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A fluid-dynamical set of equations is derived starting from a quantum kinetic
description of transport in high-field regime.

1. Introduction and formulation of the scaled problem

We derive a hydrodynamical model for a quantum system evolving in high-
field regime, namely when advection and dissipative terms are dominant
and have the same order of magnitude. To this aim we consider a rescaled
version of the Wigner equation with unknown the quasi-distribution func-
tion w = w(x, v, t), (x, v) ∈ IR2d, t > 0, describing the time-evolution of a
quantum system with d degrees of freedom, under the effect of an external
potential V = V (x), x ∈ IRd and a ”collisional” term Q(w). It reads

ε∂tw + εv · ∇xw −Θ[V ]w = Q(w) , (x, v) ∈ IR2d, t > 0. (1)

The potential V enters through the pseudo-differential operator Θ[V ] de-
fined by

(Θ[V ]w)(x, v, t) =
i

(2π)d/2

∫

IRd

δV (x, η)Fw(x, η, t)eiv·η dη , (2)

where
δV (x, η) :=

1
~

[
V

(
x +

~η
2m

)
− V

(
x− ~η

2m

)]

and ε is a parameter corresponding to the Knudsen number. Ff(η) ≡
[Fv→ηf ](η) denotes the Fourier transform of w from v to η. In the Fourier-
transformed space IRd

x×IRd
η the operator Θ[V ] is the multiplication operator

by the function i δV ; in symbols,

F (Θ[V ]w) (x, η) = i δV (x, η)Fw(x, η) . (3)
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We choose the collisional term in the relaxation-time BGK form, i.e.
Q(w) = −ν(w − weq). It describes the dissipative mechanism due to the
interaction with the environment, which leads the system to a state weq of
thermodynamical equilibrium with temperature 1/kβ. Explicitly,

weq(x, v, t) = n(x, t)
(

βm

2π

)d/2

e−βmv2/2

×
{

1 + ~2 β2

24

[
− 1

m
∆V (x) + β

d∑
r,s=1

vrvs
∂2V (x)
∂xrxs

]
+ O(~4)

}
. (4)

This is obtained by inserting in the Wigner thermodynamical equilibrum
function8 the parameter c = c(x, t) and then by assuming

∫
weq(x, v, t) dv =

∫
w(x, v, t) dv =: n[w](x, t) ≡ n(x, t) . (5)

The version of Wigner equation (1) under examination corresponds to the
case in which a “strong” external potential is included. Accordingly the
potential characteristic time tV and the mean free time tC between interac-
tions of the system with the background are assumed to be comparable and
small. The Knudsen number ε is inserted in order to identify terms of the
same order of magnitude. Since dissipative interaction and advection terms
coexist during the evolution, the high-field relaxation-time state shall be
determined by considering the joint actions of collisions and external field.
The corresponding distribution function is the solution of Eq.1 for ε = 0
and it shall be adopted to close the system for the fluid-dynamical moments
of the Wigner function

n(x, t) :=
∫

Rd
v

w(x, v, t) dv , nu(x, t) :=
∫

Rd
v

v w(x, v, t) dv ,

(6)
e(x, t) :=

∫

Rd
v

1
2
m|v|2 w(x, v, t) dv .

Let us rewrite the right-hand side part of Eq. (1) as

Q(w) := −(ν w − Ωw) ,

where the operator Ω is defined by

Ωw(x, v) = ν n[w](x)
[
F (v) + ~2F (2)(x, v)

]
,
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the function F (v) is the normalized Maxwellian F (v) :=
(

βm
2π

)d/2

e−βmv2/2

and F (2) is the O(~2)−coefficient in weq

F (2)(x, v) ≡ F (2)[V ](x, v) =
β2

24

[
− 1

m
∆V + β

d∑
r,s=1

vrvs
∂2V

∂xrxs

]
F (v) .

2. The high-field relaxation-time function

Let us denote by M = M(x, v) the solution of the following equation

θ[V ]w + Qw = 0 (7)

In Ref. 7 it is proved that exists a unique solution M with
∫

M(x, v, t) dv =∫
w(x, v, t) dv , by setting the problem in the Hilbert space L2(IR2d; 1+|v|2k)

with 2k > d, provided V is regular enough (V ∈ Hk+2, e.g.). By taking
formally the moments (mv, mv⊗v,mv|v|2) of (7), it is possible to compute
the corresponding moments of the relaxation-time function M . For brevity,
we omit the proof here.

Lemma 2.1. Let M be the solution of Eq. (7) such that
∫

M(x, v, t) dv =∫
w(x, v, t) dv = n[w](x, t) . Then

∫
vM dv = −n

∇V

ν m
:= nuM , (8)

∫
v ⊗mvM dv = n

I
β

+ 2mnuM ⊗ uM +
β~2

12m
n∇⊗∇V , (9)

∫
1
2
m|v|2M dv = n

d

2β
+ mnu2

M +
β~2

24m
n∆V , (10)

∫
1
2
mv|v|2M dv = − ~

2

8m
n∆uM + uM

∫
v ⊗mvM dv + uM

∫
1
2
m|v|2M dv .

