for n and W .

First closure: We assume that the energy conservation holds due to the field effect, namely, we

say that the field balances the effect of the inelastic component of the collisions. Explicitly, this

consists in considering W ≈ W(0) in the O(1/ε)-part.

We get

∂W
∂t

−∇x ·
(
W(0)∇xV

νm

)
+∇x ·

(
~2

8m3ν
∇x∆xV n

)
+ ε∇x·

∫
v
v2

2
w

(1)
dv . (3)

19



Second closure: The first one corresponds to assume

W ≈ W(0)
+ εW(1)

,

equivalently, we are correcting the drift-collision balance assumption at the energy-level. Then we

have

∂W
∂t

+∇x·
∫
v
|v|2

2
w

(0)
dv+ε∇x·

∫
v
v2

2
w

(1)
dv+

∇xV

m
·
∫
v w

(1)
dv = −ν

∫ |v|2
2
w

(1)
dv .

(4)

In order to get more explicit expressions of Eq. (4), we compute the following additional moment

of w(1).

ν

∫ |v|2
2
w

(1)
dv =

(
−∇x·

(
n∇xV

νm

)W(0)

n

)
−
∇xV

m
·
∫
v w

(1) −∇x·
∫
v
|v|2

2
w

(0)
dv

Accordingly, Eq. (4) becomes

∂W
∂t

−∇x·
(
n∇xV

νm

)W(0)

n
+ ε∇x·

∫
v
v2

2
w

(1)
dv = 0 .
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Thanks for the attention!

21



RIGOROUS ASYMPTOTIC ANALYSIS
of the high-field Quantum Drift-Diffusion equation [Manzini, Frosali 06]

εwt + ε v · ∇xw −Θ[V ]w = −ν(w − weq
) , t > 0 , w(t = 0) = w0 ,

• By a “modified” Chapman-Enskog expansion [Mika, Banasiak] up to 1st-order in ε, we obtain

a Quantum Drift-Diffusion equation with unknown n and field-dependent corrections,

• We prove rigorously high-field QDD isO(ε2)-accurate approximation of high-field Wigner-BGK,

• We treat at the same time the initial layer part that provides initial datum for high-field QDD.

Abstract formulation:

ε
dw

dt
(t) = ε Sw(t) +Aw(t) + Cw(t), ∀ t > 0 , (5)

where w(t), w0 : (x, v) ∈ R2d 7→ R ,

Sw = −v· ∇xw , Aw := Θ[V ]w, Cw := −ν (w − weq
) .
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Define Xk : the subspace of L2(R2d), s.t.

‖w‖2
Xk

=

∫
R2d
|w(x, v)|2(1 + |v|2k) dx dv , with 2k > d

w ∈ Xk ⇐⇒ Fvw ∈ L2
x ⊗H

k
η ↪→ L

2
x ⊗ L

∞
η

=⇒

• n[w](x, t) :=
∫
w(x, v, t) dv ∈ L2

x with ‖n[w]‖L2
x
≤ C ‖w‖Xk,

• ∀V ∈ Hk
x , A+ C ∈ B(Xk) .

The problem for ε = 0

ε = 0 ⇒ 0 = Aw + Cw ⇔ (ν −Θ[V ])w = ν w
eq

The solution is w = n[w]M, with

M(x, v) := ν (ν −Θ[V ])
−1

[
e
−βmv2/2

(1 + ~2
F (V (x), v, β))

]
.
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The compressed Chapman-Enskog procedure

Definition P : Xk → ker(A+ C) and Q : Xk → (ker(A+ C))⊥

Pw := M

∫
w(x, v) dv ≡M n[w] =: ϕ , Qw := (I − P)w =: ψ

Decompose the unknown w = ϕ + ψ and from (5) derive two evolution equations for ϕ and

ψ with ϕ(0) = ϕ0 = Pw0 , ψ(0) = ψ0 = Qw0.

Idea: Correct the evolution equation for ϕ with the one for ψ.

1. leave ϕ UNEXPANDED,

2. distinguish “bulk” from “initial layer” parts:

ϕ(t) = ϕ̄(t) + ϕ̃

(
t

ε

)
= M n(t) + ϕ̃

(
t

ε

)
, ψ(t) = ψ̄(t) + ψ̃

(
t

ε

)
, (6)

3. expand ψ̄, ϕ̃, ψ̃ as powers of ε
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Expansion:
ψ̄(t) = ψ̄0(t) + ε ψ̄1(t) + ε2 ψ̄2(t) + . . . ,

ϕ̃

(
t

ε

)
= ϕ̃0

(
t

ε

)
+ ε ϕ̃1

(
t

ε

)
+ ε

2
ϕ̃2

(
t

ε

)
+ . . . ,

ψ̃

(
t

ε

)
= ψ̃0

(
t

ε

)
+ ε ψ̃1

(
t

ε

)
+ ε

2
ψ̃2

(
t

ε

)
+ . . .

Substitute (6) in the evolution equations: the approximate problem has unknown

ϕ̄, ψ̄0, ψ̄1, ϕ̃0, ϕ̃1, ψ̃0, ψ̃1.

We get the ”diffusion-like” equation

∂ϕ̄

∂t
= PSPϕ̄− εPSQ(Q(A+ C)Q)

−1QSPϕ̄

and the equations for the other unknowns.
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Rigorous analysis

Main Thm.: w0 ∈ H4
k+1, V smooth. Then, ∀T , 0 < T <∞, ∃C independent of ε s.t.∥∥∥ϕ(t) + ψ(t)︸ ︷︷ ︸

≡w(t)

−
(
ϕ̄(t)︸︷︷︸
≡M n(t)

+ε ψ̄1(t)+ψ̃0(t/ε)+ε ϕ̃1(t/ε)+ε ψ̃1(t/ε)
)∥∥∥

Xk

≤ Cε
2
, 0 ≤ t ≤ T .

Steps:

1. well-posedness of
∂ϕ̄

∂t
= PSPϕ̄− εPSQ(Q(A+ C)Q)

−1QSPϕ̄ , with ϕ̄ ≡M n,

2. ψ̄1(t) = (ν −Θ[V ])−1QSP(M n(t)) , then

‖∂tψ̄1(t)‖H1
k
∼ ‖∂t∇n(t)‖H1

x
‖QSQψ̄1(t)‖H1

k
∼ ‖∇·∇n(t)‖H1

x
,

regularity of the solution n =⇒ regularity and behaviour w.r.t. t→ 0+ of ψ̄1,

3. existence, regularity and behaviour w.r.t. t→ 0+ of ψ̃0, ϕ̃1, ψ̃1, precisely

‖Sϕ̃1(t/ε)‖Xk, ‖Sψ̃1(t/ε)‖Xk ∼ e
−νkt/ε with νk > 0 .

26



High-field QDD equation

∂n

∂t
−Dn− Gn− En = 0 , t > 0 , n(t = 0)

Dn = ε∇ · (D∇n) , Gn = ε∇ · (Wn) , En = ∇ · (Fn)

D :=
1

ν

(
I
βm

+
∇V
νm

⊗
∇V
νm

+
β~2

12m
∇⊗∇V

)
,

W :=
1

ν

(
2
∇⊗∇V
νm

+
∆V

νm

)∇V
νm

+
β~2

12mν
∇·∇ ⊗∇V, F :=

∇V
νm

.

Remark: singularly perturbed parabolic equation

Assumption: V smooth and s.t. ∃ c > 0 s.t. D(x) y ⊗ y ≥ c|y|2 , ∀ x, y ∈ Rd .

Propositions: Regularity estimates, Well-posedness of the QDD equation.
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