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1 Abstract

We present a mathematical study of a two-band quantum kinetic transport model.
The multiband model, derived in the “kp” formalism, is designed to describe the
dynamics in semiconductor devices when interband conduction-valence transition
cannot be neglected. The Wigner formulation consists of a four-by-four system,
containing two effective mass Wigner equations (one for the electron in conduction
band and one for the valence band) coupled by pseudo-differential operators arising
from the electric field in the semiconductor. Existence and uniqueness of a solution
to the initial value problem are proved in a L2-setting for sufficiently regular electric
potentials. An extension of the single band splitting-scheme algorithm is presented
to solve the one-dimensional system for a bounded domain. Finally, we show some
numerical result concerning the simulation of an interband resonant diode.

Key words: Multiband transport; Wigner formulation; interband resonant diode.

2 Introduction

Recently much attention has been paid to quantum transport models. In particu-
lar, multiband transport is a topic of growing interest among physicists and applied
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mathematicians studying semiconductor devices of nanometric size. Indeed, quan-
tum effects cannot be neglected when the size of the electronic device becomes com-
parable to the electron wavelength, as in new generation devices. For this reason,
quantum modeling becomes a crucial aspect in nanoelectronics research in perspec-
tive of analog and digital applications. Resonant interband tunneling diodes (RITD)
are examples of semiconductor devices of great importance in the nanotechnology
for high-speed and miniaturized systems. Such diodes exhibit a band diagram struc-
ture with a band alignment, so that there is a small region where the valence band
edge lies above the conduction band (valence quantum well). Therefore, the tunnel
effect is the main mechanism of the charge carriers dynamics.

In electronics, the most popular model capable to describe the interaction of two
bands is based on the Kane Hamiltonian (Kane, 1956). By means of a perturbative
approach and an averaging procedure, the effect of the periodic lattice potential is
taken into account by some phenomenological parameters, such as the energy-band
gap and the coupling coefficient (Kane momentum) between the two bands.

The two-band Kane system is studied from the mathematical point of view in
(Borgioli, Frosali, and Zweifel, 2003), where the well-posedness of the corresponding
Wigner system is analyzed. In (Kefi, 2003), instead, an existence and uniqueness
result for a coupled Kane-Poisson system is proved directly at the Schrödinger level.
Also hydrodynamic models based on the Kane Hamiltonian can be found in the
literature, e.g. (Al̀ı and Frosali, 2005).

More recently, a new Schrödinger-like multiband model has been introduced that
seems particularly suitable to deal with quantum transport in high-field interband
resonant diodes. Such a multiband quantum model arises from the Bloch envelope
theory (Kane, 1956; Modugno and Morandi, 2005).

In this paper we shall consider the two-band envelope function model in the
Wigner function formulation. This approach is justified because the Wigner for-
malism can be applied to quantum statistical ensembles like a gas of electrons in a
semiconductor device, e.g.. In addition, the Wigner formulation gives a mathemat-
ical system in a quasi-kinetic form.

In section 2 we briefly resume the multiband envelope function model (MEF
model) in the two-band case. Then we apply the well-known Wigner formalism to
the Schrödinger-like system. In section 3 and 4 we obtain some preliminary results
concerning the mathematical properties of the problem and in section 5 we study
the well-posedness of the Wigner system, using operator perturbation theory and
the Stone’s theorem. In section 6 we present an extension of the splitting scheme
algorithm to implement our problem and we simulate a simple interband resonant
diode. In the Appendix we give some remarks.

3 A two-band envelope function system

In this section we recall the multiband envelope function model, introduced recently
by Modugno and Morandi, in the case of only two-bands. For the derivation of the
model in the framework of the Bloch theory, the reader can refer to (Morandi and
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Modugno, 2005).
Let ψc(x, t) be the conduction band envelope function and ψv(x, t) be the valence

band envelope function. The multi-band envelope function model in the two-band
time-dependent case reads as follows:





i~
∂ψc

∂t
= − ~2

2m∗
c

∆ψc + (Vc + V )ψc − ~
2

m

P · ∇V

Eg
ψv ,

i~
∂ψv

∂t
=

~2

2m∗
v

∆ψv + (Vv + V )ψv − ~
2

m

P · ∇V

Eg
ψc .

