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Introduction

• Many devices work at high-field regimes. Huge literature about models “corrected” by quantum

terms (F. Poupaud, P. Degond, N. Ben Abdallah, I.M. Gamba, A. Jüngel, V. Romano, and

many others).

Common point: semi-classical approach, i.e. Boltzmann equation for semiconductors .

• Advance in semiconductor technology requires to consider quantum effects at quasi-ballistic

regimes

=⇒ quantum macroscopic models.

• Quantum Wigner kinetic description.

• Wigner-derived macroscopic models are analytically and numerically challenging.

• Goal: present a rigorous (still in progress) study of the accuracy of a quantum macroscopic

model derived from the Wigner model via a Chapman-Enskog type procedure in high-field

conditions
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Wigner-BGK equation

w = w(x, v, t), (x, v) ∈ R6, t ≥ 0 quasi-distribution function for an electron ensemble.

θ = 1/κβ enviroment temperature, V applied potential (also self-consistent).

∂ w

∂t
+ v · ∇xw − Θ[V ]w = −ν(w − w

eq
) , t > 0 , w(t = 0) = w0 ,

Θ[V ]w(x, v) := iF−1
v

�
1

~

�
V

�
x +

~η
2m

�
− V

�
x− ~η

2m

��
Fvw(x, η)

�

with ν inverse relaxation-time, m effective mass, and F = Fv→η Fourier transform.

since, by Taylor expansion around x,

i

~

�
V

�
x +

~η
2m

�
− V

�
x− ~η

2m

��
=

iη

m
· ∇V (x) +

iη2~2

24m3
η·∇∆V (x) +O(~4

) ,

then

Θ[V ]w(x, v) = − 1

m
∇V (x)· ∇vw(x, v) +

~2

24m3
∇∆V (x)· ∇v∆vw(x, v) +O(~4

)
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Wigner equation: semiclassical limit

From the Taylor expansion of the pseudo-differential term with respect to η around x

Θ[V ]w
~→0−→ − 1

m
∇xV (x)· ∇vw Vlasov operator.

Θ[V ]w = − 1

m
∇xV (x)· ∇vw +O(~2

) .

Fact:

=⇒
Z

v
k
Θ[V ]w(x, v) dv = −(1/m)

Z
v

k∇V (x)· ∇vw(x, v) dv , k = 0, 1, 2

=⇒ quantum corrections due to Θ[V ] appear for k ≥ 3.

the v-moments of Θ[V ] and of −(1/m)∇xV (x)·∇v coincide up to 2nd-order moments.

Instead:

Z
v

3
Θ[V ]w dv = − 1

m

Z
v

3∇xV (x)· ∇vw dv +
~2

4m3
n∇x∆xV .
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The thermal equilibrium state

w
eq

(x, v, t) = n(x, t)C e
−βmv2/2

8
<
:1 + ~2

"
− β2 ∆V (x)

24m
+

β3

24

dX
r,s=1

vrvs

∂2V (x)

∂xrxs

#9=
;

weq(x, v, t), O(~2)-accurate local thermal equilibrium distribution function (with β, V assigned),
Z

w
eq

(x, v, t) dv = n(x, t) :=

Z
w(x, v, t) dv , electron position density.

Z
w

eq
(x, v, t) dv = n(x, t) :=

Z
w(x, v, t) dv ,

Z
v w

eq
(x, v, t) dv = 0 ,

Z
v

2
w

eq
(x, v, t) dv =

 
3 κθ

m
+

~2

12m2κθ
∆V (x)

!
n(x, t)

with θ = 1/(κ β) enviroment temperature. β, V (x) are given!

Quantum corrections due to weq, which is O(~2)-accurate, appear already in 2nd-order moments.
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The Macroscopic Quantities

Let us define the first and second order unknown macroscopic quantities, i.e. the fluid velocity and

the energy density

u = u(x, t) :=
1

n

Z
v w(x, v, t) dv

W = W(x, t) :=

Z
v2

2
w(x, v, t) dv

Moreover, we recall that we can split W as

W(x, t) =

Z
(v − u)2

2
w(x, v, t) dv + n

u2

2
=: Wi(x, t) +K(x, t)

• Wi and K indicate internal and kinetic velocity, respectively.

• In case of thermodynamical equilibrium with the bath individuated by weq, from the expressions

for the moments of weq we deduce

=⇒ the fluid velocity is zero, i.e. u
eq

(x, t) ≡ 0
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High-field Wigner-BGK equation

ε wt + ε v · ∇xw −Θ[V ]w = −ν(w − w
eq

) , t > 0 , w(t = 0) = w0 ,

is the equation in the high-field scaling, where

ε ≈ tV

t0

≈ tC

t0

with tV , tC, t0 characteristic times.

