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Università di Firenze

Federica Dragoni

SNS Pisa

Convegno SIMAI 06 - Ragusa, 22-26 Maggio 2006

An Inverse Problem for Two-Frequency Photon Transport in a Slab – p.1/23



Interstellar cloud

A large, gaseous, gravitational system ( � �� ��� ) composed
by atoms, simple and complex molecules, “dust” grains.
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Scattering of light

Light coming from external or internal stars interacts with
dust grains and undergoes three main processes:

direction scattering

capture

direction/frequency scattering
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Slab symmetry

µacos

source

x0 l

dusty medium
observer
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Mathematical model

��� ����� � � = density at � of UV-photons with direction �

��� ����� � � = density at � of IR-photons with direction �

= macroscopic scattering cross-sections;

= transition probabilities;

= total cross-sections;

= capture cross-sections.
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��� ����� � � = density at � of IR-photons with direction �

���  ! = macroscopic scattering cross-sections;

"�  � � � # $ � � = transition probabilities;

��� %& ���(' ) * ���  � * ���  � = total cross-sections;
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Mathematical model

Stationary radiative transfer equations:

� + ���+� ����� � � * � � ��� ����� � � & � �  �
�

, � " �  � � � # $ � � ��� ���� � # �- � #

� + �.�+� ����� � � * � � �.� ����� � � & � �  �
�

, � " �  � � � # $ � � �.� ���� � # �- � #

* � �  �
�

, � " �  � � � # $ � � �.� ����� � # �- �
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Dust densities

We assume that two kinds of dust, with unknown constant,
densities / � and / � are present in the medium.

Introducing a dust index

- & �� 0

and denoting by 1 2�  ! , 1 2� ,1 2�(' ) the microscopic cross-sections for each kind of dust, we
can write:

�3�  ! & / � 1 ��  ! * / � 1 ��  !

��� & / � 1 �� * / � 1 ��

���(' ) & / � 1 ��(' ) * / � 1 ��(' )
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Inflow conditions

We assume that the inflows from the left

��� ��� � � & 4 5� � � �� ��� ��� � � & 4 5� � � �� for � 6 ��� � �
,

and from the right

��� �7� � � & 4 ,� �98 � �� ��� �7� � � & 4 ,� �98 � �� for � 6 �98 �� � �

,

are known.

The typical direct problem is finding the left and right
outflows.
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The inverse problem

Problem: find the unknown dust densities / � and / � ,
assuming that the integrated right outflows at the two
frequencies

: � %&
�

; ��� �7� � � �- ��

: � %&
�

; �.� �7� � � �- ��

are known.
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The inverse problem

source observer

inflow outflow

dusty medium

?
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The main result

We make the following assumptions:

A1. the frequency-scattering vanishes, i.e.
� �  � < � ;

A2. the left-inflow data and are positive on
nonzero-measure sets;

A3. for and
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The main result

We make the following assumptions:

A1. the frequency-scattering vanishes, i.e.
� �  � < � ;

A2. the left-inflow data 4 5� and 4 5� are positive on
nonzero-measure sets;

A3. 1 !�(' ) = � for

>� ? 6 @ �� 0 A

and

BCBDBCBCB
1 �� ' ) 1 �� ' )

1 �� ' ) 1 �� ' )
BCBDBCBCB

E& �
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The main result

THEOREM Under assumptions A1, A2, A3, the mapping
densities-to-outflows,

� / �� / � �GF $ � : �� : � ��
is globally invertible and, therefore, the inverse problem is
well-posed.
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Sketch of the proof

By separating leftward and rightward photons

� 5� ����� � � %& �� ����� � �� � ,� ���� � � %& �� �7 8 ��� 8 � �

(for � 6 ��� � �

and

> & �� 0

), the direct problem can be recast
into an “evolution” equation (from the inflow to the outflow):

HI
IKJ

-
- � L ��� � & M L ��� �� � 6 N�� 7 O�

L �� � & PRQ
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Sketch of the proof

where

L % & � � 5� � � ,� � � 5� � � ,� �

, P %& � 4 5�� 4 ,�� 4 5�� 4 ,� �
and

M & �
�

SDSCSCSDS
8 �UT * V W WT VX WT � �

V W XT 8 �T * V X XT � �

� � 8 �ZY * V W WY VX WY

� � V W XY 8 �UY * VX XY
[D[C[C[D[

(

V \] \^`_ are suitable scattering operators).
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Sketch of the proof