(3.1)

Here, i is the imaginary unit, ~ is the reduced Planck constant, m∗
c and m∗

v are
the effective mass of the electron in the conduction and valence band respectively,
and m is the bare mass of the carrier. Further, Vc and Vv are the minimum and the
maximum of the conduction and the valence band energy, respectively. The external
potential V depends on the layer composition and takes into account the electro-
static potential. In this way, the model allows us to treat a generic heterostructure
where the edges of the bands can depend on the space coordinate while their differ-
ence, which is called energy gap Eg, remains constant. The coupling coefficient P
represents the momentum operator matrix element between the Bloch functions re-
lated respectively to the minimum of the conduction band energy and the maximum
of the valence band energy.

In this paper we will perform a one-dimensional analysis of this model. It is
convenient to write system (3.1) more concisely as

i~
∂ψ

∂t
= Hψ (3.2)

where the envelope function vector ψ is the couple ψc , ψv and the Hamiltonian H
is given by

H =




−χc
~2

2m∗
c

∆ + Vc + V −~
2

m

P · ∇V

Eg

−~
2

m

P · ∇V

Eg
−χv

~2

2m∗
v

∆ + Vv + V




with

χi =
{

1 , i = c ,
−1 , i = v .

4 Wigner formulation

In this section we apply the Wigner formalism to the MEF model. Following the
Wigner function approach (Frensley, 1990; Wigner, 1932), the MEF system takes
the shape of an integro-differential equation for distribution-like functions.
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To this aim, we introduce the density matrix

ρ =
(

ρcc ρcv

ρvc ρvv

)
(4.3)

with
ρij(r, s) = ψi(r)ψj(s), i, j = c, v ,

where the overbar means complex conjugate, and ρij(r, s) = ρji(r, s).
Now we formally differentiate the density matrix elements with respect to time

t and we obtain for i, j = c, v,

i~
∂ρij

∂t
=

~2

2m∗

(
χi

∂2

∂r2
− χj

∂2

∂s2

)
ρij −

(
χi − χj

2

)
Eg ρij − [V (r)− V (s)] ρij

+
~2P

mEg

dV

dr
ρij −

~2P

mEg

dV

ds
ρij . (4.4)

Hereafter we will write c = v, v = c, and we will suppose that the conduction and
valence electrons have the same effective mass, that is m∗ = m∗

c = m∗
v.

Now we perform the following change of variables in the previous set of four
coupled equations for the density matrix elements





r = x +
~

2m∗ η ,

s = x− ~
2m∗ η .

(4.5)

Putting uij(x, η) = ρij(r, s), we define the Wigner functions wij by inverse
Fourier transform, that is

wij(x, v, t) = F−1
v uij =

1
2π

∫ ∞

−∞
ρij

(
x +

~
2m∗ η, x− ~

2m∗ η
)

ei vη dη .

For the reader’s convenience, we recall that the inverse Fourier transform with
respect the v variable

F−1
v g(v) =

1
2π

∫ ∞

−∞
g(η)ei vη dη

satisfies the following property

F−1
v

(
∂g

∂η

)
= −ivF−1(g) .

Noting that

~2

2m∗

(
χi

∂2

∂r2
− χj

∂2

∂s2

)
=





χi ~
∂2

∂x∂η
, i = j

χi

(
~2

4m∗
∂2

∂x2
+ m∗ ∂2

∂η2

)
, i 6= j
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by Fourier inverse transform we obtain

F−1
v

[
~2

2m∗

(
χi

∂2

∂r2
− χj

∂2

∂s2

)
ρij

]

= −i~
(

χi + χj

2

)
v
∂wij

∂x
+

(
χi − χj

2

)(
~2

4m∗
∂2wij

∂x2
−m∗v2wij

)
.

