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1 Introduction

The modeling of semiconductor devices, which is a very active and intense field
of research, has to keep up with the speed at which the fabrication technology
proceeds; the devices of the last generations become smaller and smaller and
they have reached a size so small that quantum effects dominate their be-
haviour. Quantum effects such as resonant tunneling and other size-quantized
effects cannot be described by classical or semiclassical theories and need a
full quantum description [Fre90, JAC92, KKFR89, MRS90, RBJ91, RBJ92]. A
very important feature, that has appeared in the devices of the last generation
and which requires a full quantum treatment, is the presence of the interband
current, that is a contribution to the total current which arises from transi-
tions between the conduction and the valence band states. Resonant interband
tunneling diodes (RITD) are examples of semiconductor devices which exploit
this phenomenon; they are of big importance in nanotechnology for their ap-
plications to high-speed and miniaturized systems [YSDX91, SX89]. In the
band diagram structure of these diodes there is a small region where the va-
lence band edge lies above the conduction band edge (valence quantum well),
making interband resonance possible.

So far, most part of the existing literature has been devoted to quan-
tum transport models where only conduction band electrons contribute to
the current flow and under the parabolic band approximation, with only a
small region of the Brillouin zone near the minimum of the band being pop-
ulated. In bipolar models, the contribution of the valence band (the current
due to the holes) is also included at the macroscopic level. Quantum models
which include the interband resonance process are called “multiband mod-
els”, and have largely been formulated and analyzed only in the last five to
ten years. Like other models for semiconductor devices, they can essentially be
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divided in two classes: Schrödinger-based models and Wigner-function-based
(or density-matrix-based) models. The former ones aim at the calculation of
the wave function for the system or device under study, and contain no statis-
tics. The latter ones involve electron statistics or transport theory concepts.

Hydrodynamic models have also been formulated and discussed [Gar94];
again, for the most part only single-band hydrodynamics has received atten-
tion. Only recently, multiband hydrodynamic models, based on the multiband
kinetic models mentioned above, have appeared.

In this review paper, we describe the multiband models that have recently
been formulated in both classes. Attention is given to the definitions of the
relevant quantities which characterize each model and to the advantages and
disadvantages of each model compared to others. The technical details of the
derivations of the various models, as well as the rigorous proofs of consistency
and existence of the solutions, are diverted directly to the papers where the
models have been described.

This paper is organized as follows: in Section 2 we briefly recall the Bloch
theory of electrons moving in a periodic potential; Section 3 is devoted to
the envelope-function theory; in Section 4 we deal with the multiband models
based on the Schrödinger equation; Section 5 contains the statistical kinetic
models based on the Wigner-function approach and in Section 6 we give an
outline of the hydrodynamic models.

2 The Schrödinger equation and the wave function in a
periodic potential

The starting point of any theoretical description of a quantum system is the
Schrödinger equation, which we now discuss for a periodic Hamiltonian [RS72,
MRS90].

We consider an ensemble of electrons moving in a semiconductor crystal.
The electrostatic potential generated by the crystal ions is represented by a
periodic potential VL(x), the periodicity being described as follows:

VL(x+ a) = VL(x), ∀a ∈ L,

where L is the periodic lattice of the crystal. The quantum dynamics of a
single electron is, therefore, generated by the Hamiltonian

H = H0 + V (x), (1)

where H0 = p2/2m + VL(x) is the periodic part of the Hamiltonian, which
contains the kinetic energy and the periodic potential. Also, p = −i~∇ is the
momentum operator, m is the electron mass, ~ is Planck’s constant over 2π
and V (x) is the potential due to external fields, such as barriers or bias. The
periodic Hamiltonian H0 has a complete system of generalized eigenfunctions
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bn(x, k), called Bloch waves, where the “pseudomomentum” or “crystal mo-
mentum” variable k runs over the so-called Brillouin zone. This is defined as
the centered fundamental domain of the reciprocal lattice L∗, i.e.

B =
{
k ∈ R3

∣∣ k is closer to 0 than to any other point of L∗
}
.

The Bloch waves satisfy the generalized eigenvalue equation

H0bn(x, k) = εn(k)bn(x, k), (2)

(or H0 |nk〉 = εn(k) |nk〉 in Dirac’s notation), where the generalized eigen-
functions εn(k) are the energy bands of the crystal. Accordingly, the integer n
is called “band-index”.

Using Dirac’s notation, we choose the following normalization of the Bloch
functions:

〈nk |n′k′〉 = |B| δnn′ δ(k − k′), (3)

so that any wave function Ψ can be decomposed as follows

Ψ(x) =
∑

n

∫
B

dk

|B|
σn(k) bn(x, k), (4)

where
σn(k) =

∫
R3
dx bn(x, k)Ψ(x). (5)

It is well known that the Bloch waves can be written in the form

bn(x, k) = eik·xun(x, k), (6)

where un(x, k), called Bloch functions, are L-periodic in x and have the prop-
erty that {un(·, k) |n ∈ N} is an orthonormal basis of L2(C) for any fixed
k ∈ B, where C denotes the fundamental cell of the direct lattice L. In par-
ticular, ∫

C

un(x, k)un′(x, k) dx = δnn′ , k ∈ B. (7)

The electron population of the semiconductor material is partitioned into
the energy bands of the Hamiltonian. The highest occupied energy band usu-
ally contains only a small electron population and therefore it has many un-
occupied states; this is the conduction band. The states of all other (lower
energy) bands are instead fully occupied and form the valence bands. In the
older devices, based on resonant tunneling, only the electrons of the conduc-
tion band contribute to the flow of the current across the device. In some of
the devices of the last generation, instead, the resonant tunneling occurs be-
tween states belonging to different bands, so that also the carrier population
of the valence band contributes to the flow of current. For the description of
these last devices, multiband models must be used.
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3 Envelope function theory

The wave function of an electron moving under the action of a periodic po-
tential, which we have described in the previous Section, is a fast oscillating
object (both in time and space) and is therefore not well suited for numerical
computations. A widely used methodology is that of smoothing out these fast
oscillations, thus leading to the “envelope function” approach. Envelope func-
tions can be introduced in basically two different ways, one due to Wannier
[Wan62] (called the Wannier-Slater envelope functions) and one due to Lut-
tinger and Kohn [LK55] (called the Luttinger-Kohn envelope functions). The
Luttinger-Kohn envelope functions are the building blocks of the Kane model,
which will be described in the next Section. Here, we introduce the definitions
and outline the most important properties of both kinds of envelope functions.

3.1 Wannier-Slater envelope functions

The Wannier-Slater (W-S) envelope functions [Wan62] are defined as follows:

fn(x) =
1

(2π)3/2

∫
B

σn(k) eix·kdk, (8)

where σn(k) is given by (5). Note that the W-S envelope functions are inverse
Fourier transforms to which fast oscillations due to the periodic potential have
been removed. In other words, each envelope function fn has the property that
its Fourier transform is supported in the Brillouin zone B. The W-S envelope
functions are easily expressed in terms of the wave function by introducing
“continuous-index Wannier functions”

an(x, x′) =
1

(2π)3/2

∫
B

bn(x, k)e−ix′·kdk. (9)

Using (5), (8) and (9) we get

fn(x) =
∫

R3
an(x′, x)Ψ(x′) dx′, (10)

and, conversely,

Ψ(x) =
∑

n

1
|B|

∫
R3
an(x, x′)fn(x′) dx′. (11)

To better understand the meaning of the W-S envelope functions, consider
the (discrete-index) Wannier functions [Wan62], which are the Fourier com-
ponents of the Bloch waves with respect to k:

an(x− λ) =
∫

B

dk

|B|
bn(x, k)e−ik·λ =

∫
B

dk

|B|
un(x, k)eik·(x−λ), (12)
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where λ is a point of the periodic lattice L. The most important property of
the Wannier functions is that they are localized at the sites of the lattice, with
an exponential decay away from those sites. The Bloch waves, on the contrary,
are delocalized and maintain their highly oscillatory behaviour throughout R.
The Wannier functions, like the Bloch waves, form a complete, generalized,
orthonormal basis and any wave function can be expanded as

Ψ(x) =
∑

n

∑
λ∈L

fn(λ)an(x− λ),

where
fn(λ) =

∫
B

dk

|B|
σn(k)eik·λ.

