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Università di Firenze - Via S.Marta 3
I-50139 Firenze, Italy

October 15, 2007

We derive a fluid-dynamical system describing electron transport in quantum, high-
field regime, starting from Wigner equation. Under the high-field assumption, quan-
tum advection and collisions are comparable and dominant. Consequently diffusive
terms shall appear in the system as higher-order corrections.

Key words: Quantum hydro-dynamic models, Wigner transport equation, Chapman-
Enskog expansion, High-field asymptotics.

1 Introduction

Fluid-dynamical models are commonly adopted for semiconductor device simula-
tion. The accuracy in predicting device performances depends in particular on the
consistency of the model with semiconductor physics and the selection of macro-
scopic unknown functions. For what concerns the first point, models in literature
can be classified as either semi-classical or quantum ones. In the former case, they
are derived from a semi-classical description of electron transport (Anile et al. 2003,
Krause et al. 2007), and quantum effects are either considered negligible or added
a-posteriori (de Falco et al. 2005). In the latter case, instead, models are derived
from a quantum picture (Arnold and Jüngel 2006), thus they are capable to de-
scribe quantum phenomena in nano-devices. For what concerns the definition of the
macroscopic variables, in classical and semi-classical fluid-dynamics they are intro-
duced as moments in the velocity variable of the phase-space distribution-function.
Then, fluid-dynamical models are derived by applying the moment method and
appropriate closure conditions. Wigner function is the quantum equivalent of a
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classical distribution function in the phase-space, w = w(x, v, t), (x, v) ∈ IR2d, t > 0
(Wigner 1932). Accordingly, the macroscopic variables can be formally defined as
v-moments of the Wigner function. Wigner equation is the basic kinetic model for
quantum transport in nano-devices: it describes time-evolution of the electrons un-
der the effect of a potential V = V (x). Thus, quantum fluid-dynamical models can
be obtained analogously by applying the moment method and closure procedures.
Quantum transport and quantum hydrodynamical models are analytically challeng-
ing (Arnold et al. 2007, Arnold et al. 2007, Dolbeaut et al. 2006) and their numerical
implementation requires further investigation (Jüngel and Milišić 2007).
Another crucial ingredient for the accuracy of the model is the suitability to capture
the physical regimes at which the devices operate. Nanometric devices nowadays
give rise to non-equilibrium hot-electron transport regimes, due to high voltage ap-
plied to the contacts, e.g. . In some regimes the electrical field and the interaction
with the crystal lattice have comparable strength and are dominant with respect to
transport. Accordingly, these regimes are called of “drift-collision balance” (Carrillo
et al. 2000). Mathematically speaking, the diffusion is a phenomenon of different or-
der of magnitude than the drift, then it appears as a correction to the drift in terms
of some asymptotical parameter. In Carrillo et al. (2000) the corresponding semi-
classical model with unknown the electron position density is labelled “augmented
drift-diffusion”. Many semi-classical models of high-field semiconductor transport
are available in literature (Ben Abdallah et al. 1996, Cercignani et al. 2001, Degond
and Jüngel 2001, Poupaud 1991, Poupaud 1992).
We are interested instead to describe quantum-driven electron transport in high-
field regimes. In Manzini and Frosali (2006) we derive a quantum augmented drift-
diffusion model, by using a Chapman-Enskog type procedure. As expected, the
equation for the electron position density contains classical and quantum diffusive
terms as corrections to the classical drift term, of higher-order in the asymptotic
parameter.
In the present paper our aim is deriving a more accurate quantum fluid-dynamical
model of semiconductor transport in high-field regimes. Accordingly, we enlarge the
set of macroscopic unknown functions: it includes the electron position density n,
the fluid velocity U and the energy density e.
The simpler way to model electron interaction with the lattice in Wigner picture is
as the tendency of the electron ensemble to relax to a state of thermal equilibrium
with a surrounding phonon bath. Observe that we neglect electron-electron interac-
tions since most devices work at low-density regimes. The corresponding equation
is called relaxation-time Wigner equation.
In the present paper, we assume that the dominant mechanisms in the evolution are
the relaxation phenomenon and the external-field effect. Therefore, we rescale the
relaxation-time Wigner equation with the Knudsen number ε as follows

ε
∂w

∂t
+ ε v · ∇xw = Θ[V ]w − ν(w − weq), t > 0 . (1)

The pseudo-differential operator Θ[V ], which will be defined in next section, char-
acterizes quantum description. The scaling above was used for the first time for
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semiconductor semi-classical modelling by F. Poupaud in (Poupaud 1992). We re-
mark that the different phenomena are described as independent each from the other:
the relaxation-time distribution function weq is the O(~2)-correct expansion of the
state to which the quantum system shall converge due to the presence of a thermal
bath at temperature 1/kβ (Wigner 1932), and in absence of some other significant
phenomenona.
We shall apply the Chapman-Enskog procedure to Eq. (1) to derive a corrected
equation for the unknown n, which shall be identical to the one in Manzini and
Frosali (2006). Then, we shall apply the moment method to derive from Eq. (1)
equations for U and e and discuss a closure procedure for these equations. We shall
recover a set of equations containing drift terms at zero-th order in the asymptotic
parameter ε and classical and quantum diffusion terms of the first order in ε. We
anticipate that both the equation for the fluid velocity U and for energy density e
shall contain O(ε)-corrections that are to be referred to quantum transport, precisely
quantum energy-fluxes. Moreover, in the equation for e shall appear quantum–high-
field corrections as flux of energy-fluxes. These corrections are due exactly to the
use of the pseudo-differential operator instead of the classical Vlasov operator and
describe quantum effects induced by the high-field regime.