External potential and interaction with the enviroment are the dominant mechanisms in

the evolution and balance each other.
At the leading order, ε = 0, the solution of (ν −Θ[V ])w = νweq is

w
(0)

:= (νI −Θ[V ])
−1

νw
eq

= νF−1

� Fweq

ν − i δV

�

The inverse operator (ν − Θ[V ])−1 is defined in the Fourier space as the multiplication by the

factor ν(ν − iδV (x, η))−1, which exists and is bounded for all V since ν > 0.
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Moments at the Leading Order

ε = 0 ⇒ Θ[V ]w(0) = ν(w(0) − weq)

Then the moments of w(0) are
Z

w
(0)

dv = n

Z
v w

(0)
dv = −∇xV

νm
n

Z
v ⊗ v w

(0)
dv =

 
κθ

m
I + 2

∇xV

νm
⊗ ∇xV

νm
+

~2

12m2κθ
∇x ⊗∇xV

!
n := Π

(0)

Z
v

v2

2
w

(0)
dv = −∇xV

νm

 Z
v2

2
w

(0)
dv + Π

(0)

!
+

~2

8m3ν
∇x∆xV n

We remark that, at the leading order, u(0) = −∇xV

νm
(x) is a nonzero-fluid velocity state. The

velocity field is constant: in the high-field regime the fluid velocity reaches its saturation value.
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Kinetic Energy at the Leading Order

The kinetic energy is K(0) = n
2(x, t)|∇xV |2

(νm)2
(x), as a consequence

W(0)
= W(0)

i +K(0)
=

n

2

 
3κθ

m
+
|∇xV |2
(νm)2

+
~2

12m2κθ
∆xV

!
+

n

2

|∇xV |2
(νm)2

.

In the internal energy it appears a contribute due the external field, which is peculiar of the

high-field assumption:
n

2

|∇xV |2
(νm)2

.

Instead, in case of a nonzero-fluid velocity equilibrium function weq(x, v − w, t), the related

energy density Weq
w is

Weq
w = Weq

w,i +Keq
w =

n

2

 
3κθ

m
+

~2

12m2κθ
∆xV

!
+

n

2
w

2
.

A field contributes in modifying the internal energy W(0)
i if it has the same order of

magnitude as the interaction with the environment.
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From high-field Wigner-BGK equation we can obtain evolution equations for n and W(0) by

considering w ' w(0) and taking v-moments.

Then the energy density W(0) can change on time only because of transport. More explicitly,

∂n

∂t
−∇x ·

�
n
∇xV

νm

�
= 0 ,

∂W(0)

∂t
−∇x ·

�
W(0)∇xV

νm

�
−∇x ·

�
Π

(0)∇xV

νm

�
+∇x ·

 
~2

8m3ν
∇x∆xV n

!
= 0 .

Let us repeat that the equations above describe only transport, since the electrons are in a regime

of drift-collision balance.

On the contrary of low-field case, diffusive term and heat-flux term will appear in the two equations

respectively only as O(ε) corrections via the Chapman-Enskog procedure.
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Redistributing the energy density as

W(0)
=

Z |v − u(0)|2
2

w
(0)

dv +
n|u(0)|2

2
= W(0)

i +
n

2

|∇xV |2
(νm)2

,

with

W(0)
i =

n(x, t)

2

 
3κθ

m
+
|∇xV |2(x)

(νm)2
+

~2

12m2κθ
∆xV (x)

!
,

and defining

P(0)
(x, t) :=

Z
(v − u

(0)
)⊗ (v − u

(0)
) w

(0)
(x, t) dv , (1)

Consequently, the equations read as follows:

∂n

∂t
−∇x ·

�
n
∇xV

νm

�
= 0 ,

∂W(0)
i

∂t
−∇x ·

�
W(0)

i

∇xV

νm

�
−∇x ·

�
P(0)∇xV

νm

�
+∇x ·

 
~2

8m3ν
∇x∆xV n

!
= 0 .

Next steps: Derive via a Chapman-Enskog procedure corrections of O(ε) for the previous

equations.
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The Chapman-Enskog procedure

The procedure consists of two assumptions:

First, we assume that the microscopic unknown w depends on time only through the macroscopic

quantities. Since among the unknown n and W(0), the only t-dependent function is n (W(0)

depends on time only through n), we express

∂w

∂t
=

∂w

∂n

∂n

∂t
. (2)

Secondly, we assume that the macroscopic unknown n is an O(1) quantity, while we use instead

the following expansion

w =

∞X

k=1

ε
k
w

k ∼ w
(0)

+ εw
(1)

.

to compute the other v-moments.