If the length scale of the crystal lattice is small with respect to the macroscopic
scale described by the variable x, the Brillouin zone becomes very large and the
Fourier coefficients fn(λ) can be replaced by the continuous Fourier transform,
yielding definition (8).

The dynamics of the W-S envelope functions can be deduced from (10)
and (11), and from the Schrödinger equation

i~
∂

∂t
Ψ(x, t) = HΨ(x, t),

where H is the Hamiltonian operator (1). This yields (see [Bar03b] for the
details of the derivation):

i~
∂

∂t
fn(x, t) = ε̃n (−i∇) fn(x, t) +

∑
n′

∫
R3
VWS

nn′ (x, x′)fn′(x′, t) dx′. (13)

Here,

VWS
nn′ (x, x′) =

1
|B|

∫
R3
an(y, x)V (y) an(y, x′) dy (14)

are matrix-elements of the external potential with respect to the continuous-
index Wannier functions and ε̃n (−i∇) are pseudo-differential operators asso-
ciated to the energy bands with a cut-off outside the Brillouin zone, namely

ε̃n (−i∇) fn(x, t) =
1

(2π)3

∫
R6
1B(k) εn(k) fn(x′) eik·(x−x′)dx′dk.

where 1B is the characteristic function of the Brillouin zone B.

3.2 Luttinger-Kohn envelope functions

A general definition of envelope functions in the sense of Luttinger and Kohn
[Bur92, LK55] may be given as follows. Let {vn(x) |n ∈ N} be L-periodic
functions that form an orthonormal basis of L2(C). Then, the Luttinger-Kohn
(L-K) envelope functions of a wave function Ψ , with respect to the basis vn(x)
are functions Fn(x) such that
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(i) Ψ(x) =
∑

n Fn(x) vn(x);
(ii) the Fn are slowly varying with respect to the lattice periodicity, namely

supp
(
F̂n

)
⊂ B, n ∈ N , (15)

where F̂n denotes the Fourier transform of Fn.

Usually the basis functions vn are chosen to be the Bloch functions un(x, k)
evaluated at k = 0, so that

Ψ(x) =
∑

n

Fn(x)un(x, 0),

but, of course, other choices are possible. It can be proved that the L-K
envelope functions are uniquely determined by the two conditions (i) and (ii)
and that the Parseval-like equality

‖Ψ‖2 =
1
|C|

∑
n

‖Fn‖2 (16)

holds. It is not difficult to see that the L-K envelope functions are easily
expressed in terms of the wave function as follows:

fn(x) =
∫

B

dk

|B|1/2

∫
R3
dyXn(y, k) eik·x Ψ(y), (17)

where
Xn(y, k) =

1
|B|1/2

vn(y) eik·y, y ∈ R3, k ∈ B, n ∈ N. (18)

is a (generalized) Luttinger-Kohn basis [LK55]. By using the above relations
it is possible to deduce the dynamics of L-K envelope functions. In the case
vn(x) = un(x, 0) we have [Wen99]

i~
∂

∂t
Fn(x, t) = εn(0)Fn(x, t)− ~2

2m
∆Fn(x, t)− ~2

m

∑
n′

Knn′ · ∇Fn′(x, t)

+
∑
n′

∫
R3
V LK

mn′(x, x′)Fn′(x′, t) dx′. (19)

Here, εn(0) is the m-th energy band evaluated at k = 0 and

Knn′ =
∫

C

un(x, 0)∇un′(x, 0) dx = −Kn′n (20)

are the matrix elements of the gradient operator between Bloch functions
(which, we recall, are real-valued). The matrix-elements of the external po-
tential are given by

V LK
nn′ (x, x′) =

1
(2π)3

∫
B

dk

∫
R3
dy

∫
B

dk′×

×
{

eik·x Xn(y, k)V (y)Xn′(y, k′) e−ik′·x′
}
, (21)

where, of course, un has to be used in definition (18) in place of vn .
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4 Pure-state multiband models

The equations of envelope-function dynamics, eqs. (13) and (19), are still too
complicated for modeling purposes and, therefore, they should be considered
as starting points for building simpler models rather then models per se.

First of all we note that, if the external potential is slowly varying with
respect to the lattice period, then the L-periodic function un(y, 0)un′(y, 0) in
(21) (see definition (18)) can be substituted by its average on a periodic cell.
Hence, we can write

V LK
nn′ (x, x′) ≈

1
|B| |C| (2π)3

∫
C

un(z)un′(z) dz×

×
∫

B

dk

∫
R3
dy

∫
B

dk′
{

eik′·xe−iy·(k−k′)e−ik′·x′
V (y)

}
and so, using (7), |C| |B| = (2π)3, and B ≈ R3,

V LK
nn′ (x, x′) ≈ δnn′δ(x− x′)V (x− x′). (22)

In other words, if the potential V is smooth enough, the complicated potential
term in eq. (19) can be approximated by the simple multiplication by V (x)
of each Fn. The same property holds for VWS

nn′ (x, x′) (see definition (14)) and
the proof is similar.

Another typical approximation is the effective-mass dynamics. This can
be easily deduced from the Wannier-Slater equations (13) by simply substi-
tuting the energy-band function εn(k) with its parabolic approximation near
a stationary point (that we assume to be always k = 0 for the sake of simplic-
ity). This, together with the approximation (22) yields a completely decoupled
dynamics of the form

i~
∂

∂t
fn(x, t) = −~2

2
∇ ·M−1

n ∇fn(x, t) + V (x) fn(x, t)

where M is the effective-mass tensor:

M−1
n = ∇⊗∇ εn(k) |k=0.

The effective-mass model is widely used in semiconductor modeling and it has
been rigorously studied, as an asymptotic dynamics, in Refs. [AP05], [BLP78]
and [PR96]. However, if interband effects have to be included, then we have
to go beyond the effective-mass approximation and to include at least two
coupled bands.

4.1 The two-band Kane model

A simple multiband model was introduced by Kane [Kan56] in the early 60’s
in order to describe the electron transport with two allowed energy bands
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separated by a forbidden region. The Kane model is a simple two-band model
capable of including one conduction band and one valence band and it is for-
mulated as two coupled Schrödinger-like equations for the conduction-band
and valence-band envelope functions [BFZ03]. The coupling term is treated
by the k · P perturbation method [Wen99], which gives the solutions of the
single electron Schrödinger equation in the neighborhood of the bottom of the
conduction band and the top of the valence bands, where the most part of
electrons and holes, respectively, are concentrated. The Kane model is very
important for the modeling of the RITD devices, and is widely used in liter-
ature [SX89, YSDX91].

From our point of view, the Kane model can be viewed as an approximate
evolution equation for L-K envelope functions arising from eq. (19) when using
the following approximations:

1. the external potential kernel (21) is substituted by the local and diagonal
approximation (22);

2. only two bands (conduction and valence) are included;
3. the bottom of conduction band Ec = εc(0) and top of valence band Ev =
εv(0) are viewed as functions of the position x (this allows to model band
heterostructures).

Thus, using the indices c for conduction and v for valence, we have a two-term
L-K envelope function expansion

Ψ(x) = Ψc(x)uc(x) + Ψv(x)uv(x),

of the wave function Ψ and the following evolution equations for Ψc and Ψv:

i~
∂

∂t
Ψc(x, t) = (Ec+ V )(x)Ψc(x, t)−

~2

2m
∆Ψc(x, t)−

~2

m
K · ∇Ψv(x, t),

i~
∂

∂t
Ψv(x, t) = (Ev+ V )(x)Ψv(x, t)− ~2

2m
∆Ψv(x, t) +

~2

m
K · ∇Ψc(x, t),

(23)
which is the two-band Kane model. Note that the quantity K, called Kane
momentum, is given by

K = Kcv = −Kvc =
∫

C

uc(x)∇uv(x) dx

(see (20) and recall that the Bloch functions uc and uv are real-valued). A
word of caution has to be spent on the notation: Ψc and Ψv are not really band-
projections (spectral projections) of the wave function, not only because of the
envelope function approximation but also because the Hamiltonian operator
defined by the right-hand side of eq. (23) is not diagonal, even in the absence of
external potentials. The identification of Ψc and Ψv with spectral projections
is only approximately true for k ≈ 0.