2 Wigner-BGK equation

The starting point is Wigner equation with unknown the quasi-distribution function
w = w(x, v, t), (x, v) ∈ IR2d, t > 0, describing, at the kinetic level, the time-evolution
of a quantum system with d degrees of freedom, under the effect of an external
potential V = V (x), x ∈ IRd. It reads

∂w

∂t
+ v · ∇xw −Θ[V ]w = Qw, (x, v) ∈ IR2d, t > 0 (2)

(Wiginer 1932), with the pseudo-differential operator Θ[V ] defined by

(Θ[V ]w)(x, v, t) =
i

(2π)d

∫
IRd

∫
IRd

δV (x, η)w(x, v′, t)ei(v−v′)·η dv′ dη

=
i

(2π)d/2

∫
IRd

δV (x, η)Fw(x, η, t)eiv·η dη ,

where

δV (x, η) :=
1
~

[
V

(
x +

~η

2m

)
− V

(
x− ~η

2m

)]
with Fw(η) ≡ [Fv→ηw](η) denotes the Fourier transform of w from v to η, m the
electron mass and ~ the scaled Planck constant. In the Fourier-transformed space
IRd

x × IRd
η the operator Θ[V ] is the multiplication operator by the function i δV ; in

symbols,
F (Θ[V ]w) (x, η) = i δV (x, η)Fw(x, η) . (3)
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We recall that the expansion of Θ[V ] (for V smooth enough) with respect to ~ looks
as follows (see Gardner 1994):

Θ[V ]w =
∇xV

m
·∇vw − ~2

24m3
∇x∆xV ·∇v∆vw +O(~4).

Accordingly, at the leading order in ~ the pseudo-differential operator coincides with
the operator ∇xV ·∇v appearing in Vlasov equation and it is easy to prove that, for
all multi-index j, |j| = 0, 1, 2,∫

vj Θ[V ]w dv =
∫

vj ∇xV

m
·∇vw dv , (4)

whereas ∫
v3 Θ[V ]w dv =

∫
v3 ∇xV

m
·∇vw dv +

~2

4m3
n∇x∆xV . (5)

Therefore the quantum correction due to the use of the pseudo-differential operator
appears only in the computation of the v-moments of order greater or equal than 3
of the field operator.
The term Qw, added on the right hand side, mimics interactions of the electrons
with the lattice. We remark that this point is quite delicate, since the kinetic
model has to be consistent with the description in the operatorial (Heisenberg)
formulation. In particular, a Wigner equation with a BGK term containing the
Wigner transform of the equilibrium operator exp (−βH) ,H Hamiltonian operator,
is the Wigner transform of an equation in Lindblad form, see Lindblad (1976),
thus it is quantum-mechanically correct. In Wigner (1932) E. Wigner introduced
the ~-expansion of the Wigner transform of the equilibrium operator exp (−βH).
Precisely,

wW(x, v) :=
( m

2π~

)d
e−βE

×

1 + ~2 β2

24

− 3
m

∆xV (x) +
β

m
|∇xV |2(x) + β

d∑
r,s=1

vrvs
∂2V (x)
∂xr∂xs

+ O(~4)

 (6)

where E(x, v) := mv2/2+V (x) is the total energy of the system. We call w̃W a local
(in time and space) modification of wW, defined by

w̃W(x, v, t) := C(x, t) wW(x, v) ,

with C = C(x, t) to be defined appropriately.
By performing explicit calculations∫

w̃W(x, v, t) dv =
(

m

2π~2β

)d/2

C(x, t) e−βV

×
(

1 + ~2 β2

12m

(
−∆xV +

β

2
|∇xV |2

)
+ O(~4)

)
,
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thus, if we assume that it holds∫
w̃W(x, v, t) dv =

∫
w(x, v, t) dv =: n(x, t) ,

where n is the unknown position density, we get

C(x, t) =
(

m

2π~2β

)−d/2

n(x, t) eβV

×
{

1 + ~2 β2

12m

[
−∆V +

β

2
|∇V |2

]
+O(~4)

}−1

. (7)

Eq. (7) defines C in terms of the unknown function n and the assigned function
V . By substituting the function C defined by (7) into (6), we can introduce a local
version weq of the equilibrium function wW that looks like

weq(x, v, t) := n(x, t)
(

βm

2π

)d/2

e−βmv2/2

×

1 + ~2 β2

24

− 1
m

∆xV + β
d∑

r,s=1

vrvs
∂2V

∂xrxs

 . (8)

It is convenient to denote for later reference weq = n(F + ~2F ~) with F = F (v) =
(βm/(2π))d/2 exp

(
−βmv2/2

)
and

F ~ = F ~(x, v) =
(

βm

2π

)d/2

e−βmv2/2

− β2

24m
∆xV +

β3

24

d∑
r,s=1

vrvs
∂2V

∂xrxs

 .

The function weq is the O(~2)-accurate approximation of the Wigner function de-
scribing the quantum system in the thermodynamical equilibrium state induced by
the contact with the phonon bath at temperature θ := 1/(kβ). Let us collect here
below the first three moments of the equilibrium function weq:∫

weq(x, v, t) dv = n(x, t) , (9)∫
v weq(x, v, t) dv = 0 , (10)∫

v ⊗ v weq(x, v, t) dv = n(x, t)
(

kθId

m
+

~2

12m2kθ
∇x ⊗∇xV

)
, (11)

where we use Id to denote the d×d identity matrix. Observe that the contributions
coming from the quantum correction F ~ appear already in the computation of the
second order v-moment of weq. In the tensor (11) we can indeed distinguish the
classical pressure tensor proportional to the phonon temperature θ and the O(~2)-
anisotropic tensor coming from F ~ (the O(~2)-correction to the Maxwellian).
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We define the first and second order unknown macroscopic quantities, i.e. the fluid
velocity and the energy density

U = U(x, t) :=
1
n

∫
v w(x, v, t) dv , (12)

e = e(x, t) :=
∫

v2

2
w(x, v, t) dv . (13)

