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Introduction

Many devices work at high-field regimes. Huge literature about models
terms (F. Poupaud, P. Degond, N. Ben Abdallah, I.M. Gamba, A. Ji
many others).

Common point: semi-classical approach, i.e. Boltzmann equation for se

Advance in semiconductor technology requires to consider quantum e
regimes
—> quantum macroscopic models.

Quantum Wigner kinetic description.
Wigner-derived macroscopic models are analytically and numerically ch:

Goal: present a rigorous (still in progress) study of the accuracy of
model derived from the Wigner model via a Chapman-Enskog type
conditions



Wigner-BGK equation

w = w(z,v,t), (r,v) € R ¢t > 0 quasi-distribution function for
0 = 1/k( enviroment temperature, V applied potential (also self-consist
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with v inverse relaxation-time, m effective mass, and F = F,_,, Fourier

since, by Taylor expansion around x,
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Wigner equation: semiclassical limit

From the Taylor expansion of the pseudo-differential term with respect to 1
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O[Vlw = ——=V,V(z) Vow+ O).
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Fact:
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— VP OV]w(z,v)dv = —(1/m) 0" VV(z) Vow(z,v

—> quantum corrections due to O[V'] appear for k >

the v-moments of ©[V] and of —(1/m) V.,V (x)- V, coincide up 1
Instead:
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The thermal equilibrium state
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w(x, v, t), O(h?)-accurate local thermal equilibrium distribution functio

Z Z
wz,v,t)dv = n(z,t) := w(x,v,t)dv, electron p
Z Z
wYz,v,t)dv = n(x,t) ;= w(z,v,t)dv
Z
vw N (z,v,t)dv = 0,
'
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with 8 = 1/(x 3) enviroment temperature. 3, V (x) are given!

Quantum corrections due to w®?, which is O (h?)-accurate, appear already



The Macroscopic Quantities

Let us define the first and second order unknown macroscopic quantities, i.
the energy density

Z
1
u=u(zx,t) = — wvw(zx,v,t)dv
n
Z 9
v
W=W(x,t) := Ew(az, v, t)dv
Moreover, we recall that we can split WV as
z (v — u)? u?
W(x,t) = Tw(a:,v,t) dv + n—- = Wi(x,t

e )V, and K indicate internal and kinetic velocity, respectively.

e In case of thermodynamical equilibrium with the bath individuated by w
for the moments of w°? we deduce

— the fluid velocity is zero, i.e. u"*(x,t) :



High-field Wigner-BGK equation

cew; +ev-Vew — O V]w=—v(w—w"), t>0,

is the equation in the high-field scaling, where

with tv, to, to characteristic times.

External potential and interaction with the enviroment are the dom
the evolution and balance each other.
At the leading order, ¢ = 0, the solution of (v — O[V]))w = vw™ i

Fw'4

v —10

w® = WI —OV]) v = vF!

The inverse operator (v — ©[V])™! is defined in the Fourier space as t
factor v(v — 36V (x,n)) ', which exists and is bounded for all V' since 1



Moments at the Leading Order

e=0 = @[V]w(o) = V(w(o) — w*9)

Then the moments of w'® are

Z
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We remark that, at the leading order, u'® = — (x) is a nonzero-fl

vm
velocity field is constant: in the high-field regime the fluid velocity reaches



Kinetic Energy at the Leading Order

The kinetic energy is K9 = 5 (x, t)|(ym)2 (x), as a consequence
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In the internal energy it appears a contribute due the external field, w
high-field assumption:

n|V,V|?

2 (vm)?
Instead, in case of a nonzero-fluid velocity equilibrium function w®(x,
energy density Wol is

3k0 B
W = Wl gcea = 2 2 AV 4

W ’ 2 m 12m2k0

A field contributes in modifying the internal energy WZ.(O) if it hc
magnitude as the interaction with the environment.



From high-field Wigner-BGK equation we can obtain evolution equatior
considering w 2~ w'® and taking v-moments.

Then the energy density WO can change on time only because of transpc

on
oV
ow' 0 VaV 0 VaV K
—V, W'’ l— —V,- II +V, - \
Ot vm vm Sm3v

Let us repeat that the equations above describe only transport, since the e
of drift-collision balance.

On the contrary of low-field case, diffusive term and heat-flux term will appt
respectively only as O(e€) corrections via the Chapman-Enskog procedure.



Redistributing the energy density as
Z

_ (02 (0)2
WO _ v — ul?] w® do + nju" WO 4 %l
with
wo = @t 360 [V V@) LN
' 2 m (vm)? 12m?2k6
and defining 7
IP’(O)(:B, t) = (v— u(o)) ® (v — u(O)) w(o)(:ﬁ, t)c

Consequently, the equations read as follows:
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12
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Next steps: Derive via a Chapman-Enskog procedure corrections of

equations.



