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Positive spaces, generalized semi-densities,
and quantum interactions
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The basics of quantum particle physics on a curved Lorentzian background are
expressed in a formulation which has original aspects and exploits some non-
standard mathematical notions. In particular, positive spaces and generalized semi-
densities (in a distributional sense) are shown to link, in a natural way, discrete
multi-particle spaces to distributional bundles of quantum states. The treatment
of spinor and boson fields is partly original also from an algebraic point of view
and suggests a non-standard approach to quantum interactions. The case of elec-
troweak interactions provides examples. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3695348]

I. INTRODUCTION

Today, nearly everybody will agree that theoretical physics seems to need some deep rethinking
of the foundations. The lack of cogent, unambiguous experimental evidence has opened the way to
a plethora of theories and hypotheses, among which one is not yet able to make definite choices.

This paper stems from the somewhat “minimalistic” philosophy that meaningful insight could
be gained by careful reconsideration of basic notions which are often taken for granted, and by
some viewpoint shifting about them, rather than by generalizing and extending existing formalisms.
We focus our attention onto the core topic of quantum particle physics. On one hand, we try and
change our point of view about which concepts are to be seen as basic; we propose to replace
the “quantization procedure” scheme (a mirror of the historical path) with a more direct approach
founded on straightforward definitions of the two basic ingredients: free-particle states and one-
point interactions. We also attempt a clarification, in precise mathematical terms, of the relation
between the “discrete” and “continuous” descriptions and look for a consistent formalism in curved
spacetime. Furthermore, we use some non-standard mathematical ideas, though firmly established in
the literature for the most part: positive spaces, the geometry of distributional bundles of generalized
semi-densities, and a partly original approach to two-spinors and gauge fields which was discussed
in previous papers.1–4 We now briefly discuss these points.

A covariant formulation on curved spacetime, with assigned background metric, has not only the
purpose of examining the possible effects of gravitation on particle physics; even more importantly,
it constraints our langauge to be meaningful at a higher level. On the other hand, experimentally
well-grounded quantum theory is heavily dependent on the flat spacetime structure. Moreover, the
standard theory also uses a distinguished time; hence, it depends on the choice of an observer
(though, eventually, a kind of invariance can be recovered). In curved spacetime one has to give
up Fourier transforms and the induced relation between the “position space representation” and
the “momentum space representation” of a quantum state. In this paper’s approach, quantum states
are described as elements of distributional quantum bundles, defined as bundles of generalized
sections (in a distributional sense) of bundles over the bundle of momenta over spacetime; hence the
underlying finite-dimensional structure is that of a two-fibered bundle, so that, in a sense, we start
with “quantum states” which can be seen as labeled by momentum and spacetime point. However,
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elaborating on ideas presented in a previous paper,5 we show how parallel transport in quantum
bundles, along a world-line, determines a full momentum-space formalism “carried” by the detector
(i.e., a point observer) represented by the world-line. The local spacetime splitting associated with
the detector also determines, via exponentiation, a sort of position space representation (see the
remark at the end of Sec. IV D); in the flat case one essentially recovers the standard setting.

The debate about the discrete/continuous fundamental nature of the universe still continues
today (despite Niels Bohr’s belief he had settled the question once for all). It may be also worthwhile
to note that the way quantum field theory (QFT) is usually introduced, following the historical path,
draws on analogy with finite-dimensional linear algebra, despite the fact that some entities turn out to
be ill defined. Moreover, while one usually speaks of a “Hilbert space of states,” free-particle states
are actually “generalized states,” i.e., elements of a larger distributional space. These considerations
suggested an approach, offered as a provisional step towards further clarification of these matters,
in which the “abstract” space of free-particle states, each one constituted of a finite but arbitrary
large number of particles, can be identified with a space of finite linear combinations of delta-type
semi-densities; the identification needs the spacetime volume form. This space is dense in a larger
“rigged Hilbert space” which is needed in order to do calculations.

Quantum interactions, too, can be introduced in terms of generalized semi-densities. We bypass
the usual quantization procedures and give a direct definition of the interaction among quantum states,
which is essentially determined by the underlying “classical” (i.e., finite-dimensional) geometric
structures, without having to deal with the classical fields and Lagrangians. This approach, of
course, also bears on the way we look at gauge fields. A classical gauge field is a connection, and
its quantization requires the choice of a gauge. Furthermore, virtual gauge particle states have more
“degrees of freedom” than free states. Accordingly, we propose to look at quantum gauge particles
and classical gauge fields as separated entities to begin with; their precise relation must be the object
of further study, but the general idea is that it should fall into the “matter defines the geometry”
philosophy. If we accept this approach then all gauge field states can be shown to arise from a rather
simple recipe.

We now sketch the roles of the non-standard mathematical notions employed.

• Positive spaces play a role in various places. In addition to allowing a mathematically precise
treatment of physical scales, they constitute a necessary ingredient in discussing the link be-
tween the formalism of finite-dimensional linear algebra and the needed extension to functional
multi-particle spaces, and in understanding the detailed structure of the quantum interaction.
Furthermore, a distinguished positive space is shown to arise in the context of spinor geometry
(and is naturally interpreted as the space of lengths).

• The basics of the geometry of distributional bundles were studied in previous papers.6 In
particular, the notion of a bundle of generalized semi-densities turns out to be a natural
extension of the notion of rigged Hilbert space found in the literature.7 We introduce quantum
bundles (used in the description of quantum states and quantum interactions) as distributional
bundles constructed from an underlying two-fibered classical structure.