The moments of the function M can be compared with the correspond-
ing ones of the shifted-Maxwellian.3 To the high-field relaxation-time dis-
tribution function is associated the fluid velocity in (8), accordingly the
expression for the energy density e = e(x, t) calculated at relaxation-time
is

∫
1
2
m|v|2M dv =

1
2
mnu2

M − 1
2
trPM ,

since it is natural to define the pressure tensor PM as

PM := −n
I
β
−mnuM ⊗ uM − β~2

12m
n∇⊗∇V , (11)
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in analogy with Gardner.3 The high-field assumption yields the additional
tensor

−mnuM ⊗ uM = −mn
∇V

ν m
⊗ ∇V

ν m

in the pressure term. Moreover, by comparing the expression (11) with the
one computed with the shifted-Maxwellian, the heat-flux term q can be
defined as

q := − ~
2

8m
n∆uM + mnuM (uM ⊗ uM ) . (12)

Again, the heat-flux term, in the high-field case, consists of the expected
quantum term and an additional one which is cubic in the fluid velocity.
Next, we shall give another motivation for the definitions of the pressure
and the heat-flux terms in the high-field case.

3. Derivation of the high-field QHD system

In this section we shall derive the QHD system, in the high field case.
Starting from Eq. (1) with ε > 0 and multiplying by 1,mv, 1

2m|v|2 and
integrating in dv, one gets

∂tn +∇x· (nu) = 1
ε

∫
Q(w) dv

(13)∂t(mnu) +∇x·
∫

mv ⊗ vw dv + 1
ε

∫
mvΘ[V ]w dv = 1

ε

∫
mvQ(w) dv

∂te +∇x·
∫

1
2mv|v|2w dv + 1

ε

∫
1
2m|v|2Θ[V ]w dv = 1

ε

∫
1
2m|v|2Q(w) dv

where n, nu, e are defined in (6). We use the relaxation-time distribution
function M to close the O(1

ε ) terms. Since M satisfies Eq. (7), that is the
Wigner equation with ε = 0, Eqs. (13) reduce immediately to

∂tn +∇x· (nu) = 0 ,

∂t(mnu) +∇x·
∫

mv ⊗ vw dv = 0 , (14)

∂te +∇x·
∫

1
2
mv|v|2w dv = 0 ,

where n, u and e are the unknown functions. Then we still need to close the
integral terms. Eq. (8) indicates the fluid velocity computed at relaxation
time. Accordingly, the velocity momentum can be expressed in terms of the
deviation from the relaxation-time velocity, that is,

n u =
∫

vw dv =
∫ (

v − 1
n

∫
vM

)
w dv +

1
n

∫
vM dv

∫
w dv

=
∫

(v − uM )w dv + nuM .
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Analogously, the tensor
∫

mv ⊗ vw dv can be written as
∫

mv ⊗ vw dv =
∫

m (v − uM )⊗ (v − uM )w dv

+
∫

(mv ⊗ v −m (v − uM )⊗ (v − uM ))w dv

and, by some manipulations in the same spirit of the calculations in Ref. 5,
it becomes

∫
mv ⊗ vw dv =

∫
m (v − uM )⊗(v − uM )w dv + mnu⊗ u

− m

n

∫
(v − uM )w dv ⊗

∫
(v − uM )w dv . (15)

We shall use the function M to close the previous expression: let us define

PM := −
∫

m (v−uM )⊗ (v−uM )Mdv =−
∫

mv ⊗ vM(x, v) dv + mnuM⊗uM

= −n
I
β
−mnuM ⊗ uM − β~2

12m
n∇⊗∇V , (16)

where the last equality is obtained by (9). The definition of the tensor PM

is consistent with classical kinetic theory6 (apart from the sign that is a
matter of convention) and with the quantum case.4 Moreover, it coincides
with (11), given in analogy with Gardner.3 Thus (15) reads

∫
mv ⊗ vw dv = mnu⊗ u−PM , (17)

and (16) has to be compared with the corresponding results obtained in
Ref. 1 and Ref. 2, respectively. In the same spirit,
∫

1
2
mv|v|2w dv =

∫
1
2
m (v − uM ) |v − uM + uM |2 w dv + uM

∫
1
2
m|v|2w dv

=
∫

1
2
m (v − uM ) |v − uM |2 w dv + (eI −PM )u

+ |uM |2
∫

1
2
m (v − uM ) w dv . (18)

By using M and defining

qM :=
∫

1
2
m (v − uM ) |v − uM |2 M dv , (19)

(18) becomes ∫
1
2
mv|v|2w dv = qM + (eI −PM )u . (20)
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The expression (19) can be rewritten as

qM =
1
2

[∫
mv|v|2M dv − 2uM

∫
v ⊗mvM dv + |uM |2

∫
mvM dv (21)

− uM

∫
m|v|2M dv + 2uM ⊗ uM

∫
mvM dv −mnuM |uM |2

]

and, by using Lemma 2.1,

qM = − ~
2

8m
n∆uM + mnuM (uM ⊗ uM ) . (22)

The definition (19) of the heat flux is consistent with the classical and
quantum literature, moreover it coincides with (12), previously introduced
in analogy with Gardner.3

Finally, by using in Eqs. (14) the expressions (17) for the moment
∫

v ⊗
mvw dv and (20) for

∫
1
2mv|v|2w dv , we derive

∂tn +∇x· (nu) = 0 ,

(23)∂t(mnu) +∇x·mnu⊗ u−∇x·PM = 0 ,

∂te +∇x· (eu)−∇x· (PMu) +∇x· qM = 0 .

In conclusion, we remark that, unlike Ref. 3, the high-field relaxation-time
function is adopted for the closure procedure. Accordingly, pressure tensor
and heat-flux differ from the quantum (standard) ones in terms that are
quadratic and cubic, respectively, in the ε0 order velocity field uM .
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