Moreover, for i, j = c, v, we have

F−1
v [(V (r)− V (s))ρij ] = ~ θ[V ]wij ,

F−1
v

[
~2P

mEg

dV

dr
ρij

]
=

P~2

mEg
O+[V ]wij ,

F−1
v

[
− ~

2P

mEg

dV

ds
ρij

]
= − P~2

mEg
O−[V ]wij ,

where we have defined

Fv (θ[V ]f) (x, η) =
1
~

(δV Fvf) (x, η) , (4.6)

δV (x, η) = V

(
x +

~
2m∗ η

)
− V

(
x− ~

2m∗ η
)

, (4.7)

or more explicitly

θ[V ]f =
1
2π

∫

Rη

∫

Rv′

V
(
x + ~

2m∗ η
)− V

(
x− ~

2m∗ η
)

~
f(x, v′) ei(v−v′)η dv′ dη (4.8)

and

O±[V ]f =
1
2π

∫

Rη

∫

Rv′

dV

dx

(
x± ~

2m∗ η
)

f(x, v′) ei(v−v′)η dv′ dη . (4.9)

After an inverse Fourier transform, Eq. (4.4) gives

∂wij

∂t
= −

(
χi + χj

2

)
v
∂wij

∂x
− i

(
χi − χj

2

)[
~

4m∗
∂2wij

∂x2
− 1
~

(
Eg + m∗v2

)
wij

]
+

+iθ[V ]wij − i
P~

mEg
O+[V ]wij + i

P~
mEg

O−[V ]wij .
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In conclusion the Wigner formulation of system (3.1) takes the following form




∂wcc

∂t
= −v

∂wcc

∂x
+ iθ[V ]wcc − i

P~
mEg

O+[V ]wvc + i
P~

mEg
O−[V ]wcv

∂wcv

∂t
= −i

~
4m∗

∂2wcv

∂x2
+

i

~
(
Eg + m∗v2

)
wcv + iθ[V ]wcv

− i
P~

mEg
O+[V ]wvv + i

P~
mEg

O−[V ]wcc

∂wvc

∂t
= i

~
4m∗

∂2wvc

∂x2
− i

~
(
Eg + m∗v2

)
wvc + iθ[V ]wvc

− i
P~

mEg
O+[V ]wcc + i

P~
mEg

O−[V ]wvv

∂wvv

∂t
= v

∂wvv

∂x
+ iθ[V ]wvv − i

P~
mEg

O+[V ]wcv + i
P~

mEg
O−[V ]wvc

(4.10)
with the previously defined operators θ[V ] and O±[V ].

5 Some preliminary results

In this section we give some preliminary results on the operators appearing in the
system (4.10).

Let us consider the Hilbert space L2(Rx×Rv; dxdv) of complex valued functions
with the usual inner product and norm. We recall that

L2(Rx ×Rv; dxdv) = L2(Rx; dx)⊗ L2(Rv; dv)

is the L2-space with respect to the product measure dx⊗ dy, (⊗ denotes the tensor
product) (Reed and Simon, 1972).

Let us consider the Fourier unitary map Fx of the space L2(Rx; dx) onto L2(Rµ;
dµ). We may extend such map Fx to Fx ⊗ Iv as a map from the space L2(Rx×
Rv; dxdv) onto L2(Rµ×Rv; dµ dv). Iv is the identity operator on L2(Rv; dv).

Lemma 5.1 The operator Tsf = v ∂
∂xf with domain DTs =

{
f ∈ L2(Rx×Rv; dx

dv) : v ∂
∂xf ∈ L2(Rx×Rv; dx dv)

}
is self-adjoint on L2(Rx×Rv; dx dv).

Proof. Let us consider the operator Fx ⊗ I as an extended Fourier unitary map
of the space L2(Rx×Rv; dxdv) onto L2(Rµ×Rv; dµ dv). In fact by using Fubini’s
theorem

‖f‖L2(Rx×Rv ;dxdv)=
∫

Rv

(∫

Rx

|f |2 dx

)
dv=

∫

Rv

(∫

Rµ

|Fxf |2 dµ

)
dv = ‖Fxf‖L2(Rµ×Rv ;dµdv).

Accordingly, DTs is isomorphic to D′
Ts

=
{
f ∈ L2(Rµ×Rv; dµdv) : vµf ∈ L2(Rµ×Rv;

dµdv)} and the proof reduces to show that the multiplication operator Tsf = vµf
with domain D′

Ts
is a self-adjoint operator. This follows directly from Prop.1 Chap-

ter VIII of (Reed and Simon, 1972).
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Remark. We want to stress that the previous operator is not self-adjoint in
the space D1 = H1(Rx) ⊗ L2(Rv; (1 + v2) dv). By the definition of the previous
Sobolev space, it is indeed easy to show that D1 via Fourier transform is isomorphic
to

D′
1 = L2(Rµ; (1 + µ2) dµ)⊗ L2(Rv; (1 + v2) dv) .