The Kane model in the Schrödinger-like form (23) has been recently stud-
ied by J. Kefi, [Kef03], and in the Wigner-equation form by Borgioli, Frosali
and Zweifel [BFZ03].
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4.2 The Morandi-Modugno multiband model

In this section we briefly introduce the multiband envelope function model,
introduced recently by Modugno and Morandi (M-M); for the complete deriva-
tion of the model we refer the reader to [MM05].

The starting point is the W-S envelope function dynamics (13). When the
potential V is smooth enough, we can approximate the matrix-elements VWS

nn′

in the same way as we deduced eq. (22), obtaining

VWS
nn′ (x, x′) ≈ 1

|B| (2π)3/2

∫
R3
dk

∫
R3
dk′

{
eik·xBnn′(k, k′) V̂ (k − k′) e−ik′·x′

}
(24)

where
Bnn′(k, k′) =

1
|C|

∫
C

un(z, k)un′(z, k′) dz. (25)

By using the eigenvalue equation (2) one obtains

Bnn′(k, k′) =
1
|C|

~
m

(k − k′)
Pnn′(k, k′)
∆Enn′(k, k′)

, for n 6= n′,

where
Pnn′(k, k′) =

∫
C

un(x, k)(−i~∇)un′(x, k′) dx (26)

and

∆Enn′(k, k′) = εn(k)− εn′(k′)− ~2

2m
(k2 − k′2).

Moreover, as can be deduced from eq. (3), the diagonal terms are simply given
by

Bnn(k, k′) =
|B|

(2π)3
=

1
|C|

. (27)

Using (24), (25) and (27) in eq. (13) (and recalling that B ≈ R3) we get

i~
∂

∂t
fn(x, t) = εn (−i∇) fn(x, t) + V (x) fn(x, t)

+
~
m

∑
n′ 6=n

∫
R3
dk

∫
R3
dk′

eik·x

(2π)3
Pnn′(k, k′)
∆Enn′(k, k′)

V̂ (k − k′) f̂n′(k′, t)

where a diagonal part and a non-diagonal part of the dynamics can be clearly
distinguished. Assuming, for the sake of simplicity, that the stationary point
of each band is k = 0 and that the crystal momentum k remains small during
the whole evolution, we can expand the term Pnn′/∆Enn′ , which characterizes
the interband coupling, to first order in k and k′. After some manipulations
by means of standard perturbation techniques, we get the multiband equation
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i~
∂

∂t
fn(x, t) = εn (−i∇) fn(x, t) + V (x) fn(x, t)

− i~
m
∇V (x) ·

∑
n′ 6=n

Pnn′

∆Enn′
fn′(x, t)− ~

m
∇V (x) ·

∑
n′ 6=n

M∗
nn′

∆Enn′
∇fn′(x, t)

− ~
m

∑
n′ 6=n

Mnn′

∆Enn′

[
∇2V (x)fn′(x, t) +∇V (x) · ∇fn′(x, t)

]
. (28)

where we put Pnn′ ≡ Pnn′(0, 0), ∆Enn′ ≡ ∆Enn′(0, 0) and

Mnn′ =
~
m

∑
n′′ 6=n′

Pnn′′Pn′′n′

En − En′′
, M∗

n′n =
~
m

∑
n′′ 6=n′

Pnn′′Pn′′n′

En′ − En′′

are effective-mass terms. A simple two-band model can be built using the
following assumptions:

1. only two bands (c and v) are included;
2. the energy band operator εn (−i∇) is substituted by its parabolic approx-

imation (effective-mass energy band);
3. the interband terms of order greater than 2 in k are neglected (this

amounts to neglecting terms proportional to the matrices Mnn′);
4. the bottom of the conduction band and the top of the valence band are

functions of the position x (as in the two-band Kane model).

This yields

i~
∂

∂t
Φc(x, t) = (Ec + V )(x)Φc(x, t)−

~2

2
∇ ·M−1

c ∇Φc(x, t)

− i~
mEg(x)

∇V (x) · P Φv(x, t),

i~
∂

∂t
Φv(x, t) = (Ev + V )(x)Φv(x, t)− ~2

2
∇ ·M−1

v ∇Φv(x, t)

− i~
mEg(x)

∇V (x) · P Φc(x, t),

(29)

where Eg(x) = Ec(x)−Ev(x) is the band-gap. Contrarily to the Kane model
(23), in the the M-M model (29) the envelope functions Φc and Φv are true
band-functions, to the extent that in the absence of external potentials (V =
0) the dynamics is diagonal.

5 Statistical multiband models: density matrix and
Wigner function

We now turn our attention to the multiband models that make use of sta-
tistical concepts, mainly of the Wigner-function approach [Wig32, MRS90,
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BJ99, JBBB01, Bar03a]. A multiband model involving the density matrix was
already introduced by Krieger and Iafrate [KI87, IK86] by taking matrix ele-
ments of the density operator between Bloch states. Subsequently, a number
of multiband models based on Wigner-function approach were developed. In
[Bar03b, Bar04a, BD02] envelope functions were used to construct the multi-
band Wigner function; in [BFZ03] a Wigner version of the Kane model was
introduced; in [DBBBJ02, DBBJ02, DBJ03a, DBJ03b] the multiband Wigner
function was obtained by using the Bloch-state representation of the density
matrix.

We recall that statistical states in quantum mechanics are described either
in terms of the density operator ρ or the Wigner function f(x, p), [Fey72].
The density operator is usually defined by a statistical mixture of states, say
{Ψj | j ∈ N}, where Ψj(x) are the wave functions that characterize each state
of the mixture. If λj ≥ 0 is the probability distribution of the states, then∑

j λj = 1 and the density operator is given by

ρ =
∑

j

λj |Ψj〉〈Ψj | (30)

in Dirac’s notation, and the density matrix in the space representation is given
by

ρ(x, x′) =
∑

j

λj Ψj(x)Ψ j(x′) =
∑

j

λj 〈x |Ψj〉〈Ψj |x′〉. (31)

The Wigner function f(x, p) is defined by the Wigner-Weyl transform of the
density operator, that is

f(x, p) =
∫

dη

(2π~)3
ρ

(
x+

η

2
, x− η

2

)
e−ipη/~. (32)

In the theoretical models based on the solution of the Schrödinger equation
(pure states), the calculation of the current across the device, j(x), follows the
standard quantum-mechanical definition

J(x) = − ~
m

Im
(
Ψ(x)∇Ψ(x)

)
. (33)

In the statistical models, instead, the current is expressed in terms of the
density matrix or in terms of the Wigner function. In the first case the current
is

J(x) = − i~
2m

(∇x −∇x′) ρ(x, x′)|x=x′ , (34)

and, in the Wigner picture, by

J(x) =
1
m

∫
pf(x, p) dp, (35)

an expression which is, remarkably, identical to the classical expression for the
current in statistical systems. It can be easily shown that, in the case of pure
states, these two expressions coincide with (33).
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5.1 Wigner-function based statistical models

A suitable partition of the Wigner function among the energy bands can be
obtained by using the completeness of the Bloch states in equation (32). We
adopt hereafter Dirac’s notation and consider, for the sake of simplicity, the
one-dimensional case only. By defining the coefficients Φmn and the integral
kernel Wmn,

Φmn(k, k′, x, p) =
∫ ∫

dη

2π~

〈
x+

η

2

∣∣∣ nk〉 〈
nk′

∣∣∣x− η

2

〉
e−ipη/~ (36)

Wmn(x, p, x′, p′) =
∫

B2
dkdk′Φmn(k, k′, x, p)Φ∗mn(k, k′, x′, p′), (37)

the Wigner function can be written as a sum of projections over the Floquet
subspaces of the energy bands (see [DBBJ02] for details):

f(x, p) =
∑
mn

fmn(x, p), (38)

where
fmn(x, p) =

∫
B2
dkdk′ρmn(k, k′)Φmn(k, k′, x, p). (39)

By expressing ρ as a function of f , we can write fmn = Pmnf , where Pmn is
the linear integral operator

(Pmnf) (x, p) ≡ 1
2π~

∫ ∫
dx′dp′Wmn(x, p, x′, p′)f (x′, p′) .

Here, ρmn(k, k′) = 〈mk | ρ |nk′〉 are the matrix elements of the density oper-
ator in the Bloch-state representation and the linear integral operator Pmn is
a projection operator and yields the Wigner projections fmn from the total
Wigner function f .