Let us compute the 0th-order moment of the high-field Wigner-BGK equation. We obtain the

continuity equation for n
∂

∂t

Z
wdv +∇x ·

Z
vwdv = 0

11



This allows us to express
∂w

∂t
in (2) as

∂w

∂t
=

∂w

∂n

�
−∇x ·

Z
vwdv

�
.

By substituting this expression in the Wigner equation, we obtain

ε

 
∂w

∂n

�
−∇x ·

Z
vwdv

�!
+ ε v · ∇xw = Θ[V ]w − ν(w − weq) ,

Then we expand the unknown w ∼ w(0) + εw(1).

At the 0-th order in ε, we obtain

Θ[V ]w(0) − ν(w(0) − weq) = 0 ,
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whose solution is given formally by

w
(0)

= (ν −Θ[V ])
−1

νw
eq

= F−1

�
νFweq

ν − iδV (x, η)

�
(x, v, t) = n(x, t)M(x, v) ,

where

M(x, v) := F−1

 
νF(F + ~2F ~)

ν − iδV (x, η)

!
(x, v) .

At the first order in ε

∂w(0)

∂n

�
−∇x ·

Z
vw

(0)
dv
�

+ v · ∇xw
(0)

=
�
Θ[V ]− ν

�
w

(1)
,

Taking into account
∂w(0)

∂n
= M , we obtain

M∇x ·
�

n
∇xV

νm

�
+ v · ∇xw

(0)
=
�
Θ[V ]− ν

�
w

(1)
,

Then we have

13



w(1) = ∇x ·
(

n
∇xV

νm

) (
Θ[V ]− ν

)−1
M +

(
Θ[V ]− ν

)−1 (v · ∇x(nM)) .

Thus, we can rewrite the continuity equation with unknown n by using the expressions for w(0)

and w(1). We get a correction of order O(ε) for the continuity equation.

∂n

∂t
+∇x ·

Z
vw

(0)
dv + ε∇x ·

Z
vw

(1)
dv = 0 . (3)

In order to write Eq. (3) in a more explicit form, we need the moments of w(1):

Z
w

(1)
dv = 0

Z
v w

(1)
dv = −1

ν
∇x·Π(0)

n +
1

ν
∇x ·

�
n u

(0)
�

u
(0)

Z
v ⊗ v w

(1)
dv = −1

ν
∇x·Π(0)

nu +
1

ν
∇x ·

�
n u

(0)
� Π(0)

n

n
+ 2n u

(1) ⊗ u
(0)
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Then Eq. (3) can be rewritten as

∂n

∂t
−∇x ·

�
n
∇xV

νm

�
+

ε

ν
∇x ·

�
∇x ·

�
n
∇xV

νm

�∇xV

νm

�

− ε

ν
∇x · ∇x

  
κθI
m

+ 2
∇xV

νm
⊗ ∇xV

νm
+

~2

12m2κθ
∇x ⊗∇xV

!
n

!
= 0 .

This is a drift equation with an O(ε)-diffusive correction.

Observe that by splitting the following term as

ε

ν
∇x·
�∇xV

νm
∇x ·

�
n
∇xV

νm

��
=

ε

ν
∇x·

∇xV

νm
∇x·
�

n
∇xV

νm

�
+

ε

ν

∇xV

νm
· ∇x

�
∇x ·

�
n
∇xV

νm

��
,

we derive the following high-field corrected version of the (classical) mobility coefficient µcl =

1/(νm)

µhf :=
1

νm

�
1 +

ε

ν2m
∆xV

�
.
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High-field corrections to drift-collision balance system, I

Starting from

∂(nu)

∂t
+∇x·

Z
v ⊗ vw dv +

1

ε

∇xV

m

Z
w dv = − ν

ε

Z
v w dv ,

∂W
∂t

+∇x·
Z

v2

2
w dv +

1

ε

∇xV

m
· (n u) = − ν

ε

Z
v

v2

2
w dv +

ν

ε
Weq ,

we investigate two closure strategies to get corrected equations for u(0),W(0):

1. we substitute w ≈ w(0) in the O(1/ε)-terms and w ≈ w(0) + εw(1) in the remaining

moments (drift-collision-balance closure),

2. we substitute w ≈ w(0) + εw(1) everywhere (CE-corrected closure).

Remark: With 1. moment conservations hold due to drift-collision balance.
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High-field corrections to drift-collision balance system, II

Drift-collision-balance closure:

∂(n u(0))

∂t
+∇x·Π(0)

+
ε

ν
∇x·Π(1)

= 0 ,

∂W(0)

∂t
+∇x· JW(0)

+
ε

ν
∇x· JW(1)

= 0 .

