Compressed asymptotic analysis of a quantum transport equation

Chiara Manzini & Giovanni Frosali

University of Florence, chiara.manzini@unifi.it & giovanni.frosali@unifi.it

Wigner-BGK equation

$$\partial_t w + v \cdot \nabla_x w - \Theta[V]w = -\nu(w - w_{eq}), \ x, v \in \mathbb{R}^d, \ t > 0$$
(1

- $w(x, v, t) \in \mathbb{R}$ quasi-distribution function, $w(t = 0) = w_0$,
- \bullet V external potential enters via

$$\Theta[V]w(x,v) = \frac{i}{\hbar(2\pi)^{\frac{d}{2}}} \int \delta V(x,\hbar\eta) \mathcal{F}_v w(x,\eta) e^{i\eta v} d\eta$$

with $\delta V(x,\hbar\eta) := V(x+\hbar\eta/2) - V(x-\hbar\eta/2)$, \mathcal{F}_v Fourier tr.

• interaction with the environment: after a time $1/\nu$ the system will relax to $w_{\rm eq}$ (quantum corrected thermal eq.)

$$\begin{split} & \boldsymbol{w}_{\mathrm{eq}}(\boldsymbol{x}, \boldsymbol{v}) := \left(\frac{m}{2\pi\hbar}\right)^d e^{-\beta H} \left\{ 1 + \hbar^2 \left[-\frac{\beta^2}{8m} \sum_{r=1}^d \frac{\partial^2 V}{\partial x_r^2} + \right. \right. \\ & \left. + \frac{\beta^3}{24m} \sum_{r=1}^d \left(\frac{\partial V}{\partial x_r}\right)^2 + \frac{\beta^3}{24} \sum_{r,s=1}^d v_r v_s \frac{\partial^2 V}{\partial x_r \partial x_s} \right] + O(\hbar^4) \right\} \end{split}$$

where $H(x, v) := mv^2/2 + V(x)$ is the Hamiltonian, $\beta \equiv 1/kT$, with T (constant) temperature and k Boltzmann constant.

Formulation of the problem

• Parametrize ([Gardner 94]) the equilibrium function via

$$n(x,t) \equiv n[w](x,t) := \int w(x,v,t) \, dv \approx \int w_{\rm eq}(x,v) \, dv \quad (2)$$

then the Wigner thermal equilibrium function reads

$$w_{\text{eq}}(x,v) = n(x,t) \left\{ F(v) + \hbar^2 F^{(2)}(x,v) \right\} + O(\hbar^4),$$

with $F(v) = (\beta m/2\pi)^{d/2} e^{-\beta mv^2/2}$ and $F^{(2)}$ $O(\hbar^2)$ -correction.

• Rescale (1) such that $\frac{t_V}{t_0} \approx \frac{t_C}{t_0} \approx \epsilon$, with t_V, t_C, t_0 potential collision and system characteristic times. Thus,

$$\epsilon \partial_t w + \epsilon v \cdot \nabla_x w - \Theta[V]w = -\nu (w - w_{eq}),$$
 (3)

• Let $X_k:=L^2(\mathbbm{R}^{2d},(1+|v|^{2k})dx\,dv;\mathbbm{R}),\,X_k^v:=L^2(\mathbbm{R}^d,(1+|v|^{2k})dv;\mathbbm{R}).$ Eq. (3) in abstract form reads

$$\epsilon \partial_t w = \epsilon Sw + \mathcal{A}w + \mathcal{C}w, \quad \lim_{t \to 0^+} \|w(t) - w_0\|_{X_k} = 0 \quad (4)$$

with $Su := -v \cdot \nabla_x$, $Aw := \Theta[V]w$, $Cw := -(\nu w - \Omega w)$,

$$\Omega w(x,v) = \nu n[w](x) \left[F(v) + \hbar^2 F^{(2)}(x,v) \right].$$

Preliminary result ((4) with $\epsilon = 0$)

If $V \in W^{k,\infty}$ with 2k > d, $A + C \in \mathcal{B}(X_k)$ (resp.ly, $\mathcal{B}(X_k^v)$).

 $\forall\,x\in{\rm I\!R}^d \text{ fixed, } \ker(\mathcal{A}+\mathcal{C}):=\,\{cM(v),c\in{\rm I\!R}\}\subset X^v_k \text{ with }$

$$M(x,v) := \nu \mathcal{F}^{-1} \left\{ \frac{\mathcal{F}_v F(\eta)}{\nu - i\delta V(x,\eta)} \left(1 - \frac{\beta \hbar^2}{24m^2} \sum_{r,s=1}^d \eta_r \eta_s \frac{\partial^2 V(x)}{\partial x_s x_s} \right) \right\}$$

For all $h \in X_k^v$, (A + C)u = h has a solution if and only if $\int h(v)\,dv \ = \ 0\,.$