Moreover, we recall that we can split e as

e(x, t) =
∫

(v − U)2

2
w(x, v, t) dv + n

U2

2
=: ei(x, t) + ekin(x, t) (14)

where ei and ekin indicate internal and kinetic energy density, respectively. From
the expressions for the moments of weq, we deduce that in case the system is in the
state of thermodynamical equilibrium with the bath individuated by weq, then the
fluid velocity is zero

Ueq(x, t) ≡ 0

and the energy density consists only of the internal energy:

eeq(x, t) =
n(x, t)

2

(
d kθ

m
+

~2

12m2kθ
∆xV (x)

)
= ei

eq(x, t) . (15)

Let us consider a more general equilibrium state in which a nonzero fluid velocity
field W = W(x) is admitted. Such state can be described by wWeq := weq(x, v−W, t)
and its first three moments are∫

wWeq (x, v, t) dv = n(x, t) , (16)∫
v wWeq (x, v, t) dv = n(x, t)W(x) , (17)∫

v ⊗ v wWeq (x, v, t) dv = n(x, t)
(

kθId

m
+

~2

12m2kθ
∇x ⊗∇xV +W ⊗W

)
(x) .

(18)

Consequently, the related energy density eWeq is

eWeq = eW,i
eq + eW,kin

eq =
n

2

(
dkθ

m
+

~2

12m2kθ
∆xV

)
+

n

2
W2 , (19)

which equals the equilibrium function internal energy ei
eq in (15), augmented by the

nonzero-kinetic energy.
Both weq and wWeq describe (with O(~2)-accuracy) equilibrium states that a quantum
system attains when in contact with a phonon bath, in case a velocity field W is not,
respectively is, admitted. In the next section we shall describe, instead, a physical
regime that is induced by the joint action of an external electrical field and of the
phonon bath on the quantum system.
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3 The leading order solution of
the high-field Wigner-BGK equation

High-field Wigner equation in rescaled form reads

ε
∂w

∂t
+ εv · ∇xw = Θ[V ]w − ν(w − weq) , (1)

where we have introduced the parameter ε for keeping tab on terms of equal order of
magnitude (see Cercignani et al. 2001, Manzini and Frosali 2006), for the derivation
of the scaling). The leading order term w(0) satisfies the following equation

Θ[V ]w(0) − ν(w(0) − weq) = 0 , (2)

thus, it can be expressed as

w(0) = (ν −Θ[V ])−1 ν weq . (3)

The inverse operator (ν −Θ[V ])−1 is defined in the Fourier space as the multipli-
cation by the factor (ν − iδV (x, η))−1 (which exists and is bounded for all V since
ν > 0), precisely:

w(0)(x, v) := F−1

(
νFweq(x, η)
ν − iδV (x, η)

)
. (4)

The reader can find an example of functional settings in which the definition above
is rigorous in Manzini and Frosali 2006.

Lemma 1 Let w(0) be defined by Eq. (4). Then the moments of w(0) are∫
w(0)dv = n , (5)∫

vj w(0)dv = −n
∂xjV

νm
, (6)∫

vi vj w(0)dv = n

(
kθ

m
δij + 2

∂xiV

νm

∂xjV

νm
+

~2

12m2kθ
∂2

xixj
V

)
, (7)∫

v2
j

2
w(0)dv = n

(
d

kθ

2m
+
(

∂xjV

νm

)2

+
~2

24m2kθ
∂2

xj
V

)
, (8)
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∫
vk vi vj w(0)dv = −∂xk

V

νm

∫
vi vj w(0)dv − ∂xiV

νm

∫
vk vj w(0)dv

−
∂xjV

νm

∫
vk vi w

(0)dv + n
~2

4m3ν
∂xk

∂xi∂xjV , (9)∫
vi

v2
j

2
w(0)dv = −∂xiV

νm

∫
v2
j

2
w(0)dv −

∫
vivjw

(0)dv
∂xjV

νm
+ n

~2

8m3ν
∂xi∂

2
xj

V ,

(10)∫
vk vi

v2
j

2
w(0)dv = 2

∂xk
V

νm

∂xiV

νm

∫
v2
j

2
w(0)dv + 2

∂xk
V

νm

∫
vivjw

(0)dv
∂xjV

νm

+
∫

vkviw
(0)dv

(
∂xjV

νm

)2

+ 2
∂xiV

νm

∫
vkvjw

(0)dv
∂xjV

νm

− 2
∂xk

V

νm
n

~2

8m3ν
∂xi∂

2
xj

V − 2
∂xiV

νm
n

~2

8m3ν
∂xk

∂2
xj

V

− n
~2

4m3ν
∂xi∂xk

∂xjV 2
∂xjV

νm
+
∫

vk vi

v2
j

2
weqdv . (11)

Proof. The moments are computed in the Appendix. The calculations are based
on the following well-known identities of Fourier calculus:∫

F−1 (Ff) (v) dv = Ff |η=0 , ∇η(Ff)(η) = F (−i vf(v)) . (12)

Remark 1 The moments of w(0) are computed by taking moments of Eq. (2). For
the computation of the moments (5), (6), (7) and (8) we can as well substitute the
pseudo-differential operator Θ[V ] with its O(1)-approximation in ~, 1/m∇xV ·∇v,
due to (4). Thus, instead of the expression (4), it can as well be used the “classical”
one:

w̃(0)(x, v) = F−1

(
νFweq(x, η)
ν + iη·∇xV

)
.

Accordingly, the only quantum correction appearing in the first four expressions
comes from weq, since weq = n(F + ~2F ~). Precisely, it contributes to the moments
(7) and (8). Except for this quantum correction, the first four moments coincide
with those computed in Cercignani et al. 2001, relative to Boltzmann equation.
The moments (9), (10) and (11) instead contain as well O(~2)-corrections due to the
pseudo-differential term: more precisely, (9) and (10) contain

~2

4m3ν
∇x ⊗∇x ⊗∇xV n ,

~2

8m3ν
∇x∆xV n ,

respectively (cf. Eq. (5)). Eq. (11) contains additional terms that are due to the
co-existence of the quantum and the high-field regimes:

−2
∂xk

V

νm
n

~2

8m3ν
∂xi∂

2
xj

V − 2
∂xiV

νm
n

~2

8m3ν
∂xk

∂2
xj

V − 2
∂xjV

νm
n

~2

4νm3
∂3

xkxixj
V ,
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being products of the high-field fluid velocity and of the third moments of the pseudo-
differential operator.
In conclusion, for an accurate description via a 3-moments fluid-dynamical model of
transport in quantum–high-field regimes, it is crucial to use the pseudo-differential
operator, i.e. Wigner equation, instead than Vlasov one.