At O(1) in ε drift terms, with O(ε)-diffusive terms in nu(0),W(0), respectively.

Chapman-Enskog-corrected closure:

∂(n u(0))

∂t
+∇x ·

�
n u

(0)
�

u
(0)

+
ε

ν
∇x·Π(1)

= 0 ,

∂W(0)

∂t
+∇x·

�
nu

(0)
�W(0)

n
+

ε

ν
∇x· JW(1)

= 0 .

At O(1) in ε continuity equation multiplied by u(0),W(0)/n, respectively, with O(ε)-diffusive

terms in n u(0),W(0), respectively.
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Π
(1)

=
�
Π

(0)
/n + 2u

(0) ⊗ u
(0)
�
∇x ·

�
nu

(0)
�

| {z }
drift

− 2u
(0) ⊗

�
∇x·Π(0)

�
| {z }

drift+diffusion

−∇x·
�
3Π

(0) ⊗ u
(0)
�

| {z }
diffusion

− ∇x·
�

n
~2

4m3
∇x ⊗∇x ⊗∇xV

�
,

J (1)
W =

�
J (0)
W /n

�
∇x·

�
n u

(0)
�

+ u
(0)

(W(1)
+ Π

(1)
)−∇x·Π(0)

W

W(1)
=

�
W(0)

/n + |u(0)|2
�
∇x ·

�
n u

(0)
�

| {z }
drift

−u
(0)·
�
∇x·Π(0)

�
| {z }

drift+diffusion

−∇x·
��
W(0)

+ Π
(0)
�

u
(0)
�

| {z }
diffusion

− ∇x·
�

n
~2

8m3
∇x∆xV

�

Π
(0)
W =

Z
v ⊗ v

v2

2
weq dv +

h �
3Π

(0) ⊗ u
(0)
�

+
�

n
~2

4m3
∇x ⊗∇x ⊗∇xV

�i
·u(0)

+
h �
W(0)

+ Π
(0)
�

u
(0)

+ n
~2

8m3
∇x∆xV

i
⊗ 2u

(0)
.

• Standard diffusive terms and heat-flux
R

v ⊗ v (v2/2)weq (moments up to 4th-order).
• High-field drift, diffusive terms and O(~2)-high-field terms.
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Summary

• We start from an O(1)-in-ε drift-collision balance model with unknown electron position and

energy densities.

• The equations contain just drift terms, and in addition, O(1)-in-ε high-field corrections and

O(~2) quantum corrections due to the use of Θ[V ].

• By apply the Chapman-Enskog procedure, we recover a system of equations for position and

energy densities and fluid velocity, that contain standard diffusive terms as O(ε)-corrections.

• Moreover, we obtain high-field corrections and O(~2)-high-field corrections due to the use of

the pseudo-differential operator.

In conclusion, we obtain a highly-accurate quantum fluid-dynamical model for electron transport

in high-field regime, since it contains moments up to 5th-order and high-field corrections that are

peculiar of quantum transport.
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Thanks for the attention!
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Then the moments of w(0) are

n =

Z
w

(0)
dv ,

J (0)
n := n u

(0)
:=

Z
v w

(0)
dv = −n

∇xV

νm
,

Π
(0)
n :=

Z
v ⊗ v w

(0)
dv = n

 
kθI
m

+ 2u
(0) ⊗ u

(0)
+

~2

12m2kθ
∇x ⊗∇xV

!
,

W(0)
n :=

Z
v2

2
w

(0)
dv = n

 
d
kθ

m
+ |u(0)|2 +

~2

24m2kθ
∆xV

!
,

Π
(0)
nu :=

Z
v ⊗ v ⊗ v w

(0)
dv = 3u

(0) ⊗ Π
(0)

+ n
~2

4m3ν
∇x ⊗∇x ⊗∇xV ,

J (0)
W :=

Z
v

v2

2
w

(0)
dv =

�
W(0)

+ Π
(0)
�

u
(0)

+ n
~2

8m3ν
∇x∆xV ,

Π
(0)
W :=

Z
v ⊗ v

v2

2
w

(0)
dv =

Z
v ⊗ v

v2

2
weqdv + 2

�
W(0)

+ 2Π
(0)
n

�
u

(0) ⊗ u
(0)

+ Π
(0)|u(0)|2 + 2n

~2

4m3ν
∇x∆xV ⊗ u

(0)
+ 2n

~2

4m3ν
∇x ⊗∇x ⊗∇xV u

(0)
.
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