The Chapman-Enskog procedure

The procedure consists of two assumptions:

First, we assume that the microscopic unknown w depends on time only tl
quantities. Since among the unknown n and W the only t-depender
depends on time only through n), we express

ow B ow On
ot  On Ot

Secondly, we assume that the macroscopic unknown n is an O(1) quanti
the following expansion
w = >< e w" ~ w(O) + ew™ .
k=1
to compute the other v-moments.
Let us compute the Oth-order moment of the high-field Wigner-BGK eq

continuity equation for n 7 7

0
—  wdv + V- vwdv = 0
ot



ow

This allows us to express 57 M (2) as

ow ow z
= — V.- vwdv

ot on

By substituting this expression in the Wigner equation, we obtain

7 !

ow
— V.  vwdv +ev-V,w =0O[V]w — v

an

€

Then we expand the unknown w ~ w'® + ewW.

At the O-th order in €, we obtain

OV]w® — v(w'® —w*) =0,



whose solution is given formally by

w? = (v—0O[V]) ' vuw™
Fw
= F! V, v (x,v,t) = n(x,t)M
v — 10V (x,n)
where !

F + R2Fhy
M(xz,v) = F 1 v F(F + )

(x,v).

v — iV (x,m)
At the first order in ¢
ow'”) : (0) (0)
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on
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Taking into account = M, we obtain

n

V.V
MV, n +v-Vow'? = O[v]—v

rvm

Then we have



—1

w) =V, . (n VxV> (|[V] - V)_lM +(B[V]-v)

rvm

Thus, we can rewrite the continuity equation with unknown n by using t
and w". We get a correction of order O(¢) for the continuity equation.

Z Z
on (0) (1)
a—kvx- vw' 'dv + eV, - vw 'dv =0
In order to write Eq. (3) in a more explicit form, we need the moments of
Z
wWVdv = 0
z 1 1
vwWBldv = ——V,- H7(10) + -V, - nu® 4
v v
Z
1 1 11
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nu
v 174 n



Then Eq. (3) can be rewritten as

on V.V € V.V V.V
— — V.- n + —Vs- Vi n
ot vm % vm vm
€ KO V.,V V.,V h?
% m vm vm 12m?k6
This is a drift equation with an O(e€)-diffusive correction.
Observe that by splitting the following term as
€ V.V V.V € V.V V.V e V)
—V,- Ve n = —V,;—V, n +—
v vm vm % vm vm v vm

we derive the following high-field corrected version of the (classical) mo

1/(vm)
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High-field corrections to drift-collision balance s

Starting from

d(nu) z lvaZ I/Z
+ V. vQ@uvwdv + — wdv = — —

ot e m

ow 2 2 ot LYV L

— o —wdv+ — (nu) = —— v—w
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we investigate two closure strategies to get corrected equations for u(o), 14

1. we substitute w &~ w® in the O(1/€)-terms and w ~ w'® + ¢
moments (drift-collision-balance closure),

2. we substitute w &~ w® 4+ cwV) everywhere (CE-corrected closure).

Remark: With 1. moment conservations hold due to drift-collision balance



High-field corrections to drift-collision balance s

Drift-collision-balance closure:

(0)
d(nwu )ijm.H(O)Jr ‘v,.m" = o,
ot %
aw®) €
5t Ve Ve g = o,

At O(1) in e drift terms, with O (¢)-diffusive terms in nu'®, W respe

Chapman-Enskog-corrected closure:

0
8(7752( ) LY. na® O va_ o —
v
w0 0 wO ¢ .
+ Ve nu'” Z— 4 -V, =
ot n v

At O(1) in € continuity equation multiplied by ©(9, W(® /n, respective
terms in n u(o), w0, respectively.
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R
e Standard diffusive terms and heat-flux v ® v (v?/2)weq (Moments t
e High-field drift, diffusive terms and O (h?)-high-field terms.



Summary

e We start from an O(1)-in-e drift-collision balance model with unknow
energy densities.

e The equations contain just drift terms, and in addition, O(1)-in-€ hi,
O(h?) quantum corrections due to the use of O[V].

e By apply the Chapman-Enskog procedure, we recover a system of eqt
energy densities and fluid velocity, that contain standard diffusive terms

e Moreover, we obtain high-field corrections and O (h*)-high-field correc
the pseudo-differential operator.

In conclusion, we obtain a highly-accurate quantum fluid-dynamical mode
in high-field regime, since it contains moments up to 5% -order and high-fi
peculiar of quantum transport.



Thanks for the attention!
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