We adopt Einstein convenction. We shall use capital greek letters for tensors and
calligraphic capital letter for column vectors. Then we can define

n =
∫

w(0)dv , (13)

U (0)
j := −

∂xjV

νm
, (14)

Π(0)
ij := n

(
kθδij

m
+ 2U (0)

i U (0)
j +

~2

12m2kθ
∂2

xixj
V

)
, (15)

e(0) := n

(
d

kθ

2m
+ |U (0)|2 +

~2

24m2kθ
∆xV

)
, (16)

Φ(0)
kij :=

(
U (0)

k Π(0)
ij + U (0)

i Π(0)
kj + U (0)

j Π(0)
ki

)
− n

~2

4m2
∂2

xixj
U (0)

k , (17)

J (0)
i := e(0)U (0)

i + Π(0)
ij U

(0)
j − n

~2

8m2
∂2

xj
U (0)

i , (18)

Σ(0)
ki := Σeq

ki + U (0)
k J (0)

i + U (0)
i J (0)

k + Φ(0)
kij U

(0)
j

− U (0)
k n

~2

8m2
∂2

xj
U (0)

i − n
~2

8m2
∂2

xj
U (0)

k U (0)
i − n

~2

4m2
∂2

xixj
U (0)

k U (0)
j (19)

= Σeq
ki + e(0)

(
2U (0)

k U (0)
i

)
+ 2U (0)

k

(
Π(0)

ij U
(0)
j − n

~2

8m2
∂2

xj
U (0)

i

)
+ 2

(
Π(0)

kj U
(0)
j − n

~2

8m2
∂2

xj
U (0)

k

)
U (0)

i +
(

Π(0)
ki U

(0)
j − 2n

~2

4m2
∂2

xixj
U (0)

k

)
U (0)

j .

(20)

where

Σeq
ki :=

∫
vk vi

v2
j

2
weqdv .

Remark 2 We stress that the term appearing due to the high-field regime is the
additional tensor U (0)

i U (0)
j in the Π(0)

ij , which consequently appears wherever appears

Π(0)
ij , precisely also in e(0) (which is its trace), Φ(0)

kij and J (0)
i . Moreover, are to be

referred to the high-field regime all the terms of the tensor Σ(0)
ki −Σeq

ki . The rewriting
(20) of the fourth order moment shall be useful in the last section.

From the computation of the v-moments of the leading order state, we can conclude
that w(0) describes a nonzero–fluid-velocity state and the velocity field is determined
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by the applied electrical field, see (14). Observe that the velocity field is constant
with respect to time. This means that in the high-field regime the fluid velocity
immediately reaches its saturation value. The kinetic energy e

(0)
kin is

e
(0)
kin(x, t) =

n(x, t)
2

|∇V (x)|2

ν2m2
.

By using (16), the internal energy density e
(0)
i := e(0) − e

(0)
kin is

e
(0)
i =

n

2

(
dkθ

m
+
|∇V |2

ν2m2
+

~2

12m2kθ
∆xV

)
. (21)

Thus, the high-field action makes the equilibrium internal energy eeq increase of a
quantity

n

2
|∇V |2

ν2m2
.

Remark 3 We stress that in general a nonzero-velocity field W only affects the
kinetic energy and does not contribute to increase the internal energy density, see,
e.g. (19) relative to the equilibrium regime wWeq . This means that a field partecipates
in modifying the electron internal energy just in case the field has the same order of
magnitude as the interaction with the environment, i.e., just in the high-field regime,
(Demeio and Frosali 1998, Poupaud 1992).

We can now anticipate the aim of next section: we shall derive via a Chapman-
Enskog procedure a correction w(1) of O(ε) for the solution w(0) of Eq. (1).

Remark 4 (Conserved quantities) By formally computing the moments of the
high-field Wigner BGK equation (1) we get the continuity equation

∂n

∂t
+∇x · (nU) = 0 , (22)

by the skew-simmetry of the pseudo-differential operator and the mass-conservation
of the BGK operator. For the 1st-order moment, we obtain

ε
∂nU
∂t

+ ε∇x·
∫

v ⊗ vw dv + n
∇xV

m
= −ν nU , (23)

and the velocity-momentum is indeed not conserved by the BGK term. In order to
resume the conservation of velocity-momentum we can assume that

U ≈ −∇xV

νm
,

in the O(1)-term. This closure corresponds to assume that U ≈ U (0) holds, i.e. the
system is close to the high-field regime, where the velocity field reaches its asymp-
totical value. For the 2nd-order moment, instead, we obtain

ε
∂e

∂t
+ ε∇x·

∫
v
v2

2
w dv +

∇xV

m
· (nU) = −ν(e− eeq) . (24)
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and again for the equation to be in conservative form we can assume that

∇xV

m
· (nU) = −ν(e− eeq) ,

namely that it holds the following constitutive law

e = eeq −
∇xV

νm
· (nU) = eeq + U (0)· (nU) , (25)

in the O(1)-term. Again, this closure means that the regime we are describing is
close to the high-field one, and then e ≈ e(0), where e(0) = eeq + n|U (0)|2, i.e. the
difference of energy density, e − eeq, is due to the action of the high field. Observe
that we are implicitly assuming that the interactions with the lattice can be con-
sidered “elastic” due to the high-field regime: the electrons are so “hot” that the
energy loss due to phonon collisions is an unsignificant fraction of their energy (Ben
Abdallah 1996).

