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Università di Firenze, Via S. Marta 3, I-50139 Firenze, Italy
chiara.manzini@unifi.it, omar.morandi@unifi.it

In the last decade, the interest in multi-band quantum models has grown
due to the introduction of diodes, such as Resonant Interband Tunneling
Diode (RITD, cf. [3] and the Refs. therein), that are built on the quantum
effect of tunneling of electrons between conduction and valence bands. Such
models describe the evolution in time of pure states of a quantum system
in terms of couples of envelope functions Ψc, Ψv, which can be considered as
wave-functions relative to conduction and valence bands, respectively. The
dynamics of transport in and between the two bands is modelled via two-
band Hamiltonians. Quantum multi-band models differentiate according to
the choice of envelope functions and thus of Hamiltonians: we name, e.g.,
Kane, [4], and Morandi-Modugno, [8], models.
The (quantum) kinetic formulation of multi-band models is obtained by ap-
plying Wigner formalism to envelope-function models, namely by Wigner-
transforming component-wise envelope-function density matrices ρij, given
by ρij(x, x′) = Ψi(x) Ψj(x

′). Thus, we consider 2 × 2 matrices of Wigner
functions (Wigner matrices)

wij(x, v) = (W ρij) (x, v), i, j ∈ {c, v}.

Observe that the self-adjointness of density operators implies the Hermiticity
of Wigner matrices for any fixed (x, v):

ρij(x, x′) = ρji(x′, x) =⇒ wij(x, v) = wji(x, v).

The evolution equation for Wigner matrices in the case of Kane model has
been studied from a mathematical point of view in [2]. The Wigner matrix
describing thermal equilibrium of Kane model has been obtained in [1].
The evolution equation for the Wigner matrix in the case of M-M model [8]
is

(∂t + v · ∇x + iΘ[Vcc]) wcc = Θ[F−]wcv −Θ[F+]wvc
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(
∂t − i∆x + iv2 + iΘ[Vcv]

)
wcv = Θ[F−]wcc −Θ[F+]wvv(

∂t + i∆x − iv2 + iΘ[Vvc]
)
wvc = −Θ[F+]wcc + Θ[F−]wvv (1)

(∂t − v · ∇x + iΘ[Vvv]) wvv = −Θ[F+]wcv + Θ[F−]wvc ,

cf. [3] for the dimensional version, here we put physical constants equal to
one. We define

Vij(x, ξ) = (Ei + V ) (x + ξ/2)− (Ej + V ) (x− ξ/2) , i, j ∈ {c, v},
F±(x, ξ) = (∇V · P ) (x± ξ/2) ,

with Ec,v minimum and maximum of conduction and valence bands, respec-
tively, V potential, P given coupling vector and Θ[. ] the pseudo-differential
operator defined by, in the d-dimensional case,

(Θ[φ]f) (x, p) = (2π)−d
∫
IR2d

e−i(v−v′)·ξ φ(x, ξ) f(x, v′) dξ dv′.

Since P and, consequently, F± are purely imaginary, the following relations
hold:

Θ[F±]wij = −Θ[F∓]wji, i, j ∈ {c, v}.
The system (1) with unknown wij = wij(x, v, t), (x, v) ∈ IR2 , t > 0, i, j ∈
{c, v} has been studied in [3], in case of a (bounded) external potential V
and an existence and uniqueness result has been assessed in L2-setting.
Here, we shall consider instead the case of a one-dimensional, bounded, spa-
tial domain and we shall assign physical, time-dependent “inflow” boundary
conditions (b.c.) to the unknowns wij = wij(x, v, t), x ∈ [0, 1] , v ∈ IR , t >
0, i, j ∈ {c, v}. Moreover, V = (Vext + U)(x, t), with U satisfying for all t,
Poisson equation with homogeneous b.c.

−∂2
xU(x, t) = n(x, t), x ∈ (0, 1), U(0, t) = U(1, t) = 0 . (2)

In the multi-band case we shall define the position (particle) density n as

n(x, t) := ncc(x, t) + nvv(x, t) =
∫
IR
(wcc + wvv)(x, v, t) dv ,

namely, as the sum of the position densities ncc, nvv relative to electrons in
conduction and valence bands, respectively. For physical, “inflow” b.c. we
mean that we shall assign functions γc,v(0, v, t), v > 0, t > 0 and γc,v(1, v, t), v <
0, t > 0 as boundary values for wii, i = c, v, precisely,

wii(0, v, t) = γi(0, v, t), v > 0, t > 0 ,
(3)

wii(1, v, t) = γi(1, v, t), v < 0, t > 0 ,
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while we shall assign homogeneous b.c. to wij, i 6= j. With this choice of
b.c. we intend to model the most common case in real device simulation,
of an incoming beam of electrons in conduction and/or in valence band in a
semiconductor heterostructure (cf. the profile of the assigned potential Vext),
and to describe intraband and interband transport of electrons, taking into
account the reciprocal repulsion of electrons via the self-consistent potential
U . Observe that we can modify the b.c. of the potential U according to the
applied bias.
The forthcoming study of system (??),(??), with b.c. (??) and initial data
w0

ij(x, v) = wij(x, v, 0), (x, v) ∈ IR2 , i, j ∈ {c, v}, is the analytical counterpart
of the numerical simulation in [3] and the natural extension to the multi-
band case of the analyses of the Wigner-Poisson system performed in [6,7].
Analogously to [6,7], the difficulty is two-fold: on one hand, the “affine”
domain of the operators in (??), due to the choice of non-homogeneous
b.c. (??), on the other, the definition of the position density, starting from
L2-Wigner functions ([5]) and the regularity of Poisson potential U . Thus,
first of all, we shall deal with a linear (i.e., with unknowns satisfying ho-
mogeneous b.c.) version of problem (??),(??),(??) with a source term suit-
ably added to take into account affine b.c. The latter difficulty is typically
solved by working in a v-weighted L2-space. In the one-dimensional case,
it’s well-known ([7], e.g.) that wii(t), vwii(t) ∈ L2([0, 1] × IR, dx, dv; IR) is
enough to ensure nii(t) ∈ L2([0, 1], dx; IR) and thus U(t) ∈ W 1,∞([0, 1]) with
U

′′
(t) ∈ L2([0, 1], dx). This is enough for the operators Θ[. ] to be well-

defined and to constitute a locally-Lipschitz perturbation of the remaining
(unbounded) operators. The latter ones, when defined on linear domains,
generate semigroup. Then, we can state an existence and uniqueness result
for the linear version of (??),(??),(??) with source term, via a Banach fixed-
point argument, in the space X4 := (L2([0, 1]× IR, (1 + v2)dx dv; IR))
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finally recover the solution of the originary (affine) problem. More precisely,

Theorem

Let u0
ii ∈ D1 := {u ∈ X| vux ∈ X, u(0, v) = 0, ∀v > 0, u(1, v) = 0, ∀v < 0}

and u0
ij ∈ D2 := {u ∈ X|, uxx, v

2u ∈ X, u(0, v) = u(1, v) = 0, ∀v ∈ IR}. Let
Vext ∈ C([0, +∞); W 1,∞([0, 1])) and γc,v ∈ L1

loc([0, +∞); L2(× IR, (1+v2) dv; IR))
be admissable inflow data. Then there exists a unique, global-in-time, classi-
cal and real-valued solution {wij|i, j ∈ {c, v}} of the system (??),(??),(??).

We remark that, at difference with [6], the extension to the three-dimensional
case is not straightforward, due to terms Θ[F±], which require more regularity
than the solution of Poisson problem has.
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