The time evolution of the Wigner function is given by the sum of the time
evolutions of the band projections,

i~
∂f

∂t
(x, p, t) =

∑
mn

i~
∂fmn

∂t
(x, p, t),

given by [DBBJ02]

i~
∂fmn

∂t
=

∑
µ∈L

[
ε̂m(µ)fmn(x+

µ

2
, p, t)− ε̂n(µ)fmn(x− µ

2
, p, t)

]
eipµ/~

+
∫ ∫

dx′dηŴmn(x, p, x′,−η)δV (x′, η)f̂(x′, η, t), (40)

where Ŵmn is the Fourier transform of Wmn with respect to the momentum
variable:
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Ŵmn(x, p, x′, η) =
1

2π~

∫
dp′Wmn(x, p, x′, p′)eip′η/~. (41)

Equation (40) is the equation that governs the time evolution of the Floquet
projections fmn of the Wigner function for an ensemble of electrons moving
in a semiconductor crystal in the presence of external fields and allowing for
energy bands of arbitrary shape. The first term, containing the sum over
the lattice vectors, refers to the action of the periodic potential of the crystal
lattice, while the last term, written in the form of an integral operator, refers to
the action of the external or self-consistent fields acting on the electrons. The
first term, as shown in [DBBJ02], reduces to the usual free-streaming operator
in the case of a single parabolic band; for this reason we shall refer to this term
as to the streaming term, while the second term will be called the force term, in
analogy with the corresponding force term of the Boltzmann equation. These
equations show that, in the absence of external fields, different bands remain
dynamically uncoupled and each contribution to the Wigner function evolves
independently. In the case V (x) ≡ 0, these equations were already written by
Markowich, Mauser and Poupaud [MRS90, MMP94] for a single band. It can
be shown that, in the case of a single parabolic band, eq. (40) reduces to the
usual Wigner equation in the effective mass approximation

∂f

∂t
+

p

m∗
∂f

∂x
+
i

~
Θ[δV ]f = 0,

where m∗ is the (one-dimensional) electron effective mass in the selected band
and

(Θ[δV ]f) (x, p) =
1

2π~

∫
R2

e−i(p−p′)ξ/~ δV (x, ξ) f(x, p′) dξ dp′ (42)

is a pseudo-differential operator with symbol

δV (x, ξ) = V
(
x+

ξ

2

)
− V

(
x− ξ

2

)
. (43)

A multiband model for electron transport in semiconductors, based on
the density-matrix approach, was introduced by Krieger and Iafrate in [KI87,
IK86]. They considered a statistical ensemble of electrons moving under the
action of an external time-dependent electric field. Here, we briefly summarize
this model in a simplified form. Their model is obtained by expanding the
density matrix elements in Bloch functions:

ρ(y, z) =
∑
mn

∫
B2
dkdk′ρmn(k, k′)bm(k, y)bn(k′, z), (44)

where ρmn(k, k′) = 〈mk | ρ |nk′〉 are the already-introduced matrix elements
between Bloch functions, whose evolution is given by
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i~
∂ρmn(k, k′)

∂t
= [εm(k)− εn(k′)] ρmn(k, k′)

+
∑

l

∫
B

dk′′ [Vml(k, k′′)ρln(k′′, k′)− Vln(k′′, k′)ρml(k, k′′)] . (45)

Here, Vmn(k, k′) = 〈mk |V |nk′〉 are the matrix elements of the external po-
tential in the Bloch representation. The main source of difficulty with this
approach lies exactly in these matrix elements, which are ill-defined for most
potentials of practical interest.

The Wigner-function formalism has also been used by Buot and Jensen
[Buo74, Buo76, Buo86, BJ90] to formulate multiband models within the
framework of the Lattice-Weyl transform, in which a non-canonical defini-
tion of the Wigner function, based on a discrete Fourier Transform, was in-
troduced. This definition of the Wigner function makes use of the Wannier
functions introduced by (12). Let { |mλ〉,m ∈ N, λ ∈ L} be the states corre-
sponding to the Wannier functions (see eq. (12)); here, L is the direct lattice
and the vectors λ are elements of the direct lattice. We can consider matrix
elements of the density operator ρ in the Wannier representation,

ρmn(λ, µ) = 〈mλ | ρ |nµ〉

with λ, µ ∈ L. A Wigner function is then introduced by

fmn(k, λ) = N
∑
v∈L

ρmn(λ+ v, λ− v)e2ikv, (46)

where N is a normalization factor, λ ∈ L is a lattice vector and k ∈ B.
This definition of the Wigner function is sometimes called discrete Wigner-
Weyl transform, and has a similar structure of the definition given in (32);
there are however some important differences: the Wigner function is only
defined on the lattice points; it is defined by a Fourier series, rather that the
Fourier transform; it is a function of the crystal momentum, which has not
been integrated over. According to (35), the current density is then given by

J(λ) =
∑
mn

∫
B

dk

|B|
p

m
fmn(k, λ), (p = ~k)

and is also defined on the lattice points.

5.2 Reduced Wigner-Bloch-Floquet models

Equations (40) are the most general time evolution equations that can be
written for the Floquet projections of the multiband Wigner function in pres-
ence of external fields and in absence of collisions. The action of the periodic
potential is described by the first term, which contains the Fourier coefficients
of the energy bands, and which reduces to the usual free-streaming operator
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in the parabolic-band approximation. The second term describes the action
of the external potential. We note that, while the first term requires only the
knowledge of the energy band functions, the second term requires the knowl-
edge of the Bloch eigenfunctions of the material of interest. Therefore, the
model equations (40) are very hard to solve in full generality in practical ap-
plications, and the derivation of a set of simplified models is needed. In the
following subsections, we outline some of the reduced models which have been
derived within the Bloch-Floquet approach.

Two-band model in the parabolic band approximation without
external fields

It is interesting to consider a simple two-band model in the parabolic band
approximation and without external fields, in order to study the off-diagonal
Floquet projections of the Wigner function, which arise in this case. In a
two-band model, the Wigner function and its evolution equation are given
by equations (38) and (40) without external fields, and with m = 0, 1 and
n = 0, 1. The Wigner function is given by the sum of four contributions, f00,
f01, f10 and f11. It can be seen easily from equations (36), (39) and (37)
that f01 = f10, while f00 and f11 are real. Each of the four contributions
evolves according to equations (40). In the parabolic band approximation,
the differential equations for f00 and f11 are:

∂f00
∂t

+
p− ~k0

m0

∂f00
∂x

= 0

∂f11
∂t

+
p− ~k1

m1

∂f11
∂x

= 0,
(47)

where m0 and m1 are the effective masses for band 0 and band 1 respectively
and k0 and k1 are the values of the crystal momentum at which band 0 and
band 1 attain their minimum. The evolution equations for f01 and f10 = f01

have instead a different structure. A simple calculation shows that:

i~
∂f01
∂t

=
{[
ε0(k0) +

(p− ~k0)2

2m0

]
−

[
ε1(k1) +

(p− ~k1)2

2m1

]}
f01(x, p) +

− i~
2

(
p− ~k0

m0
+
p− ~k1

m1

)
∂f01
∂x

− 1
8

(
~2

m0
− ~2

m1

)
∂2f01
∂x2

. (48)

which follows from equation (40) after expanding fmn(x ± η/2, p, t) in Tay-
lor series about µ = 0 and using parabolic profiles for the two bands. By
introducing the frequencies

ω01 = (ε0(k0)− ε1(k1))/~
Ω01(p) = ω01 + (p− ~k0)2/(2m0~)− (p− ~k1)2/(2m1~)

and the new function
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g01(x, p, t) = f01(x, p, t)eiΩ01(p)t,

equation (48) can be cast in the more elegant form

∂g01
∂t

+
1
2

(
p− ~k0

m0
+
p− ~k1

m1

)
∂g01
∂x

− i~
8

(
1
m0

− 1
m1

)
∂2g01
∂x2

= 0. (49)

Note that in the definition of the Wigner function (38) f01 and f10 appear
only in the combination f01+f10, consistently with the Wigner function being
real. Equation (48) shows that the time evolution of f01 is given by three
contributions: an oscillatory term, a free streaming term and a diffusive term
with imaginary diffusion coefficient (Schrödinger-like term). The frequency of
the oscillatory term, Ω01, is proportional to the difference of the total energies
of the particles of the two bands; the velocity of the free streaming term is an
average of the relative velocities of the particle with respect to the two minima
and the imaginary diffusion coefficient vanishes when the two effective masses
are equal.