According to (Reed and Simon, 1972) this space is equivalent to

D′′
1 = L2(Rv×Rµ; (1 + v2)(1 + µ2) dµ dv) .

On the other hand, DTs is mapped onto

D′
Ts

=
{
f ∈ L2(Rµ×Rv; dµ dv) : vµf ∈ L2(Rµ×Rv; dµdv)

}

= L2
(
Rµ×Rv; (1 + µ2v2) dµ dv

)
.

We have that D′′
1 ⊂⊂ D′

Ts
, hence the T operator cannot be self-adjoint in D′′

1 . It is
easy to see that D′′

1 is strictly contained in D′
Ts

. It is sufficient to find a function
f ∈ L2 so that µvf ∈ L2, but µf, vf /∈ L2, for instance taking f in a such way that

|f |2 =
1

(1 + µ2)(1 + v2)(1 + µ2v2)
.

Lemma 5.2 The operator Tdf =
(

∂2

∂x2
+ v2

)
f with domain DTd

=
{
f ∈L2 (Rµ×Rv;

dµ dv) :
(

∂2

∂x2 + v2
)

f ∈ L2 (Rµ×Rv; dµ dv)
}

is self-adjoint on L2 (Rµ×Rv; dµ dv).

Proof. Also this lemma follows immediately from Prop. 1 Chapter VIII (Reed and
Simon, 1972).

As before, we remark that the domain of Td does not coincide with D2 =
H2 (Rx; dx) ⊗ L2

(
Rv; (1 + v2)2 dv

)
.

In fact D2 is isomorphic to D′
2 = L2

(
Rµ; (1 + µ2)2 dµ

) ⊗ L2
(
Rv; (1 + v2)2 dv

)
and

thus to D′′
2 = L2

(
Rµ×Rv; (1 + µ2)2(1 + v2)2 dµ dv

)
. On the other hand DTd

is
isomorphic to D′

Td
= L2

(
Rµ×Rv; (1 + µ2 + v2)2 dµ dv

)
; D′

Td
and D′′

2 are different
spaces since their metrics are not equivalent.

6 Mathematical formulation and well-posedness of the
problem

Let us consider the Hilbert space H = L2
(
Rx×Rv; dxdv ;C4

)
equipped with the

scalar product

(f, g)H =
∫

Rx×Rv

< f(x, v), g(x, v) > dxdv , ‖f‖H =
4∑

i=1

‖fi‖L2(Rx×Rv; dx dv),
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where f = (f1, f2, f3, f4) and < , > is the usual scalar product in C4

< f, g >= fT g =
4∑

i

figi ,

(we use the apex T to denote the transposed vector). Let us introduce the following
4×4 matrix operators defined as

T = diag
[
iv

∂

∂x
, − ~

4m∗
∂2

∂x2
+

1
~

(
Eg + m∗v2

)
,
~

4m∗
∂2

∂x2
− 1
~

(
Eg + m∗v2

)
, −iv

∂

∂x

]
,

B = I θ[V ] ,

O =
P~

m0Eg




0 O−[V ] −O+[V ] 0

O−[V ] 0 0 −O+[V ]

−O+[V ] 0 0 O−[V ]

0 −O+[V ] O−[V ] 0




.

I is the identity operator in H. Then we can rewrite system (4.10) in the Schrödinger-
like form

∂w

∂t
= i(T + B +O)w

where w = (wcc, wcv, wvc, wvv)T .

Theorem 6.1 The operator T with domain DT = DTs ⊕D2
Td
⊕DTs is self-adjoint

on H.

Proof. The theorem follows directly from lemmas (5.1) and (5.2), and from the
definition of the Hilbert space H.

We observe that the operator B is symmetric, and bounded in H, since the
pseudo-differential operator θ[V ] is a symmetric bounded operator in L2 (Rx×Rv; dx
dv).

Theorem 6.2 The operator O is symmetric, and bounded on H.

