An Inverse Problem for Two-Frequency Photon Transport in a Slab

Luigi Barletti

Federica Dragoni

Università di Firenze

SNS Pisa

Convegno SIMAI 06 - Ragusa, 22-26 Maggio 2006

Interstellar cloud

A large, gaseous, gravitational system ($\sim 10 \text{ ly}$) composed by atoms, simple and complex molecules, "dust" grains.

Light coming from external or internal stars interacts with dust grains and undergoes three main processes:

Light coming from external or internal stars interacts with dust grains and undergoes three main processes:

direction scattering

Light coming from external or internal stars interacts with dust grains and undergoes three main processes:

direction scattering

capture

Light coming from external or internal stars interacts with dust grains and undergoes three main processes:

Slab symmetry

Mathematical model

 $f_1(x,\mu)$ = density at x of UV-photons with direction μ $f_2(x,\mu)$ = density at x of IR-photons with direction μ

Mathematical model

 $f_1(x,\mu)$ = density at x of UV-photons with direction μ $f_2(x,\mu)$ = density at x of IR-photons with direction μ

 $\Sigma_{i \to j}$ = macroscopic scattering cross-sections; $p_{i \to i}(\mu' \to \mu)$ = transition probabilities; $\Sigma_i := \Sigma_{i,c} + \Sigma_{i \to 1} + \Sigma_{i \to 2}$ = total cross-sections; $\Sigma_{i,c}$ = capture cross-sections.

Mathematical model

Stationary radiative transfer equations:

$$\mu \frac{\partial f_1}{\partial x}(x,\mu) + \sum_1 f_1(x,\mu) = \sum_{1\to 1} \int_{-1}^1 p_{1\to 1}(\mu'\to\mu) f_1(x,\mu') d\mu'$$

$$\mu \frac{\partial f_2}{\partial x}(x,\mu) + \Sigma_2 f_2(x,\mu) = \Sigma_{2\to 2} \int_{-1}^1 p_{2\to 2}(\mu' \to \mu) f_2(x,\mu') d\mu' + \Sigma_{1\to 2} \int_{-1}^1 p_{1\to 2}(\mu' \to \mu) f_1(x,\mu') d\mu$$

Dust densities

We assume that two kinds of dust, with unknown constant, densities ρ_1 and ρ_2 are present in the medium.

Introducing a *dust index* d = 1, 2 and denoting by $\sigma_{i \to j}^{d}$, σ_{i}^{d} , $\sigma_{i,c}^{d}$ the microscopic cross-sections for each kind of dust, we can write:

$$\Sigma_{i \to j} = \rho_1 \, \sigma_{i \to j}^1 + \rho_2 \, \sigma_{i \to j}^2$$
$$\Sigma_i = \rho_1 \, \sigma_i^1 + \rho_2 \, \sigma_i^2$$
$$\Sigma_{i,c} = \rho_1 \, \sigma_{i,c}^1 + \rho_2 \, \sigma_{i,c}^2$$

Inflow conditions

We assume that the *inflows* from the left

 $f_1(0,\mu) = \varphi_1^+(\mu), \quad f_2(0,\mu) = \varphi_2^+(\mu), \quad \text{for } \mu \in (0,1),$

and from the right

 $f_1(l,\mu) = \varphi_1^-(-\mu), \ \ f_2(l,\mu) = \varphi_2^-(-\mu), \ \ \text{for} \ \mu \in (-1,0),$ are known.

Inflow conditions

We assume that the *inflows* from the left

 $f_1(0,\mu) = \varphi_1^+(\mu), \quad f_2(0,\mu) = \varphi_2^+(\mu), \quad \text{for } \mu \in (0,1),$

and from the right

 $f_1(l,\mu) = \varphi_1^-(-\mu), \quad f_2(l,\mu) = \varphi_2^-(-\mu), \text{ for } \mu \in (-1,0),$

are known.

The typical direct problem is finding the left and right *outflows*.

The inverse problem

Problem: find the unknown dust densities ρ_1 and ρ_2 , assuming that the integrated right outflows at the two frequencies

$$H_1 := \int_0^1 f_1(l,\mu)\mu \,d\mu,$$
$$H_2 := \int_0^1 f_2(l,\mu)\mu \,d\mu,$$

are known.