Equations (47) and (49) completely describe the time evolution of all the
components of the Wigner function in a two-band model with the parabolic-
band approximation and in the absence of external fields. Note that these
evolution equations are uncoupled.

Multiband model in the Luttinger-Kohn approximation

As we have already seen in Section 3.2, the Luttinger-Kohn model [LK55] con-
siders the carrier populations near minima (or maxima) of the energy bands
and it is therefore to be used in conjunction with the parabolic-band approx-
imation. For the Bloch states near the minimum (or maximum) of the band,
the Bloch functions un(x, k) are replaced with the set of functions un(x, kn),
i.e. the Bloch functions at the bottom (or top) of the band, here assumed
at k = kn. The functions eikxun(x, kn), after a suitable normalization, also
form a complete set (see Ref. [LK55] and see also Section 3.2) and any wave
function can be expanded in their basis. In this Section, we use the Luttinger-
Kohn basis for expressing the Floquet projections fmn of the Wigner function
and for writing the evolution equations. The action of the free Hamiltonian is
treated in the parabolic-band approximation.

If the n−th band has an extremum at k = kn, we can approximate the
Bloch waves as

〈x |nk〉 = bn(x, k) ≈ un(x, kn) eikx. (50)

Since the functions un(x, kn) are periodic functions with period a, we can
introduce their Fourier expansion,

un(x, kn) =
∞∑

n′=−∞
Ûn

n′eiKn′x,
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where, Kn = 2πn/a are vectors of the reciprocal lattice with K−n = −Kn.
After evaluating the coefficients Φmn and the integral kernel Wmn in this
basis, and after carrying out the integration over the momentum variables k
and k′, one obtains for the Floquet projection fmn of the Wigner function:

fmn(x, p) = 4π
∑

m′n′m′′n′′

Ûm
m′Ûn∗

n′ Ûm∗
m′′ Ûn

n′′ei(Km′−Kn′ )x

×H
(
π

a
−

∣∣∣∣p~ − Km′ +Kn′

2

∣∣∣∣)
×

∫
dx′

sin 2[π/a− |p/~− (Km′ +Kn′)/2|](x− x′)
x− x′

× f

(
x′, p− ~

Km′ +Kn′ −Km′′ −Kn′′

2

)
e−i(Km′′−Kn′′ )x′

,

where the integrals are performed over the whole real line and H is the Heav-
iside function. The evolution equations have been formulated for the case of
two energy bands in the parabolic band approximation. If m0 and m1 are
the effective masses for band 0 and band 1 respectively and k0 and k1 are
the values of the crystal momentum at which band 0 and band 1 attain their
minimum, we have that

∂f00
∂t

+
p− ~k0

m0

∂f00
∂x

+
i

~
(Θ00f)(x, p) = 0 (51)

∂f11
∂t

+
p− ~k1

m1

∂f11
∂x

+
i

~
(Θ11f)(x, p) = 0, (52)

i~
∂f01
∂t

=
{[
ε0(k0) +

(p− ~k0)2

2m0

]
−

[
ε1(k1) +

(p− ~k1)2

2m1

]}
f01(x, p)

− i~
2

[
p− ~k0

m0
+
p− ~k1

m1

]
∂f01
∂x

− 1
8

(
~2

m0
− ~2

m1

)
∂2f01
∂x2

+ (Θ01f)(x, p), (53)

where Θmn is an operator acting on the whole Wigner function f and, recalling
definition (42), is given by

(Θmnf)(x, p, t) =
∫ ∫

dx′dηŴmn(x, p, x′,−η)δV (x′, η)f̂(x′, η, t)

= 4π
∑

m′n′m′′n′′

Ûm
m′Ûn∗

n′ Ûm∗
m′′ Ûn

n′′ei(Km′−Kn′ )xH
(
π

a
−

∣∣∣∣p~ − Km′ +Kn′

2

∣∣∣∣)
×

∫
dx′e−i(Km′′−Kn′′ )x′ sin 2[π/a− |p/~− (Km′ +Kn′)/2|](x− x′)

x− x′

×
∫
dηδV (x′, η)e−i(p−(Km′+Kn′−Km′′−Kn′′ )/2)η/~f̂(x′, η, t). (54)
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A two-band model with empty-lattice eigenfunctions

A different simplification of the transport equations can be obtained by using
the Bloch functions of the “empty lattice”, that is periodic plane waves. Here,
we consider only the two lowest energy bands, given by

ε0(k) =
~2k2

2m
(55)

ε1(k) =
~2

2m
[H(k)(k −K)2 +H(−k)(k +K)2], (56)

with K = 2π/a and m the bare electron mass, and whose eigenfunctions are

Ψ0k(x) = 〈x | 0k〉 =
1√
2π

eikx (57)

Ψ1k(x) = 〈x | 1k〉 =
1√
2π

(H(k)e−iKx +H(−k)eiKx)eikx. (58)

By using this basis in the definition (39) of the multiband Wigner function,
one obtains for the band projections fmn (see [DBJ03b] for the details):

f00(x, p) =
1
π
H

(
K

2
−

∣∣∣p~ ∣∣∣) ∫
sin 2(K/2− |p/~|)(x− x′)

x− x′
f(x′, p)dx′ (59)

f01(x, p) =
1
π

∫ [
H̃

(
−3~K

4
, p, 0

)
ei(α1+α2+K)(x−x′) sin(α2 − α1)(x− x′)

x− x′

+ H̃
(

0, p,
3~K

4

)
ei(α3+α4−K)(x−x′) sin(α4 − α3)(x− x′)

x− x′

]
× f(x′, p)dx′ (60)

f11(x, p) =
1
π

∫ [
H̃

(
−~K, p,−~K

2

)
sin 2(K/4− |p/~ + 3K/4|)(x− x′)

x− x′

+ H̃
(

~K
2
, p, ~K

)
sin 2(K/4− |p/~− 3K/4|)(x− x′)

x− x′

+ 2H
(
K

4
−

∣∣∣p~ ∣∣∣) sin 2(K/4− |p/~|)(x− x′)
x− x′

cos
3
2
K(x− x′)

]
× f(x′, p)dx′. (61)

where the function H̃(a, x, b) ≡ H(x− a)H(b− x) has been introduced, and

α1(p) = −K
2

+
∣∣∣∣p~ +

K

2

∣∣∣∣ α2(p) =
K

4
−

∣∣∣∣p~ +
K

4

∣∣∣∣
α3(p) = −K

4
+

∣∣∣∣p~ − K

4

∣∣∣∣ α4(p) =
K

2
−

∣∣∣∣p~ − K

2

∣∣∣∣ .
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The time evolution of the Floquet projections of the Wigner function is given
by:

∂f00
∂t

+
p

m

∂f00
∂x

+
i

~
(Θ00f)(x, p) = 0

∂f11
∂t

+
p

m

∂f11
∂x

+
i

~
(Θ11f)(x, p) = 0,

∂f01
∂t

+
p

m

∂f01
∂x

+
i

~
(Θ01f)(x, p) = 0,

where Θ is an operator acting on the total Wigner function f and is given by

(Θ00f)(x, p) =
1
π
H

(π
a
−

∣∣∣p~ ∣∣∣) ∫
sin 2(π/a− |p/~|)(x− x′)

x− x′

×
∫
δV (x′, η)f̂(x′, η, t)e−ipη/~ dη dx′

(Θ01f)(x, p) =
1
π

∫ [
H̃

(
−3~K

4
, p, 0

)
ei(α1+α2+K)(x−x′) sin(α2 − α1)(x− x′)

x− x′

+ H̃
(

0, p,
3~K

4

)
ei(α3+α4−K)(x−x′) sin(α4 − α3)(x− x′)

x− x′

]
×

∫
δV (x′, η)f̂(x′, η, t)e−ipη/~ dη dx′

(Θ11f)(x, p) =
1
π

∫ [
H̃

(
−~K, p,−~K

2

)
sin 2(K/4− |p/~ + 3K/4|)(x− x′)

x− x′

+ H̃
(

~K
2
, p, ~K

)
sin 2(K/4− |p/~− 3K/4|)(x− x′)

x− x′

+ 2H
(
K

4
−

∣∣∣p~ ∣∣∣) sin 2(K/4− |p/~|)(x− x′)
x− x′

cos
3
2
K(x− x′)

]
×

∫
δV (x′, η)f̂(x′, η, t)e−ipη/~ dη dx′

Equations (59)-(61) show that the Floquet projections of the Wigner function
given by this model are functions with compact support and cover different
portions of the phase space. The support of the projection f00 on the lower
band, for example, corresponds to the first Brillouin zone; the supports of
the other projections are larger and extend beyond the first Brillouin zone.
The equations of this two-band model are very hard to approach numerically,
because of the presence of convolution integrals of highly oscillatory functions.