By using the Lumer-Phillips generation problem we can
prove that

M

generates a contraction semigroup (on the
Banch space

a � � N�� � O� �- � � b), so that the inflow-to-outflow
mapping is explicitly given by:

L �7 � & c d e PQ

Now, is linear with respect to the dust densities:

and assumption A1 implies commutativity:
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a � � N�� � O� �- � � b), so that the inflow-to-outflow
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L �7 � & c d e PQ
Now,

M

is linear with respect to the dust densities:

M & / � M � * / � M �

and assumption A1 implies commutativity:
M � M � & M � M � Q
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Sketch of the proof

From commutativity we obtain c d e & c dgf ] e] c df ^ e^ , which gives

+ L �7 �
+ / ! & 7 M ! c d e P Q

This allows to prove that the integrated outflows

:� &
�

; � 5� �7� � � �- � &
�

;
h c d e P i 5

� � � � �- �

are continuously-differentiable with respect to / ! .
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Sketch of the proof

Moreover, from assumptions A2 and A3 we obtain, for all/ �� / � j � ,

and

These conditions, together, imply the global invertibility of
.
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Sketch of the proof

Moreover, from assumptions A2 and A3 we obtain, for all/ �� / � j � , BCBCBDBCBCB
kl ]kf ] kl ]kf ^kl ^kf ] kl ^kf ^
BCBCBDBCBCB

E& �
and + :�+ / ! m �� >� ? 6 @ �� 0 A Q

These conditions, together, imply the global invertibility of� / �� / � �GF $ � : �� : � �
.

n
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An inversion algorithm

A simple bisection-like algorithm can be used to solve the
inverse problem:

1. by solving the direct problem, the range of the
density-to-outflow mapping is divided into cells;

2. the cell containing the measured value is
detected;

3. a refined grid is produced within that cell.

4. steps 2 and 3 are repeated up to desired order of
accuracy.
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Numerical experiments

Inflow datum:

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

µ

Dust data:

o

( pq ) Dust kind radius ( pq ) rts ( pq ^

) rtu ( pq ^

)

0.1 graphite 0.25 0.18 0.29

10.0 graphite 0.25 0.93 E-2 0.25 E-3

0.1 silicate 1.00 2.67 4.03

10.0 silicate 1.00 4.22 0.50
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Numerical experiments
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Image of the square

vwyx z|{ x }�~ ����� ��� ~ vwyx � { x }

under the mapping� ���� ��� ��� � �� ��� � � �
. The grid is logarithmically spaced.
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Numerical experiments

Test points:
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Numerical experiments

� �] � �^ � �] � �^ ��] � ^ �
1 9.664 E-1 9.962 E-1 1.50 E-4 5.00 E-7 1.5 E-4 1.3 E-4 9.4 E+0

2 8.379 E-1 7.927 E-1 1.00 E-5 5.00 E-5 4.0 E-4 1.9 E-4 2.8 E+1

3 3.996 E-1 6.136 E-1 2.00 E-3 1.00 E-4 4.3 E-4 2.8 E-4 4.4 E+1

4 4.195 E-2 5.652 E-1 1.00 E-2 1.00 E-4 2.0 E-5 7.6 E-4 4.3 E+2

5 9.857 E-3 9.197 E-3 1.25 E-3 1.00 E-3 1.6 E-4 1.9 E-16 4.8 E+2

6 1.446 E-1 9.102 E-1 7.00 E-3 5.00 E-6 1.0 E-4 9.1 E-5 4.8 E+2

�� �� � � �� �

= measured outflows;� � ��� � �� �

= computed dust densities;�� �� � � �

= relative difference with the true values of

� ����� ��� �

;�

= CPU time.
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Conclusions

we tried to recover the unknown densities of two kinds
of absorbing and scattering dust particles from the
measurement of outflowing radiation at two different
frequencies;

the problem is solvable if the two kinds of dust have
different absorption properties on the two measured
frequencies, and in absence of frequency-scattering;

the latter assumption seems to be just technical and we
hope to get rid of it in future works;

a simple bisection algorithm gives good results for
realistic values of the physical constants.
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