The inverse problem

We make the following assumptions:

A1. the frequency-scattering vanishes, i.e. $\Sigma_{1\rightarrow 2} \equiv 0$;

We make the following assumptions:

- A1. the frequency-scattering vanishes, i.e. $\Sigma_{1\rightarrow 2} \equiv 0$;
- A2. the left-inflow data φ_1^+ and φ_2^+ are positive on nonzero-measure sets;

We make the following assumptions:

- A1. the frequency-scattering vanishes, i.e. $\Sigma_{1\rightarrow 2} \equiv 0$;
- A2. the left-inflow data φ_1^+ and φ_2^+ are positive on nonzero-measure sets;

A3. $\sigma_{i,c}^{j} > 0$ for $i, j \in \{1, 2\}$ and

$$\begin{vmatrix} \sigma_{1,c}^{1} & \sigma_{1,c}^{2} \\ \sigma_{2,c}^{1} & \sigma_{2,c}^{2} \end{vmatrix} \neq 0$$

THEOREM Under assumptions A1, A2, A3, the mapping densities-to-outflows,

$(\rho_1,\rho_2)\mapsto (H_1,H_2),$

is globally invertible and, therefore, the inverse problem is well-posed.

By separating leftward and rightward photons

$$f_i^+(x,\mu) := f_i(x,\mu), \quad f_i^-(x,\mu) := f_i(l-x,-\mu)$$

(for $\mu \in (0, 1)$ and i = 1, 2), the direct problem can be recast into an "evolution" equation (from the inflow to the outflow):

$$\begin{cases} \frac{d}{dx} \boldsymbol{f}(x) = A \boldsymbol{f}(x), & x \in [0, l], \\ \boldsymbol{f}(0) = \boldsymbol{\varphi}. \end{cases}$$

where $f := (f_1^+, f_1^-, f_2^+, f_2^-), \varphi := (\varphi_1^+, \varphi_1^-, \varphi_2^+, \varphi_2^-)$ and

 $(K_i^{s_1s_2}$ are suitable scattering operators).

By using the Lumer-Phillips generation problem we can prove that *A* generates a contraction semigroup (on the Banch space $L^1([0,1], \mu d\mu)^4$), so that the inflow-to-outflow mapping is explicitly given by:

 $\boldsymbol{f}(l) = \mathrm{e}^{lA} \boldsymbol{\varphi}.$

By using the Lumer-Phillips generation problem we can prove that *A* generates a contraction semigroup (on the Banch space $L^1([0,1], \mu d\mu)^4$), so that the inflow-to-outflow mapping is explicitly given by:

 $\boldsymbol{f}(l) = \mathrm{e}^{lA} \boldsymbol{\varphi}.$

Now, *A* is linear with respect to the dust densities:

 $A = \rho_1 A_1 + \rho_2 A_2$

and assumption A1 implies commutativity:

 $A_1 A_2 = A_2 A_1.$

From commutativity we obtain $e^{lA} = e^{l\rho_1 A_1} e^{l\rho_2 A_2}$, which gives

$$rac{\partial \boldsymbol{f}(l)}{\partial
ho_j} = l \, A_j \, \mathrm{e}^{lA} \, \boldsymbol{arphi} \,.$$

This allows to prove that the integrated outflows

$$H_{i} = \int_{0}^{1} f_{i}^{+}(l,\mu)\mu \, d\mu = \int_{0}^{1} \left[e^{lA} \varphi \right]_{i}^{+}(\mu) \, \mu \, d\mu$$

are continuously-differentiable with respect to ρ_j .

Moreover, from assumptions A2 and A3 we obtain, for all $\rho_1, \rho_2 \ge 0$,

Moreover, from assumptions A2 and A3 we obtain, for all $\rho_1, \rho_2 \ge 0$,

$$\begin{array}{c|c} \frac{\partial H_1}{\partial \rho_1} & \frac{\partial H_1}{\partial \rho_2} \\ \frac{\partial H_2}{\partial \rho_1} & \frac{\partial H_2}{\partial \rho_2} \end{array} \neq 0$$

Moreover, from assumptions A2 and A3 we obtain, for all $\rho_1, \rho_2 \ge 0$,

$$\frac{\partial H_1}{\partial \rho_1} \quad \frac{\partial H_1}{\partial \rho_2} \\ \frac{\partial H_2}{\partial \rho_1} \quad \frac{\partial H_2}{\partial \rho_2} \end{vmatrix} \neq 0$$

and

$$\frac{\partial H_i}{\partial \rho_j} < 0, \quad i, j \in \{1, 2\} \,.$$

Moreover, from assumptions A2 and A3 we obtain, for all $\rho_1, \rho_2 \ge 0$,

$$\frac{\frac{\partial H_1}{\partial \rho_1}}{\frac{\partial H_2}{\partial \rho_1}} \frac{\frac{\partial H_1}{\partial \rho_2}}{\frac{\partial H_2}{\partial \rho_1}} \neq 0$$

and

$$\frac{\partial H_i}{\partial \rho_j} < 0, \quad i,j \in \left\{1,2\right\}.$$

These conditions, together, imply the global invertibility of $(\rho_1, \rho_2) \mapsto (H_1, H_2)$.

