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We perform the asymptotic analysis of the Wigner quantum transport equation
in a semiconductor. What we mean as asymptotic analysis:

Let us suppose that the evolution process is characterized by the operator Aε,
acting in the Banach space X, duε

dt
= Aεuε,

uε(0) = u0

where u0 is the initial condition. We are interested in finding a new simpler
operator, say Bε, such that the new problem dvε

dt
= Bεvε,

vε(0) = v0

admits a solution vε which is sufficiently “close” to the exact solution, uε, in the
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sense
‖uε − vε‖X = O(ε2).

The main purpose of this paper is to revisit the derivation of drift-diffusion
approximation for a linear quantum transport in a semiconductor.

Our aim is to make a rigorous asymptotic analysis using the modified
(compressed) Chapman–Enskog method (Mika & Banasiak, 1995a).

This method was applied successfully to more complicated models, yielding a
rigorous mathematical theory of the asymptotic expansion. Here we apply the
compressed method to the quantum Wigner equation, clarifying the derivation and
giving the exact meaning of the hydrodynamic coefficients.

The problem is studied in the L2 setting, where the norm is the natural one
from the physical point of view.
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The quantum kinetic model

We consider the linear Wigner equation that describes the evolution in time
of the quasi-distribution function w = w(x, v, t) associated to a quantum system
with d degrees of freedom, under the effect of a potential V = V (x):

∂

∂t
w + v · ∇xw −Θ[V ]w = 0, t > 0, (x, v) ∈ IR2d .

Here the (real-valued) potential V enters through the pseudo-differential operator
Θ[V ] defined by

(Θ[V ]w)(x, v, t) =
i

(2π)d

∫
IRd

∫
IRd
δV (x, η)w(x, v′, t)ei(v−v′)·η dv′ dη ,

where δV (x, η) := 1
~

(
V (x+ ~η

2m)− V (x− ~η
2m)

)
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Let us modify the Wigner equation by adding a collisional term which mimics
the dissipative interaction of the quantum system with the environment. The
simpler model is a BGK relaxation-time operator, which says that after a time 1/ν
the system will relax to a state weq. Accordingly,

∂

∂t
w + v · ∇xw −Θ[V ]w = −ν(w − weq) , t > 0, (x, v) ∈ IR2d.

We shall describe the equilibrium state by the O(~2)-quantum corrected
thermodynamical equilibrium function calculated by Wigner (1932). Precisely,

weq(x, v) :=

(
m

2π~

)d

e
−βH

×

1 + ~2

 d∑
r=1

(
−

β2

8m

∂2V

∂x2
r

+
β3

24m

(
∂V

∂xr

)2
)

+
β3

24

d∑
r,s=1

vrvs

∂2V

∂xr∂xs

+ O(~4
)


where H(x, v) := mv2/2 + V (x) is the Hamiltonian of the system, β ≡ 1/kT ,

4



with T the (constant) temperature and k the Boltzmann constant. We recall that
this follows from an expansion in terms of ~ of the unconstrained minimizer of the
relative (von Neumann) entropy.
Like in Gardner 1994, since the particle density is given by n(x, t) ≡ n[w](x, t) :=∫
w(x, v, t) dv, we parametrize the equilibrium function via∫

IRd
weq(x, v) dv = n(x, t) .

Then we can write the Wigner thermal equilibrium function as

weq(x, v) = n(x, t)F (v)

1 + ~2

− β2

24m

d∑
r=1

∂2V

∂x2
r

+
β3

24

d∑
r,s=1

vrvs

∂2V

∂xrxs

+ O(~4
)

 ,

where F (v) is the classical Maxwellian
(

βm
2π

)d/2

e−βmv2/2 .

Such function is corrected by a term of order ~2.
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Formulation of the problem

In the sequel we are interested to study the case in which a “strong” potential
is included, accordingly, we introduce the potential characteristic time tV (i.e. the
time needed by a particle of mass m to cover the distance x0 under the effect of
the potential). Moreover we introduce the mean free time tC between interactions
of the system with the background.