4 The Chapman-Enskog procedure

The procedure consists of two steps: first, we assume that the microscopic unknown
w depends on time only through macroscopic quantities. Among the macroscopic
quantities the only one that is conserved by the high-field Wigner-BGK equation is
the mass, cf. Remark 4. Then we select the position density n as the sole macroscopic
time-dependent unknown and we express

∂w

∂t
=

∂w

∂n

∂n

∂t
. (26)

Secondly, we assume that n is an O(1) quantity, and we use instead to compute the
other v-moments the following expansion

w =
∞∑

k=1

εkwk ∼ w(0) + εw(1) . (27)

In order not to contradict the Chapman-Enskog assumptions it must hold
∫

w(1) dv =
0, see (31).
We remark that we are applying the Chapman-Enskog procedure to derive a cor-
rected version of the equation with unknown n. Accordingly, we start from the
continuity equation for the position density n, (22),

∂

∂t

∫
wdv +∇x ·

∫
vwdv = 0 ,

and (26) becomes
∂w

∂t
=

∂w

∂n

(
−∇x ·

∫
vwdv

)
.

11



By substituting this expression in the scaled equation (1), we obtain

ε

(
∂w

∂n

(
−∇x ·

∫
vwdv

))
+ ε v · ∇xw = Θ[V ]w − ν(w − weq) ,

then, by substituting the truncated asymptotic expansion (27), we get

ε

(
∂w(0)

∂n

(
−∇x ·

∫
vw(0)dv

))
+ ε2

(
∂w(1)

∂n

(
−∇x ·

∫
vw(0)dv

))
+

ε2

(
∂w(0)

∂n

(
−∇x ·

∫
vw(1)dv

))
+ ε3

(
∂w(1)

∂n

(
−∇x ·

∫
vw(1)dv

))
+

εv · ∇xw(0) + ε2v · ∇xw(1)

= Θ[V ]w(0) + εΘ[V ]w(1) − ν(w(0) − weq)− εν w(1) .

At the 0-th order in ε it remains

Θ[V ]w(0) − ν(w(0) − weq) = 0 ,

whose solution is given formally by (3). By considering weq = n(F + ~2F ~),

w(0) = (ν −Θ[V ])−1 ν weq

= n(x, t)F−1

(
νF(F + ~2F ~)
ν − iδV (x, η)

)
(x, v) .

Let us define the function M = M(x, v) by

M(x, v) := F−1

(
νF(F + ~2F ~)
ν − iδV (x, η)

)
(x, v) , (28)

see Manzini and Frosali 2006, then it holds w(0) = n M . At the first order in ε

∂w(0)

∂n

(
−∇x ·

∫
vw(0)dv

)
+ v · ∇xw(0) = (Θ[V ]− ν)w(1) .

Taking into account
∂w(0)

∂n
= M (cf. (28)) and (13), we obtain

M∇x ·
(

n
∇xV

νm

)
+ v · ∇xw(0) = (Θ[V ]− ν)w(1) ,

Then we have

w(1) := ∇x ·
(

n
∇xV

νm

)
[Θ[V ]− ν]−1 M + [Θ[V ]− ν]−1 (v · ∇x(n M)) . (29)

Now, we can rewrite the continuity equation with unknown n by using w = w(0) +
ε w(1) and the expressions for w(0) and w(1). We get a correction of O(ε) for the
continuity equation (22):

∂n

∂t
+∇x ·

∫
vw(0)dv + ε∇x ·

∫
vw(1)dv = 0 . (30)

In order to write explicitly the correction term we compute moments of w(1):

12



Lemma 2 Let w(1) be defined by (29). Then the moments of w(1) are∫
w(1)dv = 0 (31)

nU (1) :=
∫

v w(1)dv = −1
ν
∇x·Π(0) +

1
ν
∇x ·

(
nU (0)

)
U (0) (32)

Π(1) :=
∫

v ⊗ v w(1)dv = −1
ν
∇x·Φ(0) +

1
ν
∇x ·

(
nU (0)

) Π(0)

n
+

+nU (1) ⊗ U (0) + U (0) ⊗ nU (1) (33)

e(1) :=
∫

v2

2
w(1)dv = −1

ν
∇x· J (0) +

1
ν
∇x ·

(
nU (0)

) e(0)

n
+ nU (1)· U (0) (34)

J (1) =
∫

v
v2

2
w(1)dv = −1

ν
∇x·Σ(0) +

1
ν
∇x·

(
nU (0)

) J (0)

n
+ e(1)U (0) + Π(1)U (0) .

(35)

The proof is in the Appendix. Observe that we use the shortened form ∂xk
Πki =

∇x·Π , as well as ∂xk
Φkij = ∇x·Φ . Then Eq. (30) can be rewritten as

∂n

∂t
− ∇x ·

(
n
∇V

νm

)
+

ε

ν
∇x ·

(
∇x ·

(
n
∇V

νm

)
∇V

νm

)
− ε

ν
∇x · ∇x·Π(0) = 0 , (36)

with Π(0) as in (15):

Π(0) = n

(
kθI
m

+ 2
∇V

νm
⊗ ∇V

νm
+

~2

12m2kθ
∇x ⊗∇xV

)
.

This is at O(1) in ε a classical drift term with unkwon n with a O(ε)-additional drift
due to the high-field regime. By splitting the following term as

ε

ν
∇x·

(
∇V

νm
∇x ·

(
n
∇V

νm

))
=

ε

ν
∇x·

∇V

νm
∇x·

(
n
∇V

νm

)
+

ε

ν

∇V

νm
·∇x

(
∇x·

(
n
∇V

νm

))
,

we indeed derive the following high-field corrected version of the (classical) mobility
coefficient µcl = 1/(νm)

µhf :=
1

νm

(
1 +

ε

ν

∆V

νm

)
.