5.3 Envelope-function based statistical models

An alternative approach to statistical models based on the Wigner picture
starts from an envelope-function model, such as the Kane model (23) or the
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M-M model (29) and then applying the Wigner transformation (32) directly
to the envelope functions (Ψc and Ψv in the former case, Φc and Φv in the
latter).

For a two-band model we need a 2×2 matrix of Wigner functions (Wigner
matrix), defined as the component-wise Wigner transform:

wij(x, p) = (W ρij) (x, p), i, j ∈ {c, v},

where W denotes the Wigner transformation (32) and ρij is an envelope-
function density matrix (i.e., in the pure-state case, it is given by ρij(x, x′) =
Ψi(x)Ψ j(x′) for the Kane model and by ρij(x, x′) = Φi(x)Φj(x′) for the M-M
model). The self-adjointness of the density operator implies the Hermiticity
of the Wigner matrix for any fixed (x, p):

ρij(x, x′) = ρji(x′, x) =⇒ wij(x, p) = wji(x, p).

The evolution equation for the Wigner matrix in the case of the Kane model
(23) is(

∂

∂t
+

p

m
· ∇x +

i

~
Θ[Vcc]

)
wcc = − i~K

2m
· ∇x(wcv − wvc)−

K · p
m

(wcv + wvc)(
∂

∂t
+

p

m
· ∇x +

i

~
Θ[Vcv]

)
wcv =

i~K
2m

· ∇x(wcc + wvv) +
K · p
m

(wcc − wvv)

(
∂

∂t
+

p

m
· ∇x +

i

~
Θ[Vvc]

)
wvc = − i~K

2m
· ∇x(wcc + wvv) +

K · p
m

(wcc − wvv)

(
∂

∂t
+

p

m
· ∇x +

i

~
Θ[Vvv]

)
wvv = − i~K

2m
· ∇x(wcv − wvc) +

K · p
m

(wcv + wvc)

(62)
where we put

Vij(x, ξ) = (Ei + V )
(
x+

ξ

2

)
− (Ej + V )

(
x− ξ

2

)
, i, j ∈ {c, v}, (63)

and the pseudo-differential operator, in the present three-dimensional case, is
given by

(Θ[φ]f) (x, p) =
1

(2π~)3

∫
R6

e−i(p−p′)·ξ/~ φ(x, ξ) f(x, p′) dξ dp′. (64)

The system (62) has been studied from a mathematical point of view in
[BFZ03]. The Wigner matrix describing thermal equilibrium of the Kane
model has been analyzed in Ref. [Bar04a].

The evolution equation for the Wigner matrix in the case of the M-M
model (4.2) is
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∂

∂t
+ p ·M−1

c ∇x +
i

~
Θ[Vcc]

)
wcc = Θ[F−]wcv −Θ[F+]wvc

(
∂

∂t
+ p · M−1

c + M−1
v

2
∇x −

i~
4
∇x ·

M−1
c −M−1

v

2
∇x +

ip

~
· M−1

c −M−1
v

2
p

)
wcv

= − i

~
Θ[Vcv]wcv +Θ[F−]wcc −Θ[F+]wvv(

∂

∂t
+ p · M−1

c + M−1
v

2
∇x +

i~
4
∇x ·

M−1
c −M−1

v

2
∇x −

ip

~
· M−1

c −M−1
v

2
p

)
wvc

= − i

~
Θ[Vvc]wvc −Θ[F+]wcc +Θ[F−]wvv(

∂

∂t
+ p ·M−1

v ∇x +
i

~
Θ[Vvv]

)
wvv = −Θ[F+]wcv +Θ[F−]wvc

(65)
where we put

F±(x, ξ) =
∇V · P
mEg

(
x± ξ

2

)
,

and the symbols Vij are still given by (63). From eq. (26) we see that that
P and, consequently, F± are purely imaginary, so that the following relations
hold:

Θ[F±]wij = −Θ[F∓]wji, i, j ∈ {c, v}.
In the special case of constant and opposite effective-masses,

Mc = m∗I, Mv = −m∗I,

the above system reduces to(
∂

∂t
+

p

m∗ · ∇x +
i

~
Θ[Vcc]

)
wcc = Θ[F−]wcv −Θ[F+]wvc

(
∂

∂t
− i~

4m∗∇
2
x +

ip2

~m∗ +
i

~
Θ[Vcv]

)
wcv = Θ[F−]wcc −Θ[F+]wvv

(
∂

∂t
+

i~
4m∗∇

2
x −

ip2

~m∗ +
i

~
Θ[Vvc]

)
wvc = −Θ[F+]wcc +Θ[F−]wvv

(
∂

∂t
− p

m∗ · ∇x +
i

~
Θ[Vvv]

)
wvv = −Θ[F+]wcv +Θ[F−]wvc ,

(66)

(see also Ref. [FM05]). The negative effective-mass introduced in this model
has the effect of making the Hamiltonian unbounded from below. As it is
well known, such a Hamiltonian is not very good, especially for statistical
purposes (the thermal equilibrium states are ill-defined). However, the correct
interpretation is that (66) should be considered just as an approximation of
the true dynamics for small values of the momentum p.
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6 Hydrodynamic models

It is universally recognized that the hydrodynamic approach presents impor-
tant properties both from the theoretical and the numerical point of view
because it gives an interpretation of the transport phenomenon by macro-
scopic quantities and it produces many advantages from the computational
point of view.

The literature on hydrodynamic models is very broad, both in classical as
well as in semiclassical and quantum framework.

Some very interesting results have been achieved, proposing quantum hy-
drodynamic equations, able to describe the behaviour of nanometric devices
like resonant tunneling diodes. Here, we restrict ourselves to describing the
hydrodynamic versions of the Kane model and of the M-M model.

Most of the results published in the literature refer to single-band prob-
lems. The generalization to multiband models presents several difficulties.
Among others, the definition of the macroscopic quantities with a realistic
physical meaning and the difficulty in imposing boundary conditions.

In this review we give an insight into the classical derivation of a two-band
quantum fluid. As we have said, the above-mentioned multiband models are
based on the single electron Schrödinger equation, and the resulting equations
are essentially linear. By applying the WKB method, it is possible to derive a
zero-temperature hydrodynamic version of the Schrödinger two-band models.

When it is desirable to model the dynamics of a family of electrons, the
statistical description requires the introduction of a sequence of mixed states,
with an attached occupation probability. In this case, the WKB method leads
to a sequence of hydrodynamic equations. Starting from it, it is possible to
derive a set of equations for certain macroscopic averaged quantities. These hy-
drodynamic equations share a similar structure with the corresponding equa-
tions for a single electron, the only difference being the appearance of terms
that can be interpreted as thermal tensors, and of additional source terms.
These new terms depend on all states, so the system is not closed unless
appropriate closure conditions are provided. It is clear that the final hydro-
dynamic model with temperature is by no means equivalent to the original
quantum model. We could say that the nonlinearity of the resulting hydro-
dynamic model is “genuine” and is the price to pay for keeping only a finite
number of equations.

6.1 The hydrodynamic quantities

In order to obtain hydrodynamic versions of the kinetic models described in
the previous sections, one possibility is to follow the general hydrodynamic
approach to quantum mechanics due to Madelung [LL77]. This approach con-
sists in writing the wave function in the quasi-classical form a exp

(
iS
ε

)
, where

a is called the amplitude and S/ε the phase. With this approach, the hydro-
dynamic limit is valid only for pure states, that is to say, it is valid only for
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a quantum system at zero temperature. In the case of a two-band model, we
have

ψa(x, t) =
√
na(x, t) exp

(
iSa(x,t)

ε

)
, a = c, v. (67)

where the squared amplitude has the physical meaning of the probability
density of finding the “particle” at some point in space, and the gradient of
the phase corresponds to the classical velocity of the “particle”.