The rescaled adimensionalized equation looks as follows

ε
∂

∂t
w + εv · ∇xw −Θ[V ]w = −ν (w − weq) , t > 0, (x, v) ∈ IR2d. (1)

where ε := l/x0 with l := v0tC is a characteristic length corresponding to the
classical mean free path

We have assumed that the times tV and tC are comparable, and
tV
t0
≈ tC
t0
≈ ε .
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We are now in position to put (1) in abstract form: let Xk be the space
L2(IR2d, (1 + |v|2k)dx dv; IR) with the usual norm

‖u‖2Xk
=

∫
IR2d
|u(x, v)|2(1 + |v|2k) dxdv ,

and Xv
k be the Hilbert space L2(IRd, (1 + |v|2k)dv; IR). We have the following

system 
ε
dw

dt
= ε Sw +Aw + Cw,

lim t→0+ ‖w(t)− w0‖Xk
= 0

(2)

• streaming operator Su := −v·∇x ,

• field operator Aw := Θ[V ]w,

• collision operator Cw := −(ν w − Ωw) ,
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where the collision operator Ω is defined by

Ωw(x, v, t) := νF (v)

1 + ~2

− β2

24m

d∑
r=1

∂2V

∂x2
r

+
β3

24

d∑
r,s=1

vrvs
∂2V

∂xrxs


×

∫
w(x, v, t) dv ,

We shall call F (2) the previous O(~2)-coefficient and

Ωw(x, v) = νn[w](x)
[
F (v) + ~2F (2)(x, v)

]
.

Remark: A formal integration in the v-variable of the evolution equation gives
the continuity equation.
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For what the operator A+C is concerned, we can state the following preliminary
result.

Lemma 1.

If V ∈ W k,∞ with 2k > d, then the operator A + C is well-defined from Xk

into itself and is bounded by

‖A+ C‖B(Xk) ≤ C(d, k)
[
‖V ‖W k,∞(1 + ‖F‖Xv

k+2
) + ‖F‖Xv

k
+ 1

]
.

Moreover, A+ C is well-defined (bounded) from Xv
k into itself.

The existence and uniqueness problems for the initial value system (2) for any
ε > 0 can be investigated by using analogous arguments in Manzini-Barletti(2004),
related to semigroup theory in the L2-setting.
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We shall apply the compressed Chapman-Enskog procedure, as proposed by J.
Mika (1981) (see also the monograph by Mika & Banasiak (1995)).

Accordingly, it is necessary to study the problem with ε = 0, i.e. the equation
(A+ C)f = 0, in the space Xk. (in the space Xv

k for any fixed x ∈ IRd).

Proposition 1.

Under the same assumptions of the previous Lemma, for any fixed x

ker(A+ C) := {cM(v), c ∈ IR} ⊂ Xv
k

with

M(x, v) := νF−1

 FF (η)
ν − iδV (x, η)

1− β~2

24m2

d∑
r,s=1

ηrηs
∂2V (x)
∂xsxs

 (x, v),

Moreover, for all h ∈ Xv
k , (A+ C)u = h has a solution if and only if∫

IRd
h(v) dv = 0 .
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Formal expansion

According to Proposition 1., we can decompose the space Xk as follows

Xk = (Xk)M ⊕ (Xk)
0

where (Xk)M is the eigenspace spanned by M := {α(x)M(v), α ∈ Xx
k} ⊂ Xk

and

(Xk)
0 =

{
f ∈ Xk

∣∣∣∣∫ f(v)dv = 0
}
.

We define the corresponding spectral projection P from (Xk) into (Xk)M

Pf = M

∫
f(v)dv

and Q = I − P.

We decompose the function w ∈ Xk as w = Pw +Qw.
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From now on we call Pw and Qw as ϕ and ψ. We remark that for all
w ∈ Xk,Pw = Mn[w].

ϕ is called the hydrodynamic part

ψ is called the kinetic part of w.

Operating formally on both sides of the evolution equation (2) for the function w
with the projections P and Q, we obtain the following system of equations

∂ϕ

∂t
= PSPϕ+ PSQψ

∂ψ

∂t
= QSPϕ+QSQψ +

1
ε
Q(A+ C)Qψ

(3)

with initial conditions {
ϕ(0) = ϕ0 = Pf0
ψ(0) = ψ0 = Qf0.
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Applying the compressed asymptotic expansion, we split the solutions ϕ and ψ
into the sums of the “bulk” parts ϕ̄ and ψ̄ and of the initial layer parts ϕ̃ and ψ̃,
which take account of the rapid changes of f for small times

ϕ(t) = ϕ̄(t) + ϕ̃

(
t

ε

)
ψ(t) = ψ̄(t) + ψ̃

(
t

ε

)
.

The bulk hydrodynamic part ϕ̄ is left unexpanded and the other parts are
expanded as

ϕ̃(τ) = ϕ̃0(τ) + εϕ̃1(τ) + ε2ϕ̃2(τ) + . . .