Moreover, there is an O(ε)-diffusive term: to the standard classical and quantum
tensors, see Degond et al. (2005), is added an anisotropic tensor, (proportional to)
∇V ⊗∇V , that is peculiar of the high-field regime, Cercignani et al. (2001). Eq. (36)
is a quantum augmented drift-diffusion model and it coincides with the one derived
in Manzini and Frosali (2006) via a different asymptotical procedure. We remark
that the quantum correction is due to theO(~2)-expansion of the Wigner equilibrium
function and not to the use of the pseudo-differential operator.
In the next section we shall go further and apply the moment method and then
propose a closure procedure suggested by the Chapman-Enskog expansion w(0) +
εw(1).
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5 Corrections to moment equations

In the previous section, we have derived a corrected version of the conservation equa-
tion for the position density n in a regime close to the high-field one by expressing
the position-density flux nU :=

∫
v w dv as

nU ≈ nU (0) + ε nU (1) =
∫

v (w(0) + ε w(1)) dv ,

with w(1) obtained by the Chapman-Enskog precedure. In this section we want to
obtain corrected equations for the evolution of the fluid velocity U (0) and the energy
density e(0).
Let us start then from the moment equations (23), (24):

ε
∂(nU)

∂t
+ ε∇x·

∫
v ⊗ vw dv +

∇xV

m

∫
w dv = −ν

∫
v w dv ,

ε
∂e

∂t
+ ε∇x·

∫
v
v2

2
w dv +

∇xV

m
·
∫

v w dv = −ν

(∫
v2

2
w dv − eeq

)
.

The closure strategy consists in using for the computation of the fluxes w ≈ w(0) +
ε w(1), this means that we are computing with O(ε)-accuracy all the terms that
decide the evolution of the macroscopic unknowns. Let us start from Eq. (23),
namely,

ε
∂(nU)

∂t
+ ε∇x·

∫
v ⊗ vw dv +

∇xV

m

∫
w dv = −ν

∫
v w dv ,

and substitute w ≈ w(0) + ε w(1) for the computation of the fluxes. We obtain
∂(nU)

∂t
+∇x·Π(0) + ε∇x·Π(1) +

1
ε

n∇xV

m
= −1

ε
ν n(U (0) + εU (1)) .

By substiting the expressions for U (0) and U (1), precisely,

−ν U (0) :=
∇xV

m
, −ν nU (1) := ∇x·Π(0) −∇x ·

(
nU (0)

)
U (0) ,

it reduces to the following equation with unknown U ≈ U (0):

∂(nU (0))
∂t

+∇x ·
(
nU (0)

)
U (0) + ε∇x·Π(1) = 0 .

We stress that the standard term ∇x·Π(0) disappears due to the correction of the
BGK moment −ν nU (1), thus at the leading order there is some drift equation in
U (0). Let us rewrite the definition (33) of Π(1) in a more explicit form:

ν∇x·Π(1) = ∇x·

[(
Π(0)

n
+ 2U (0) ⊗ U (0)

)
∇x ·

(
nU (0)

)]
− ∇x·

(
∇x·Π(0) ⊗ U (0) + U (0) ⊗∇x·Π(0)

)
− ∇x·∇x·

(
U (0) ⊗Π(0) + Π(0) ⊗ U (0) + Π(0)

kj U
(0)
i

)
+ ∇x·∇x·

(
n

~2

4m2
∇⊗∇⊗ U (0)

)
, (37)
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with the anisotropic tensors Π(0) as in (15) and with Π(0)
kj U

(0)
i componentwise in

order to distinguish it from U (0)
k Π(0)

ij = U (0) ⊗ Π(0) and Π(0)
ki ⊗ U (0)

j = Π(0) ⊗ U (0).
Then, at O(ε) there are diffusive terms in nU (0) (first line of (37)) and drift terms
in U (0) (second line of (37)). The last two lines are −ν∇x·∇x·Φ(0) as in (17). The
third line contains again O(ε)-drift and diffusive terms in U (0), while the fourth a
quantum iper-diffusive term in U (0).
Starting instead from Eq. (24), namely,

ε
∂e
∂t

+ ε∇x·
∫

v
v2

2
w dv +

∇xV

m
· (nU) = −ν(e− eeq) ,

that is the 2nd-order moment of the high-field Wigner-BGK equation, and substi-
tuting w ≈ w(0) + ε w(1) for closing the moments, we get

∂ e(0)

∂t
+∇x· J (0) + ε∇x· J (1) − νU (0)·nU (1) = −ν e(1) . (38)

By substituting the explicit expression for e(1), namely

e(1) = nU (1)· U (0) +
1
ν

e(0)

n
∇x ·

(
nU (0)

)
− 1

ν
∇x· J (0) ,

(38) simplifies to

∂e(0)

∂t
+∇x·

(
nU (0)

) e(0)

n
+ ε∇x· J (1) = 0 ,

where, once again, at order O(1) the standard term ∇x· J (0) does not appear, since
the regime is of drift-collision balance. Consequently, we expect diffusive terms to
appear as order O(ε) corrections. By writing explicitly all the terms contained in
νJ (1) (we used (20) for Σ(0) and (37) for Π(1)), we obtain

νJ (1) =

∇x·
(
nU (0)

)(
2
e(0)

n
U (0) + 3|U (0)|2 U (0) + 2

Π(0)

n
U (0) − ~2

8m2
∆xU (0)

)

− ∇x·
[
e(0)U (0) + Π(0)U (0) − n

~2

8m2
∆xU (0)

]
U (0) − (∇x·Π(0))3|U (0)|2

− ∇x·
[
Σeq + e(0)

(
2U (0) ⊗ U (0)

)
+ 2U (0) ⊗

(
Π(0)U (0) − n

~2

8m2
∆U (0)

)]
− ∇x·

[
2
(

Π(0)U (0) − n
~2

8m2
∆U (0)

)
U (0) +

(
Π(0) ⊗ U (0) − 2n

~2

4m2
∇⊗∇⊗ U (0)

)
U (0)

]
− ∇x·

[
U (0) ⊗Π(0) + Π(0) ⊗ U (0) + Π(0)

kj U
(0)
i

]
U (0) +∇x·

[
n

~2

4m2
∇⊗∇⊗ U (0)

]
U (0) .