In the framework of two-band models, the densities

nab = ψaψb,

are introduced, where ψa, with a = c, v, is the envelope function for the
conduction and the valence band, respectively. When a = b, the quantities
nab = na = |ψa|2 are real and represent the position probability densities of
the conduction band and of the valence band electrons, albeit only in an ap-
proximate sense, since ψc and ψv are envelope functions which mix the Bloch
states. Nevertheless, n = ψcψc + ψvψv is exactly the total electron density in
the conduction and in the valence band, and, as expected, it satisfies a con-
tinuity equation. When a 6= b, the density ψaψb is a complex quantity, which
does not have a precise physical meaning. Despite of this, as it will become
clear in the next section, the complex quantities ψaψb appear explicitly in the
evolution equation for the total density n.

It is customary, after (67), to write the coupling terms in a more convenient
way, by introducing the complex quantity

ncv = ψcψv =
√
nc
√
nv e

iσ, (68)

where σ is the phase difference defined by

σ =
Sv − Sc

ε
. (69)

In this way, in order to study a zero-temperature quantum hydrodynamic
model, we need to use only the three quantities nc, nv and σ to characterize
the zero order moments.

The situation is more involved for the current densities. In analogy to
the one-band case, we introduce the quantum mechanical electron current
densities

Jab = ε Im
(
ψa∇ψb

)
. (70)

It is natural to recover the classical current densities,

Jc = Im
(
εψc∇ψc

)
= nc∇Sc, Jv = Im

(
εψv∇ψv

)
= nv∇Sv , (71)

whose physical meaning is clear.
The introduction of the complex quantity (68) allows to write εψa∇ψb in

(70) as
εψc∇ψv = ncvuv, εψv∇ψc = ncvuc, (72)
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where the complex velocities uc and uv are given by

uc = uos,c + iuel,c, uv = uos,v + iuel,v. (73)

with uos,c and uos,v the so-called osmotic velocity and current velocity given
by

uos,a =
ε∇√na√

na
, uel,a = ∇Sa =

Jc

na
, a = c, v. (74)

In analogy with the single-band case we have defined the osmotic and current
velocities as complex quantities which can be expressed solely by means of
nc, nv, Jc and Jv. In addition, the coupling term ncv has been defined by
introducing the phase difference σ. We note that

ε∇ncv = ncv(uc + uv). (75)

Coming back to the choice of the hydrodynamic quantities, we maintain that,
for a zero-temperature quantum hydrodynamic system, it is sufficient to take
the usual quantities nc, nv, Jc and Jv, plus the phase difference σ. This will
be confirmed in the next section.

6.2 Hydrodynamic version of the Kane system

The Kane model was introduced in Section 4.1 by using envelope functions.
Before introducing the hydrodynamic form, we rewrite it by using dimension-
less variables. To this aim we introduce the rescaled Planck constant ε = ~/α,
where the dimensional parameter α is given by α = mx2

R/tR, by using xR and
tR as characteristic (scalar) length and time variables. The band energy can be
rescaled by taking new potential units V0 = mx2

R/t
2
R. A dimensional argument

shows that the original coupling coefficient is a reciprocal of a characteristic
lenght, thus the coefficient is scaled by KxR, componentwise.

Hence, dropping the primes and without changing the name of the vari-
ables, we get the following scaled Kane system, which will be the object of
our study:

iε
∂ψc

∂t
= −ε

2

2
∆ψc + Vcψc− ε2K · ∇ψv

iε
∂ψv

∂t
= −ε

2

2
∆ψv + Vvψv + ε2K · ∇ψc ,

(76)

where K is the rescaled coupling interband coefficient, ε is the rescaled Planck
constant, Vc = Ec + V and Vv = Ev + V . In the Kane model the coupling
parameter has to be considered constant. In realistic heterostructure semicon-
ductor devices, the parameter K, approximatively expressed in terms of the
effective electron mass and the energy gap, depends on the layer composition
through the spatial coordinates.
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Taking into account the wave form (67) and using the equations of system
(76), time derivation of na, a = c, v gives immediately

∂nc

∂t
+∇·Jc = −2K · Im (ncvuv)

∂nv

∂t
+∇·Jv = 2K · Im (ncvuc) ,

(77)

where (71) has been used for Jc and Jv. We remark that the right-hand side
of (77), containing the terms ncvuv and ncvuc, can be expressed in terms of
osmotic and current velocities, and the phase difference σ.

Adding the equations in (77) and using the identity Im (εψc∇ψv) −
Im (εψv∇ψc) = ε∇ Imncv, we obtain the balance law for the total density

∂

∂t
(nc + nv) +∇·(Jc + Jv + 2εK Imncv) = 0 ,

which is just the quantum counterpart of the classical continuity equation.
The derivation of the equations for the phases Sc, Sv, and consequently

for Jc and Jv, is more involved.
Referring the reader to the original paper [AF05] for more details, the

equations for the currents take the form

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ε2∇

√
nc ⊗∇

√
nc −

ε2

4
∇⊗∇nc

)
+ nc∇Vc

= ε2 Re
[
∇(ψc(K · ∇ψv))− 2∇ψc(K · ∇ψv)

]
. (78)

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ ε2∇

√
nv ⊗∇

√
nv −

ε2

4
∇⊗∇nv

)
+ nv∇Vv

= − ε2 Re
[
∇(ψv(K · ∇ψc))− 2∇ψv(K · ∇ψc)

]
. (79)

The left-hand sides of the equations for the currents can be put in a more
familiar form by using the identity

div
(
∇
√
na ⊗∇

√
na −

1
4
∇⊗∇na

)
= −na

2
∇

[
∆
√
na√
na

]
, a = c, v.

The correction terms
ε2

2
∆
√
na√
na

, a = c, v ,

can be identified with the quantum Bohm potentials for each band, because
they can be interpreted as internal self-consistent potentials, in analogy with
the single-band case. The right-hand sides can be further expressed in terms
of the hydrodynamic quantities, obtaining the final system
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∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc

= ε∇ Re (ncvK ·uv)− 2 Re (ncvK ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇ Re (ncvK ·uc) + 2 Re (ncvK ·ucuv) .

(80)

It is evident that the equations for the conduction and the valence band
are coupled. Also, because of the presence of σ, it is necessary to “close” the
system, in order to obtain an extension of the classical Madelung fluid equa-
tions to a two-band quantum fluid. In this context, we choose the following
constraint

ε∇σ =
Jv

nv
− Jc

nc
. (81)

Now we are in position to rewrite the hydrodynamic system (80) as follows

∂nc

∂t
+ divJc = −2K · Im (ncvuv),

∂nv

∂t
+ divJv = 2K · Im (ncvuc),

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc

= ε∇Re (ncvK ·uv)− 2 Re (ncvK ·uvuc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv

= −ε∇Re (ncvK ·uc) + 2 Re (ncvK ·ucuv) ,

ε∇σ =
Jv

nv
− Jc

nc
,

(82)

where ncv, uv, and uv are expressed in the terms of the hydrodynamic quan-
tities nc, nv, Jc, Jv, and σ by (68) and (73).

6.3 The nonzero-temperature case

The extension of the previous analysis to an electron ensemble requires a
quantum statistical mechanics treatment. According to the general discussion
at the beginning of Section 5, it is possible to represent an electron ensemble
as a mixed quantum mechanical state given by a sequence of pure states
Ψk, with occupation probabilities λk ≥ 0, so that

∑
k λ

k = 1. In the two-
band case, each pure state is represented by a couple of envelope-functions,
ψk

c and ψk
v and, therefore, we shall extend the definition of the hydrodynamic
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quantities as a superposition, with weights λk, of the corresponding pure-state
quantities. For example, the density will be na =

∑
k λ

kψ
k

aψ
k
a , for a = c, v.

In the sequel we shall work at the formal level, and we refer to the equations
found in [AF05]. The k-th state for the Kane system is described by the
solutions of the system

iε
∂ψk

c

∂t
= −ε

2

2
∆ψk

c + Vcψ
k
c − ε2K ·∇ψk

v ,

iε
∂ψk

v

∂t
= −ε

2

2
∆ψk

v + Vvψ
k
v + ε2K ·∇ψk

c .