ψ̄(t) = ψ̄0(t) + εψ̄1(t) + ε2ψ̄2(t) + . . .

ψ̃(τ) = ψ̃0(τ) + εψ̃1(τ) + ε2ψ̃2(τ) + . . .,

where τ =
t

ε
.
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Accordingly, Eqs. (3) for the bulk part terms of the expansion up to the order
ε2 become: 

∂ϕ̄

∂t
= PSPϕ̄+ PSQψ̄0 + εPSQψ̄1

0 = Q(A+ C)Qψ̄0

0 = QSPϕ̄+Q(A+ C)Qψ̄1

thus

∂ϕ̄

∂t
= PSPϕ̄− εPSQ(Q(A+ C)Q)−1QSPϕ̄ (4)

ψ̄0 ≡ 0

ψ̄1 = −(Q(A+ C)Q)−1QSPϕ̄ ,

which have to be supplemented by appropriate initial conditions to be determined
from the analysis of the initial layer terms and the balance of the initial conditions.
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The unexpanded function ϕ̄(x, v, t) can be written as the product

ϕ̄(x, v, t) = n(x, t) M(x, v),

since we shall consider the contribution of the initial layer part ϕ̃ via an appropriate
initial condition for Eq. (4).

Auxiliary problems. In order to invert the operator Q(A + C)Q, we solve in
(Xk)

0

(A+ C)u =
[
−v·∇xM +M

∫
v·∇xM dv

]
, (5)

and

(A+ C)u =
[
M

(
−v +

∫
vM dv

)]
. (6)

Let us call D1(x, v) and D2(x, v) ≡ (D2)i(x, v) the respective solutions with
D1, (D2)i ∈ (Xk)

0.
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Hence the equation (4) takes the form

∂n

∂t
= −∇x

(
n

∫
vMdv

)
+ ε∇x·

[(∫
v ⊗D2 dv

)
·∇xn+ n

∫
vD1 dv

]
.

Before going further, we derive formally the initial layer conditions. Such initial
value can be found by the analysis of the initial layer terms:

ϕ̃0(τ), ψ̃0(τ), ϕ̃1(τ), ψ̃1(τ) .
We obtain the correct initial value for the bulk hydrodynamic functions

ϕ̄(0) = ϕ0 − ϕ̃0(0)− εϕ̃1(0) = ϕ0 − εPSQ(Q(A+ C)Q)−1ψ0.

Putting n0(x) =
∫
w0(x, v) dv

n(x, 0) = n0(x) + ε

∫
v·∇xD3(x, v)dv

where D3 = D3(x, v) is the unique solution of (A+ C)D3(x, v) = ψ0(x, v).
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The bulk part

We shall prove that all terms of the bulk part of the expansion are well-defined.
Such properties of the expansion terms are relevant into the rigorous asymptotic
analysis.

If we neglect the initial layer part (which will be appropriately taken into account
via the initial condition), we have

J = J (0) + εJ (1) := n

∫
vM dv + ε

∫
vψ̄1 dv

where

J (0) = − n

νm
∇V (x) −Drift term

J (1) =
∫
vψ̄1 dv = −

[(∫
v ⊗D2 dv

)
·∇xn+ n

∫
vD1 dv

]
.
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Let us call D the matrix given by

Dij(x) :=
∫
vi(D2)j(x, v)dv,

Lemma. The first term in J (1) is D·∇xn where the tensor D is given by

D =
1
ν

(
I
βm

+
1

ν2m2
∇V ⊗∇V +

β~2

12m2
(∇⊗∇)V

)
+O(~4) .

Lemma. The second term in J (1) is given by n times
∫
vD1(x, v) dv =

=
1
ν

(
2

ν2m2
(∇⊗∇)V ∇V +

1
ν2m2

∆V∇V +
β~2

12m2
∇x· (∇⊗∇)V

)
+O(~4) .
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Accordingly, the drift-diffusion equation looks like

∂n

∂t
=

1
νm

∇· (n∇V ) +
ε

νβm
∇·∇n +

ε

ν3m2
∇· (∇V ⊗∇V∇n)

+
ε

ν3m2
∇· [2n (∇⊗∇)V∇V + n∆V∇V ]

+
εβ~2

12νm2
∇· [(∇⊗∇)V∇n+ n∇· (∇⊗∇)V ]

19



In the same spirit of the approximation

∇ log n = −β∇V +O(~2) ,

we have the fourth order nonlinear drift-diffusion equation for the electron density

n

∂n

∂t
=

1
νm

∇· (n∇V ) +
ε

νβm
∇·∇n

+
ε

ν3β2m2
∇·

(
n∇ · (∇n⊗∇n)

n2
+

(∇⊗∇n)∇n
n

)
− ε~2

12νm2

(
∇4n−∇⊗∇(∇n⊗∇n)

n

)
.
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Rigorous results: bulk and initial layer parts

Bulk and the initial layer solutions, derived formally in Section 3, contain
functions whose existence and regularity have to be proved in order to make
rigorous the asymptotic analysis.