Proof. First let us write the operator O±[V ] as follows

O±[V ]f = F−1
v

[
dV

dx
(x± εη)Fvf

]
with ε =

~
2m∗ . (6.11)

Hence, it is convenient to apply the Fourier transform with respect to the variable
v to the operator O. Here we use the symbol F as Fourier transform on H and we
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denote Fvf by f̂ . Then we obtain

Fv (Of) = OFvf

=
P~

m0Eg




0 dV
dx (x−εη) − dV

dx (x+εη) 0

dV
dx (x−εη) 0 0 − dV

dx (x+εη)

− dV
dx (x+εη) 0 0 dV

dx (x−εη)

0 − dV
dx (x+εη) dV

dx (x−εη) 0







f̂cc

f̂cv

f̂vc

f̂vv




.

It is easy to see that the matrix operator O of components Oij , defined above,
satisfies the following relations:

(Of, g)H = (F−1
v OFvf, g)H = (OFvf,Fvg)L2(Rx×Rη ; dx dη)

=
∑

i,j

(Oij f̂i, ĝj)L2(Rx×Rη ; dx dη) =
∑

i,j

(f̂i,Oij ĝj)L2(Rx×Rη ; dx dη) = (f,Og)H

where we used that Oij is a symmetric matrix and Fv is a unitary operator. Noting
that

∥∥O±[V ]f
∥∥
L2(Rx×Rv; dx dv)

=
∥∥∥∥

dV

dx
(x± εη) f̂

∥∥∥∥
L2(Rx×Rη ; dx dη)

≤
∥∥∥∥

dV

dx

∥∥∥∥
L∞(Rx; dx)

‖f‖L2(Rx×Rv ; dx dv) ,

we have

‖Of‖H =
∑

i

∥∥∑

j

Oij f̂j

∥∥
L2(Rx×Rη ; dx dη)

≤ 8
∥∥∥∥

dV

dx

∥∥∥∥
L∞(Rx; dx)

‖f‖H .

This proves our thesis.

The previous estimates suggested us to require some regularity assumption on
the potential V in order to prove the following existence theorem. We denote by
W 1,∞ the usual Sobolev spaces.

Theorem 6.3 For all V ∈ W 1,∞ and initial datum w0 ∈ H, system (4.10) admits
a unique solution w ∈ H.

Proof. By the perturbation theorem, we have that T + B + O is a self-adjoint
operator. Thus, by Stone’s theorem, it generates the unitary group ei(T +B+O)t in
H. Hence our theorem is proved.

We would like to remark that, even if the previous analysis was performed in
the complex Hilbert space L2(Rx×Rv; dxdv), physical considerations suggest to
restrict to a more suitable domain. In fact, since it is well-known that the single-
band Wigner function is a real function, a proper extension of the Wigner formalism
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to multiband framework requires that also the quantities wcc and wvv have to be
real functions. In this way, when Eg goes to infinity (in the single-band limit), it is
immediate to verify that system (3.1) decouples, recovering the correct single-band
dynamics. This is what we expect from the physical point of view. Furthermore
consistence with the definition of ρcv and ρvc suggests that also wcv and wvc are to
be conjugate functions one another. To this aim, we choose as initial datum for the
system (3.1) a function w0 so that w0

cc and w0
vv are real functions and w0

cv = w0
vc

holds. In appendix we show that the previous properties are preserved for all times:
this allow us to solve the system (4.10) only for the non vanishing components of w,
becoming





∂wcc

∂t
= −v

∂wcc

∂x
+ iθ[V ]wcc − 2

P~
mEg

Im
{O−[V ]wcv

}

∂wvv

∂t
= v

∂wvv

∂x
+ iθ[V ]wvv + 2

P~
mEg

Im
{O+[V ]wcv

}

∂wcv

∂t
= −i

~
4m∗

∂2wcv

∂x2
+

i

~
(
Eg + m∗v2

)
wcv + iθ[V ]wcv

− i
P~

mEg
O+[V ]wvv + i

P~
mEg

O−[V ]wcc

(6.12)

written for the real functions wcc, wvv and for the complex one wcv.
In [7] we present an extension of this work, where the system, coupled with

the Poisson equation, is studied in a bounded spatial domain with inflow boundary
conditions.