(83)

Using the expressions (67) for each state k in (83),

ψk
c =

√
nk

c exp
(
iSk

c /ε
)
, ψk

v =
√
nk

v exp
(
iSk

v/ε
)
,

under the assumption of positivity of the densities nk
c and nk

v , a hydrodynamic
system analogous to (82) is obtained for each state k. The densities and the
currents corresponding to the two mixed states for conduction and valence
electrons can be defined as

nc =
∞∑

k=0

λknk
c , nv =

∞∑
k=0

λknk
v ,

Jc =
∞∑

k=0

λkJk
c , Jv =

∞∑
k=0

λkJk
v .

We also define

σ =
∞∑

k=0

λkσk, ncv =
√
nc
√
nv exp(iσ),

uc =
ε∇√nc√

nc
+ i

Jc

nc
, uv =

ε∇√nv√
nv

+ i
Jv

nv
.

Multiplying (82) for the state k by λk and summing over k, we find new
quantities that must be manipulated with much care. In analogy with the one-
band case [GMU95], new terms containing the total temperature θc and θv,
for each band, appear in the current equations. The temperature tensors are
defined by the sum of osmotic temperature and electron current temperature

θc = θos,c + θel,c and θv = θos,v + θel,v

given by

θos,c =
∞∑

k=0

λk n
k
c

nc
(uk

os,c − uos,c)⊗ (uk
os,c − uos,c),

θel,c =
∞∑

k=0

λk n
k
c

nc
(uk

el,c − uel,c)⊗ (uk
el,c − uel,c).
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In conclusion our system becomes

∂nc

∂t
+ divJc = − 2K · Im [ncv (αuv + βv)],

∂nv

∂t
+ divJv = 2K · Im [ncv (αuc + βc)],

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc

= εK ·∇ Re (ncv(αuv + βv))

− 2K · Re
(
ncv(αuv ⊗ uc + βv ⊗ uc + uv ⊗ βc + θcv)

)
,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ nvθv

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv

= −εK ·∇ Re (ncv (αuc + βc))

+ 2K · Re
(
ncv (αuc ⊗ uv + βc ⊗ uv + uc ⊗ βv + θvc)

)
,

ε∇σ − Jv

nv
+
Jc

nc
= − Im

{
1
α

(
ε∇α− βv − βc

)}
.

(84)
where the new quantities are defined by

α =
∞∑

k=0

λk n
k
cv

ncv
, βv =

∞∑
k=0

λk n
k
cv

ncv
(uk

v − uv), βc =
∞∑

k=0

λk n
k
cv

ncv
(uk

c − uc).

and, in the expression of the coupling terms between the two bands, there
appears a of temperature tensor, given by

θcv =
∞∑

k=0

λk n
k
cv

ncv
(uk

v − uv)⊗ (uk
c − uc),

θvc =
∞∑

k=0

λk n
k
cv

ncv
(uk

c − uc)⊗ (uk
v − uv).

Equations (84) can be considered as a nonzero-temperature quantum fluid
model. The quantities ncv, uc, and uv, already present in (82), are expressed
in terms of nc, nv, Jc, Jv, and σ, while the new quantities α, βc, and βv satisfy
the relation

Re
{

1
α

(
ε∇α− βv − βc

)}
= 0

and need appropriate closure relations. Moreover, we must assign constitutive
relations for the tensor components θc, θv, θcv and θvc; θc and θv are formally
analogous to the temperature tensor of kinetic theory.
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A simple class of closure conditions can be obtained by assigning a function
α = α(nc, nv, σ) and taking

βc = 2nc
∂ᾱ

∂nc
uos,c −

∂ᾱ

∂σ
uel,c, βv = 2nv

∂α

∂nv
uos,v +

∂α

∂σ
uel,v. (85)

Then, we have
ε∇α− βv − βc = 0,

which implies

ε∇σ − Jv

nv
+
Jc

nc
= 0.

In particular, it is possible to choose

α = 1, βc = βv = 0. (86)

We still need to consider the temperature tensors θc, θv, θcv and θvc. Heuris-
tically, following the analogy with the single-band fluid-dynamical model
[Jun01], the simplest closure relation is:

θc =
1
nc
pc(nc)I, θv =

1
nv
pv(nv)I, θcv = θvc = 0, (87)

where I is the identity tensor and the functions pc and pv can be interpreted
as pressures. In this way we obtain the simplest two-band, isentropic, fluid-
dynamical model:

∂nc

∂t
+ divJc = − 2K · Im (ncv uv),

∂nv

∂t
+ divJv = 2K · Im (ncv uc),

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ pc(nc)I

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇Vc

= εK ·∇ Re (ncvuv)− 2K · Re (ncvuv ⊗ uc) ,

∂Jv

∂t
+ div

(
Jv ⊗ Jv

nv
+ pv(nv)I

)
− nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇Vv

= −εK ·∇ Re (ncv uc) + 2K · Re (ncv uc ⊗ uv) ,

ε∇σ − Jv

nv
+
Jc

nc
= 0.

(88)

We remark that if the (classical) pressures are linear functions of nc and nv

equations (88) reduce to the so-called isothermal case.
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6.4 Hydrodynamic version of the M-M system

The method used in the previous section is suitable to be applied also to the
multiband envelope function model introduced by Modugno and Morandi in
[MM05] and described in Section 4.2. However, as we have remarked at the
end of Section 5.3, when mixed states become important (namely, for nonzero
temperature models), the M-M model has some undesirable features that make
the discussion more complicated, beyond the scope of the present review. For
this reason we shall restrict ourselves to the zero-temperature case.

By using dimensionless variables, the system (29) reads as follows:

iε
∂ψc

∂t
= −ε

2

2
∆ψc + (Ec + V )ψc − ε2 P ψv,

iε
∂ψv

∂t
=

ε2

2
∆ψv + (Ev + V )ψv − ε2 P ψc,

(89)

where P is the rescaled coupling interband coefficient and ε is the rescaled
Planck constant.

By using the Madelung form (67) for the wave functions, and proceed-
ing in the same way as for the Kane model in Section 6.2, we obtain the
hydrodynamic equations for the two-band M-M model

∂nc

∂t
+∇·Jc = −2P Im

(
εψcψv

)
,

∂nv

∂t
−∇·Jv = 2P Im

(
εψcψv

)
.

(90)

By summing the two equations in (90), we obtain the balance law for the total
density,

∂ρ

∂t
+∇·J = 0. (91)

where ρ = nc + nv is the total density and J = Jc − Jv is the total current.
We remark that, in contrast with the Kane model, interband current terms

do not appear in the conservation of the total density.
Next, the equations for the phases Sc, Sv, and the currents Jc and Jv are
derived. Referring the reader to the paper [AFM05] for the details, here we
only write the equations for the currents in the final form

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc(∇Ec +∇V )

= ε2∇P Re ncv + εP
√
nc
√
nv(cosσ(uos,v − uos,c)− sinσ(uel,c + uel,v)),
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∂Jv

∂t
− div

(
Jv ⊗ Jv

nv

)
+ nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv(∇Ev +∇V )

= ε2∇P Re ncv − εP
√
nc
√
nv(cosσ(uos,v − uos,c)− sinσ(uel,c + uel,v)).

(92)
Also in this case, we have introduced the internal self-consistent potentials
for each band (the Bohm potentials) and the osmotic velocities (uos,c, uos,v)
and current velocities (uel,c, uel,v); σ is again the phase difference defined by
σ = Sv−Sc

ε .
The systems (90) and (92) are not equivalent to the original system (89),

due to the presence of σ. By using the constraint (81), we finally obtain the
hydrodynamic system

∂nc

∂t
+ divJc = −2εP Imncv,

∂nv

∂t
− divJv = 2εP Imncv,

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc(∇Ec +∇V )

= ε2∇P Re ncv + εP Re (ncv(uv − uc)) ,

∂Jv

∂t
− div

(
Jv ⊗ Jv

nv

)
+ nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv(∇Ev +∇V )

= ε2∇P Re ncv − εP Re (ncv(uv − uc)) ,

ε∇σ =
Jv

nv
− Jc

nc
,

(93)

where ncv, uv, uv are expressed in the terms of the hydrodynamic quantities
nc, nv, Jc, Jv, σ. System (93) is the extension of the classical Madelung fluid
equations to a two-band quantum fluid.
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