Among them we isolate the following terms of ν∇x· J (1)

2∇x·

[
∇x·

(
nU (0)

)(e(0)

n
U (0)

)]
−∇x·

[
U (0)∇x·

(
e(0)U (0)

)]
−2∇x·∇x·

[
e(0)U (0) ⊗ U (0)

]
15



that are O(ε) drift and diffusive terms in e(0). The remaining terms of ν∇x· J1

contain the expected quantum–high-field corrections.

Appendix

Proof of Lemma 1
Since it holds

w(0) := F−1

{
νFweq

ν − iδV

}
and

vjF−1f = F−1
(
i ∂ηjf

)
,

then

vj w(0) = F−1

{
νF(vjweq)
ν − iδV

−
νFweq∂ηjδV

(ν − iδV )2

}
and

vivj w(0) = F−1

{
νF(vivjweq)

ν − iδV
− νF(vjweq)∂ηiδV

(ν − iδV )2

}
− F−1

{
νF(viweq)∂ηjδV

(ν − iδV )2
+

νFweq i∂2
ηiηj

δV

(ν − iδV )2
−

νFweq∂ηjδV 2∂ηiδV

(ν − iδV )3

}
.

Then, by further differentiation

vkvivj w(0) = F−1

{
νF(vivjvkweq)

ν − iδV
− νF(vivjweq)∂ηk

δV

(ν − iδV )2

}
− F−1

{
νF(vjvkweq)∂ηiδV

(ν − iδV )2
+

νF(vjweq) i∂2
ηiηk

δV

(ν − iδV )2
− νF(vjweq)∂ηiδV 2∂ηk

δV

(ν − iδV )3

}

− F−1

{
νF(vivkweq)∂ηjδV

(ν − iδV )2
+

νF(viweq) i∂2
ηjηk

δV

(ν − iδV )2
−

νF(viweq)∂ηjδV 2∂ηk
δV

(ν − iδV )3

}

− F−1

{
νF(vkweq) i∂2

ηiηj
δV

(ν − iδV )2
+

νFweq i2∂3
ηiηjηk

δV

(ν − iδV )2
−

νFweq i∂2
ηiηj

δV 2∂ηk
δV

(ν − iδV )3

}

+ F−1

{
νF(vkweq)∂ηjδV 2∂ηiδV

(ν − iδV )3
+

νFweq i∂ηk
(∂ηjδV 2∂ηiδV )

(ν − iδV )3

}
− F−1

{
6νFweq∂ηjδV ∂ηiδV ∂ηk

δV

(ν − iδV )4

}
and third order term vkv

2
j w(0) dv is computed by taking i = j in the previous

calculation. Fourth order terms can be computed analogously.
The corresponding moments are computed by applying the following identity∫ (

F−1f
)
(v) dv = f |η=0 ,
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i.e. by evaluating in η = 0 the functions between curl parentheses.
Proof of Lemma 2
Let us rewrite w(1) as

w(1) = ∇x·
(

n∇xV

νm

)
F−1

{
FM

iδV − ν

}
+ F−1

{
F(v·∇xw(0))

iδV − ν

}
,

where we recall M := w(0)/n. First we compute the moments of the first addendum.

vjF−1

{
FM

iδV − ν

}
= F−1

{
F(vjM)
iδV − ν

+
FM∂ηjδV

(iδV − ν)2

}
,

vivjF−1

{
FM

iδV − ν

}
= F−1

{
F(vivjM)
iδV − ν

+
F(vjM)∂ηiδV

(iδV − ν)2

}
+ F−1

{
F(viM)∂ηjδV

(iδV − ν)2
+
FM i∂2

ηiηj
δV

(iδV − ν)2
+
FM∂ηjδV 2∂ηiδV

(iδV − ν)3

}
,

v2
j

2
F−1

{
FM

iδV − ν

}
= F−1

{
F(v2

j M/2)
iδV − ν

+
F(vjM)∂ηjδV

(iδV − ν)2

}

+ F−1

1
2

FM i∂2
η2

j
δV

(iδV − ν)2
+
FM(∂ηjδV )2

(iδV − ν)3

 ,

viv
2
j

2
F−1

{
FM

iδV − ν

}
= F−1

{
F(viv

2
j M/2)

iδV − ν
+
F(v2

j M/2)∂iδV

(iδV − ν)2

}

+ F−1

{
F(vivjM)∂ηjδV

(iδV − ν)2
+
F(vjM) i∂2

ηiηj
δV

(iδV − ν)2

}
+ F−1

{F(vjM)∂ηjδV 2∂ηiδV

(iδV − ν)3

}

+
1
2
F−1

F(viM) i∂2
η2

j
δV

(iδV − ν)2
+
FM i2∂3

ηiη2
j
δV

(iδV − ν)2

+
1
2
F−1

FM i∂2
η2

j
δV 2∂ηiδV

(iδV − ν)3


+ F−1

{
F(viM)(∂ηjδV )2

(iδV − ν)3
+
FM i∂ηi((∂ηjδV )2)

(iδV − ν)3

}
+ F−1

{
FM(∂ηjδV )2 3∂ηiδV

(iδV − ν)4

}
.