Compressed expansion [Mika&Banasiak 95]

$$X_k = \{\alpha(x)M(x,v), \alpha \in X_k^x\} \oplus \left\{ f \in X_k \left| \int f(v)dv = 0 \right. \right\}$$

Define the projections $\mathcal{P}f = M \int f(v)dv$ and $\mathcal{Q} = \mathcal{I} - \mathcal{P}$.

$$w = \mathcal{P}w + \mathcal{Q}w =: \varphi + \psi \equiv Mn[w] + \psi$$

By operating formally with \mathcal{P} and \mathcal{Q} on both sides of (4),

$$\partial_t \varphi = \mathcal{P}S\mathcal{P}\varphi + \mathcal{P}S\mathcal{Q}\psi
\partial_t \psi = \mathcal{Q}S\mathcal{P}\varphi + \mathcal{Q}S\mathcal{Q}\psi + (1/\epsilon)\mathcal{Q}(\mathcal{A} + \mathcal{C})\mathcal{Q}\psi$$
(5)

with initial conditions $\varphi(0) = \varphi_0 = \mathcal{P}f_0, \psi(0) = \psi_0 = \mathcal{Q}f_0$. Split φ and ψ into the sums of "bulk" and initial layer parts

$$\varphi(t) = \bar{\varphi}(t) + \tilde{\varphi}(t/\epsilon), \quad \psi(t) = \bar{\psi}(t) + \tilde{\psi}(t/\epsilon).$$

Let $\bar{\varphi}$ unexpanded and expand $\tilde{\varphi}, \bar{\psi}, \tilde{\psi}$ as

$$\bar{\psi}(t) = \bar{\psi}_0(t) + \epsilon \bar{\psi}_1(t) + \epsilon^2 \bar{\psi}_2(t) + \dots$$

Eqs. (5) for the bulk part terms up to the order ϵ^2 become

$$\partial_t \bar{\varphi} = \mathcal{P}S\mathcal{P}\bar{\varphi} + \mathcal{P}S\mathcal{Q}\bar{\psi}_0 + \epsilon \mathcal{P}S\mathcal{Q}\bar{\psi}_1$$
 (6)

$$0 = \mathcal{Q}(\mathcal{A} + \mathcal{C})\mathcal{Q}\bar{\psi}_0$$

$$0 = \mathcal{Q}S\mathcal{P}\bar{\varphi} + \mathcal{Q}(\mathcal{A} + \mathcal{C})\mathcal{Q}\bar{\psi}_1 \tag{7}$$

Auxiliary problems

• To solve (7) with unknown $\bar{\psi}_1$, solve

$$(\mathcal{A} + \mathcal{C})D_1 = -v \cdot \nabla_x M + M \int v \cdot \nabla_x M \, dv \,,$$

$$(\mathcal{A} + \mathcal{C})D_2 = M \left(-v + \int v M \, dv \right)$$

with unknowns $D_1, (D_2)_i \in \ker \mathcal{P}$. Hence (6) becomes

$$\frac{\partial n}{\partial t} = -\nabla_x \cdot \left[n \int v M dv + \epsilon \left(\int v \otimes D_2 dv \cdot \nabla_x n + n \int v D_1 dv \right) \right]$$

- The initial value comes from the analysis of the initial layer.
- The coefficients can be expressed in terms of the moments of $M \int v M(x,v) dv$, $\int v \otimes v M(x,v) dv$

Quantum drift-diffusion equation (high-field)

$$\frac{\partial n}{\partial t} = \frac{1}{\nu m} \nabla \cdot (n \nabla V) + \frac{\epsilon}{\nu \beta m} \nabla \cdot \nabla n$$

$$+ \frac{\epsilon}{\nu^3 m^2} \nabla \cdot \left[\nabla V \otimes \nabla V \nabla n + n2 \left(\nabla \otimes \nabla \right) V \nabla V + n \Delta V \nabla V \right]$$

$$+ \frac{\epsilon \beta \hbar^2}{12\nu m^2} \nabla \cdot \left[\left(\nabla \otimes \nabla \right) V \nabla n + n \nabla \cdot \left(\nabla \otimes \nabla \right) V \right]$$

(cf.[Poupaud 92]). By (2) $\nabla \log n = -\beta \nabla V + O(\hbar^2)$, thus

$$\begin{split} \frac{\partial n}{\partial t} - \frac{1}{\nu m} \nabla \cdot (n \nabla V) - \frac{\epsilon}{\nu \beta m} \nabla \cdot \nabla n - \frac{\epsilon}{\nu^3 \beta^2 m^2} \nabla \cdot \left(\frac{(\nabla \otimes \nabla n) \nabla n}{n} \right) \\ + \frac{\epsilon \hbar^2}{12 \nu m^2} \left(\nabla^4 n - \nabla \otimes \nabla \frac{\nabla n \otimes \nabla n}{n} \right) = 0 \,. \end{split}$$