7 Numerical simulation

In this section we present a numerical scheme to solve our problem by applying the
algorithm to a simple interband resonant diode.

The 1D numerical scheme used to get an approximate solution of (4.10) is an
extension of the splitting-scheme algorithm implemented in the one-band case, see
e.g. (Arnold and Ringhofer, 1996; Demeio, 2003). In this spirit, we propose the
following approximation of the evolution group

ei(T +B+O)t '
[
eiT t

2N eiB t
N eiT t

2N eiO t
N

]N
(7.13)

with N sufficiently large. Here we indicate with eiT t, eiBt, eiOt the free-streaming,
vertical shift and tunneling operators, respectively; each one of them solves a sim-
plified differential or pseudo-differential problem. More explicitly, if wn denotes the
approximate solution at the time step t = n∆t, (7.13) means that the subsequent
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evolution problems can be solved successively

Free− streaming





∂f

∂t
= iT f, tn ≤ t ≤ tn + ∆t

f(tn) = wn

wn+ 1
3 = f(tn + ∆t)

, (7.14)

V ertical − shift





∂f

∂t
= iBf, tn ≤ t ≤ tn + ∆t

f(tn) = wn+ 1
3

wn+ 2
3 = f(tn + ∆t)

, (7.15)

Tunneling





∂f

∂t
= iOf, tn ≤ t ≤ tn + ∆t ,

f(tn) = wn+ 2
3

wn+1 = f(tn + ∆t)

. (7.16)

The analysis of problems (7.14) and (7.15) can be performed in Rx ×Rv. In partic-
ular, for (7.14) we have that the explicit solutions are

w
n+ 1

3
ii (x, v) = wn

ii(x− v∆t, v) , i = c, v (7.17)

while for wcv, we use the Fourier transform with respect to x, and we get
(
Fxw

n+ 1
3

cv

)
(µ, v) = (Fxwn

cv) (µ, v)e
i
~

�
Eg+ ~2

4m∗ µ2+m∗v2
�
∆t . (7.18)

Similarly, for Eq. (7.15) we obtain by Fourier transform with respect to v,
(
Fvw

n+ 2
3

ij

)
(x, η) =

(
Fvw

n+ 1
3

ij

)
(x, η)e

i
~ δV (x,η)∆t , i, j = c, v , (7.19)

with δV defined in (4.7). Finally, by writing the operator O in the Fourier space as
in Eq. (6.11), we get the following explicit solution of Eq. (7.16)

(Fvw
n+1

)
(x, η) =

(
Fvw

n+ 2
3

)
(x, η)eiO(x,η)∆t . (7.20)

For each temporal step ∆t, the previous equations are numerically implemented into
a discretized domain. To this aim, we reduce our initial unbounded domain to Ω =
[0, L]×[−VM , VM ]. Further, for consistence with the whole space analysis performed,
we assume that Ω is an open domain. Accordingly, we assign the following inflow
boundary condition in x = 0, x = L (Markowich, Ringhofer and Schmeiser, 1990)





w(0, v, t) = w̃(v) for v > 0

w(L, v, t) = w̃(v) for v < 0
(7.21)
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E(k)

k

Dispersion diagram

Figure 1: R.h.s.: Simulated heterostructure profile of the RITD. The widths of the
layers are chosen: 5.00 nm for the quantum well, 3.00 nm for the barriers. L.h.s.:
We show the dispersion diagram of the semiconductor and the quasi-momentum
distribution function of the injected electron in the diode.

where w̃(v) is a given function. Moreover, we require that w(x,±VM , t) = 0. Let us
introduce a N × 2M uniform mesh





xj = j∆x , j = 1 . . . N ,

vk = k∆v , k = 1 . . . 2M ,

ηk′ = k′
2π

VM
, k′ = −M . . .M ,

and a matrix of three elements vector (with two real and one complex components)

wn
jk = (wn

cc(xj , vk), wn
vv(xj , vk), wn

cv(xj , vk))
T .

The solutions (7.17)-(7.18)-(7.19)-(7.20) are approximated by wn
jk in the following

way: for (7.17) we use a spline interpolation scheme, (Demeio, 2003), which takes
into account the inflow boundary conditions (7.21), while (7.18), (7.19) are directly
implemented by FFT (Fast Fourier Transform) algorithms. Finally for (7.20) we
define a matrix Ojk′ = O(xj , ηk′) and we use a Caylay scheme to approximate
the exponential term (Frensley, 1990). A more detailed numerical analysis and
comparison with other algorithms will be subject of a future work.