A simple bisection-like algorithm can be used to solve the inverse problem:

 by solving the direct problem, the range of the density-to-outflow mapping is divided into cells;

A simple bisection-like algorithm can be used to solve the inverse problem:

- by solving the direct problem, the range of the density-to-outflow mapping is divided into cells;
- 2. the cell containing the measured value (H_1^0, H_2^0) is detected;

A simple bisection-like algorithm can be used to solve the inverse problem:

- by solving the direct problem, the range of the density-to-outflow mapping is divided into cells;
- 2. the cell containing the measured value (H_1^0, H_2^0) is detected;
- 3. a refined grid is produced within that cell.

A simple bisection-like algorithm can be used to solve the inverse problem:

- by solving the direct problem, the range of the density-to-outflow mapping is divided into cells;
- 2. the cell containing the measured value (H_1^0, H_2^0) is detected;
- **3.** a refined grid is produced within that cell.
- 4. steps 2 and 3 are repeated up to desired order of accuracy.

Dust data:

λ (μ m)	Dust kind	radius ($\mu { m m}$)	$\sigma_c~(\mu { m m}^2)$	$\sigma_s~(\mu { m m}^2)$
0.1	graphite	0.25	0.18	0.29
10.0	graphite	0.25	0.93 E-2	0.25 E-3
0.1	silicate	1.00	2.67	4.03
10.0	silicate	1.00	4.22	0.50

Image of the square $10^{-7} \text{ m}^{-3} \le \rho_1, \rho_2 \le 10^{-1} \text{ m}^{-3}$ under the mapping $(\rho_1, \rho_1) \mapsto (H_1, H_2)$. The grid is logarithmically spaced.

Test points:

	H_1^0	H_2^0	$ ho_1^0$	$ ho_2^0$	Δ_1	Δ_2	T
1	9.664 E-1	9.962 E-1	1.50 E-4	5.00 E-7	1.5 E-4	1.3 E-4	9.4 E+0
2	8.379 E-1	7.927 E-1	1.00 E-5	5.00 E-5	4.0 E-4	1.9 E-4	2.8 E+1
3	3.996 E-1	6.136 E-1	2.00 E-3	1.00 E-4	4.3 E-4	2.8 E-4	4.4 E+1
4	4.195 E-2	5.652 E-1	1.00 E-2	1.00 E-4	2.0 E-5	7.6 E-4	4.3 E+2
5	9.857 E-3	9.197 E-3	1.25 E-3	1.00 E-3	1.6 E-4	1.9 E-16	4.8 E+2
6	1.446 E-1	9.102 E-1	7.00 E-3	5.00 E-6	1.0 E-4	9.1 E-5	4.8 E+2

 (H_1^0, H_2^0) = measured outflows;

 (ρ_1^0, ρ_2^0) = computed dust densities;

 (Δ_1, Δ_2) = relative difference with the true values of (ρ_1, ρ_2) ; T = CPU time.

we tried to recover the unknown densities of two kinds of absorbing and scattering dust particles from the measurement of outflowing radiation at two different frequencies;

- we tried to recover the unknown densities of two kinds of absorbing and scattering dust particles from the measurement of outflowing radiation at two different frequencies;
- the problem is solvable if the two kinds of dust have different absorption properties on the two measured frequencies, and in absence of frequency-scattering;

- we tried to recover the unknown densities of two kinds of absorbing and scattering dust particles from the measurement of outflowing radiation at two different frequencies;
- the problem is solvable if the two kinds of dust have different absorption properties on the two measured frequencies, and in absence of frequency-scattering;
- the latter assumption seems to be just technical and we hope to get rid of it in future works;

- we tried to recover the unknown densities of two kinds of absorbing and scattering dust particles from the measurement of outflowing radiation at two different frequencies;
- Ithe problem is solvable if the two kinds of dust have different absorption properties on the two measured frequencies, and in absence of frequency-scattering;
- the latter assumption seems to be just technical and we hope to get rid of it in future works;
- a simple bisection algorithm gives good results for realistic values of the physical constants.