• The (strongly continuous) semigroup G generated in (Xk)0 by Q(A+ C)Q is

u(x, v, τ) = G(τ)u(x, v, 0) = e−τF−1
(
ei δV (x,η)τFu(x, η, 0)

)
.

• Estimates of ‖G(τ)h‖Xk
and ‖G(τ)h‖D(S)

• All terms of the initial layer expansion are well-defined

• Regularity of the solution of the drift-diffusion equation

• Strong differentiability of the bulk function ψ̄1
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Estimate of the error

We prove that the asymptotic expansion up to the first order gives an
approximation of order ε2 to the Wigner quantum system (2).

Consider hydrodynamic and kinetic parts, whose errors are given by

y(t) = ϕ(t)− [ϕ̄(t) + ϕ̃0(τ) + εϕ̃1(τ)]

z(t) = ψ(t)− [ψ̄0(t) + εψ̄1(t) + ψ̃0(τ) + εψ̃1(τ)]

where τ = t
ε.

Taking account of the evolution equations, we can show that the errors y and
z satisfy the system
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
∂y

∂t
= PSPy + PSQz + f

∂z

∂t
= QSPy +QSQz +

1
ε
Q(A+ C)Qz + g

(7)

with initial condition
y(0) = 0 , z(0) = 0 .

The inhomogeneous terms f and g are given by

f(t) = ε
[
PSPϕ̃1(τ) + PSQψ̃1(τ)

]
g(t) = ε

[
−∂ψ̄1

∂t
+QSQψ̄1(t) +QSPϕ̃1(τ) +QSQψ̃1(τ)

]
.

It is necessary to separate the evolution of the initial layer part from the bulk part.
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Main Theorem

If the initial value w0 and the potential V are sufficiently smooth,

then for any T , 0 < T <∞, there is a constant C independent of ε

but depending on the problem data such that

‖y(t) + z(t)‖X ≤ Cε2

uniformly for 0 ≤ t ≤ T .
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“V.Volterra”, Università di Ancona, Rapporto n.6, 1994.

[4] J. Banasiak, J. Mika, Diffusion limit for the linear Boltzmann equation of the
neutron transport theory. Math. Methods Appl. Sci. 17, 1071-1087 (1994)

25



[5] L. Barletti, L. Demeio, G. Frosali, Multiband Quantum Transport Models for
Semiconductor Devices Proceedings ”Kinetic Equations: Direct and Inverse
Problems,” Mantova, May 15-17, 2005 (to appear)

[6] A. Belleni-Morante, A concise guide to semigroups and evolution equations.
Singapore: World Scientific. (1994)

[7] C. Manzini, The three dimensional Wigner-Poisson problem with inflow
boundary conditions, J. Math. Anal. Appl. 313/1, 184-196 (2006)

[8] G. Frosali, Asymptotic analysis for a particle transport problem in a moving
medium, IMA Journal of Applied Mathematics 60, 1-19 (1998)

[9] C. Manzini, L. Barletti, An analysis of the Wigner-Poisson problem with
time-dependent, inflow boundary conditions, Nonlin. Anal., 60/1, 77–100
(2004).

26



[10] J.R. Mika, New asymptotic expansion algorithm for singularly perturbed
evolution equations. Math. Methods Appl. Sci. 3, 172-188 (1981).

[11] J.R. Mika, J. Banasiak, Singularly perturbed evolution equations with
applications to kinetic theory. Singapore: World Scientific 1995.

[12] J.R. Mika, J. Banasiak, Diffusion limit for a linear kinetic equation, Transport
Theory Stat. Phys. 24(1-3), 41-53 (1995).

[13] F. Poupaud, Runaway phenomena and fluid approximation under high fields
in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359-372 (1992).
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Basel, 2001.

[19] E. O. Kane, Energy band structure in p-type Germanium and Silicon, J. Phys.
Chem. Solids 1, 82-89 (1956).
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