Secondly, we perform analogous calculations with the second addendum

vjF−1

{
F(v · ∇xw(0))

iδV − ν

}
= F−1

{
F(vjv · ∇xw(0))

iδV − ν
+
F(v · ∇xw(0))∂ηjδV

(iδV − ν)2

}
,
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vivjF−1

{
F(v · ∇xw(0))

iδV − ν

}
= F−1

{
F(vivjv · ∇xw(0))

iδV − ν
+
F(vjv · ∇xw(0))∂ηiδV

(iδV − ν)2

}

+ F−1

{
F(viv · ∇xw(0))∂ηjδV

(iδV − ν)2
+
F(v · ∇xw(0)) i∂2

ηiηj
δV

(iδV − ν)2

}

+ F−1

{
F(v · ∇xw(0))∂ηjδV 2∂ηiδV

(iδV − ν)3

}
,

v2
j

2
F−1

{
F(v · ∇xw(0))

iδV − ν

}
= F−1

{
F(v2

j (v · ∇xw(0))/2)
iδV − ν

+
F(vjv · ∇xw(0))∂ηjδV

(iδV − ν)2

}

+ F−1

1
2

F(v · ∇xw(0)) i∂2
η2

j
δV

(iδV − ν)2
+
F(v · ∇xw(0))(∂ηjδV )2

(iδV − ν)3

 ,

viv
2
j

2
F−1

{
F(v · ∇xw(0))

iδV − ν

}
=

F−1

{
F(viv

2
j (v · ∇xw(0))/2)
iδV − ν

+
F(v2

j (v · ∇xw(0))/2)∂iδV

(iδV − ν)2

}

+ F−1

{
F(vivjv · ∇xw(0))∂ηjδV

(iδV − ν)2
+
F(vjv · ∇xw(0)) i∂2

ηiηj
δV

(iδV − ν)2

}

+ F−1

{
F(vjv · ∇xw(0))∂ηjδV 2∂ηiδV

(iδV − ν)3

}

+
1
2
F−1

F(viv · ∇xw(0)) i∂2
η2

j
δV

(iδV − ν)2
+
F(v · ∇xw(0)) i2∂3

ηiη2
j
δV

(iδV − ν)2


+

1
2
F−1

F(v · ∇xw(0) i∂2
η2

j
δV 2∂ηiδV

(iδV − ν)3


+ F−1

{
F(viv · ∇xw(0))(∂ηjδV )2

(iδV − ν)3
+
F(v · ∇xw(0)) i∂ηi((∂ηjδV )2)

(iδV − ν)3

}

+ F−1

{
F(v · ∇xw(0))(∂ηjδV )2 3∂ηiδV

(iδV − ν)4

}
.

We now evaluate the expressions in curl parentheses in η = 0 and recombine them
according to the definition of w(1). Observe that we use the writing

∇x ·
∫

vvjw
(0) dv =

∑
k

∂xk

∫
vkvjw

(0) dv
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and analogous ones to shorten the notation. We obtain

ν

∫
vjw

(1) dv = ∇x·
(

n
∇xV

νm

){
−
∫

vjM dv +
∂xjV

νm

}
+

{
−∇x ·

∫
vvjw

(0) dv +∇x ·
∫

vw(0) dv
∂xjV

νm

}
= ∇x·

(
n
∇xV

νm

)
∂xjV

νm
−∇x ·

∫
vvjw

(0) dv ,

ν

∫
vivjw

(1) dv = ∇x·
(

n
∇xV

νm

){
−
∫

vivjM dv − 4
∂xjV

νm

∂xiV

νm

}
+

{
−∇x ·

∫
vvivjw

(0) dv + 2∇x·
(

n∇xV

νm

)
∂xjV

νm

∂xiV

νm

}
+

{
∇x ·

∫
vvjw

(0) dv
∂xiV

νm
+∇x ·

∫
vviw

(0) dv
∂xjV

νm

}
= −∇x·

(
n∇xV

νm

)(∫
vivjM dv + 2

∂xjV

νm

∂xiV

νm

)
+ ∇x ·

∫
vvjw

(0) dv
∂xiV

νm
+∇x ·

∫
vviw

(0) dv
∂xjV

νm

− ∇x ·
∫

vvivjw
(0) dv ,

ν

∫
v2
j

2
w(1) dv = −∇x·

(
n
∇xV

νm

)(∫
v2
j

2
M dv +

(
∂xjV

νm

)2
)

+ ∇x ·
∫

vvjw
(0) dv

∂xjV

νm
−∇x ·

∫
v
v2
j

2
w(0) dv ,

ν

∫
viv

2
j

2
w(1) dv =

∇x·
(

n∇xV

νm

){
−
∫

viv
2
j M

2
dv +

∫
v2
j M

2
dv

∂xiV

νm
+
∫

vivjM dv
∂xjV

νm

}

+ ∇x·
(

n∇xV

νm

)6
(

∂xjV

νm

)2 ∂xiV

νm
−

~2∂3
xix2

j
V

8m3ν


+

{
−∇x ·

∫
vvi

v2
j

2
w(0) dv +∇x ·

∫
v
v2
j

2
w(0) dv

∂xiV

νm
+∇x ·

∫
vvivjw

(0) dv
∂xjV

νm

}

+

−2∇x ·
∫

vvjw
(0) dv

∂xjV

νm

∂xiV

νm
+∇x ·

(
n∇V

νm

) ~2∂3
xix2

j
V

8m3ν


+

{
−∇x ·

∫
vviw

(0) dv

(
∂xjV

νm

)2

− 3∇x·
(

n∇xV

νm

)(
∂xjV

νm

)2 ∂xiV

νm

}

19



= −∇x·
(

n∇xV

νm

)(∫
viv

2
j M

2
dv −

∫
v2
j M

2
dv

∂xiV

νm
−
∫

vivjM dv
∂xjV

νm

)

− ∇x·
(

n∇xV

νm

)(
−3
(

∂xjV

νm

)2 ∂xiV

νm

)

− ∇x ·
∫

vvi

v2
j

2
w(0) dv +∇x ·

∫
v
v2
j

2
w(0) dv

∂xiV

νm
+∇x ·

∫
vvivjw

(0) dv
∂xjV

νm

− 2∇x ·
∫

vvjw
(0) dv

∂xjV

νm

∂xiV

νm
−∇x ·

∫
vviw

(0) dv

(
∂xjV

νm

)2

.
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