As an application of the model (4.10), we consider a simple interband resonant
diode (see fig.1) consisting of two homogeneous regions separated by a potential
barrier and realizing a single quantum well in the valence band.

As initial datum w(x, v, 0) we choose a vanishing function, and for boundary

12
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Figure 2: Computed Wigner functions wcc (left-hand side) and wvv (right-hand side)
for t = 10−14 s (top) and t = 10−13 s (bottom).

condition the function




w̃cc(v) = e−
m∗(v−v0)2

δv , for v > 0 ,

w̃ij(v) = 0 , otherwise , i, j = c, v ,

(7.22)

which describes a flux of conduction electrons injected into the diode with a positive
mean momentum and gaussian dispersion (see Rhs of fig.1). In our simulation,
we used the following parameters: Eg = Ec − Ev = 0.16 eV , m∗ = 0.023 m0,
P = 5 · 109 m−1, v0 = 5 · 106 ms−1, δv = 10−22 J . In fig.2 we plot the solution wjk

computed for t1 = 10−14 s, t2 = 10−13 s.
The results of the simulation can be interpreted as follows. wcc describes the

motion of the electron ensemble in conduction band. It shows that the conduc-
tion electron beam is (mainly) reflected back by the potential barrier. Besides, the
gradient of the potential couples conduction electrons with valence ones. Since the
central region realizes a single quantum well in valence band, the wvv component
(representing the part of the electrons in valence band) grows, giving rise to the
electric charge accumulation inside the well. Finally, we can note that it appears a
non-vanishing flux of electrons travelling outside the x = L side of the diode. This
is possible due to the tunneling (from the valence band to the conduction band)
of the electrons stored inside the valence well. The initial datum guarantees that
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the resonant states in the valence well are unexcited for t = 0, avoiding any initial
correlation between conduction and valence electrons.

8 Appendix

Let w0 =
(
w0

cc, w
0
cv, w

0
vc, w

0
vv

)T belong to H′, where H′ =
{
f ∈ H|fcc = fcc, fvv = fvv,

fcv = fvc

}
, and let w be the unique solution of (4.10) with initial datum w0, then

w ∈ H′. In details, we take the imaginary part of the first and fourth equations and
we write the equations for the quantities wcv − wvc and wvc − wcv, then we get the
following closed system




∂wI
cc

∂t
= −v

∂wI
cc

∂x
+ iθ[V ]wI

cc−
i

2
P~

mEg
O+[V ] (wvc − wcv)

+
i

2
P~

mEg
O−[V ] (wcv − wvc)

∂wI
vv

∂t
= v

∂wI
vv

∂x
+ iθ[V ]wI

vv−
i

2
P~

mEg
O+[V ] (wcv − wvc)

+
i

2
P~

mEg
O−[V ] (wvc − wcv)

∂(wcv − wvc)
∂t

= −i
~

4m∗
∂2 (wcv − wvc)

∂x2
+

i

~
(
Eg + m∗v2

)
(wcv − wvc)

+ iθ[V ] (wcv − wvc)− i
P~

mEg
O+[V ] (wvv − wvv) + i

P~
mEg

O−[V ] (wcc − wcc)

∂(wvc − wcv)
∂t

= i
~

4m∗
∂2 (wvc − wcv)

∂x2
− i

~
(
Eg + m∗v2

)
(wvc − wcv)

+ iθ[V ] (wvc − wcv)− i
P~

mEg
O+[V ] (wcc − wcc) + i

P~
mEg

O−[V ] (wvv − wvv)

Here we denoted the imaginary part of wcc and wvv by wI
cc and wI

vv, respectively,
and we used θ[V ]f = −θ(f), O±[V ]f = O∓(f) and the fact that iθ(f I) is a real
valued operator (see e.g. (Markowich and Ringhofer, 1989)).

The analysis carried out in Section 6 allows us to state that the previous system
admits a unique solution. Hence, if the initial datum is the zero-function, the solution
remains identically zero for all times.
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