• Various aspects of two-spinor geometry bear on the way fermion and boson fields are treated,
both from an algebraic point of view (“internal” particle structure) and with regard to the
construction of the appropriate quantum bundles. A discussion of electroweak geometry in this
context, improving and extending previous work,4 is used in the examples of Sec. V. All boson
fields, including the Higgs field, derive from a unique general construction.

Some readers will notice a further difference in language between this presentation and more
usual ones: we hardly make any reference to symmetry groups. Of course these are implicit in the
underlying classical geometric structures, but explicitly using them is not essential at this level.

The attitude of looking directly to free-particle states and one-point interactions is consistent with
a view of particle physics which can be roughly sketched as follows (e.g., see Veltman8). Let Q be
a complex vector space, whose elements represent the states of quantum systems containing certain
particle types. A time-dependent vector ψ : T → Q is called a quantum history if its evolution is
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governed by the law

ψ(t) = Ut0 (t) ψ(t0),

where t0 ∈ T is an arbitrarily chosen “initial” time and

Ut0 : T → End(Q)

is a time-dependent endomorphism; on turn, Ut0 is determined by the differential equation

d

dt
Ut0 (t) = −i H(t) ◦Ut0 (t), H : T → End(Q), Ut0 (t0) = 1Q.

Here, H is a time-dependent endomorphism which is dictated, in an essentially elementary way, by
the underlying “classical structure,” namely, by the geometry of certain finite-dimensional vector
spaces and manifolds. The problem of determining U is on a different footing: the above differential
equation has the formal solution

Ut0 (t) := 11+
∞∑

N=1

(−i)N

N !

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtN ��H(t1) H(t2) . . . H(tN )��,

where ��H(t1) H(t2) . . . H(tN )�� stands for the time-ordered product of the N endomorphisms
H(t1), . . . ,H(tN ). The basic object of research is rather the scattering operator

S := lim
t→+∞
t0→−∞

Ut0 (t) =
∞∑

N=0

SN ,

which, intuitively, relates asymptotical states of “incoming” and “outgoing” free particles interacting
in a small spacetime region (if Q is endowed with a Hermitian scalar product, and ψ in, ψ out ∈ Q
represent states of incoming and outgoing particles, then the “scattering matrix element” 〈ψ out, Sψ in〉
is directly related to measurable physical quantities).

However, a formalism based on these ideas may not yield finite results even if Q is finite-
dimensional (integrals may diverge). In the infinite-dimensional case there is a further complication:
the composition H(t1) H(t2) . . . might be not defined at all. Thus one has to conclude that the theory
is ill defined, though suitable procedures for extracting its physical content can be eventually devised.
The role of time, which must be associated with a chosen observer of some kind, is also somewhat
unsatisfactory from the point of view of the general relativist. Up to now, no definitive answer to
these fundamental issues has been found. Accepting that, we just attempt a clarification of some of
the fundamental notions as a provisional step.

II. POSITIVE SPACES AND PHYSICAL SCALES

An algebraically precise treatment of physical scales was introduced around 1995 after an idea
of M. Modugno, and has been used, since then, in papers of various authors.9–15 In particular, this
approach has been systematically exploited in the context of the “covariant quantum mechanics”
program (somewhat affine to geometric quantization but with clear-cut differences). Though physical
scales (or “dimensions”) are usually dealt with in an “informal” way, without a precise mathematical
setting, a more formal approach has various advantages in clarifying the geometric background of
a theory, and has even found to have heuristic value (see Sec. 1 of Ref. 16 for a more detailed
discussion).

The basic notion is that of a positive space (or scale space, or unit space), namely, a one-
dimensional “semi-vector space” without the zero element. The notion of a scale space arises quite
naturally from simple arguments. The distance of two points in Euclidean space, for example, can
be expressed as a real number only if a length unit has been fixed. On the other hand, the product
of a non-zero distance by a positive number is again a well-defined non-zero distance, namely, the
set L of lengths is naturally endowed with a left action R+ × L→ L; this turns out to be free and
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transitive, and so it determines an algebraic structure of semi-vector space over R+ (note that L has
no naturally distinguished element).

A rigorous study of the tensor algebra of positive spaces turns out to be more delicate than
one expects at first sight (for a complete treatment see the recent paper by Janiška, Modugno and
Vitolo16). Here, we will just sketch the basic notions, needed for “everyday use.”

A. Positive spaces

A semi-vector space is defined to be a set A equipped with an addition map A× A → A
and a multiplication map R+ × A → A, fulfilling the usual axioms of vector spaces except those
properties which involve opposites and the zero element. Then, in particular, any vector space is a
semi-vector space, and the set of linear combinations over R+ of n independent vectors in a vector
space is a semi-vector space.

If A and B are semi-vector spaces, the notion of a semi-linear map f : A → B is defined in an
obvious way; then we have the new semi-vector space sLin(A, B) of all semi-linear maps A → B.
In particular, the semi-dual space (or simply the “dual space”) of a semi-vector space A is defined
to be the semi-vector space A∗ := sLin(A,R+).

A semi-vector space U is called a positive space if the multiplication R+ ×U → U is a
transitive left action of the group (R+, · ) on U (then a positive space cannot have a zero element).
If b ∈ U , then any other element u ∈ U can be written as u0 b with u0 ∈ R+. Quite naturally we
can write u0 ≡ u/b, that is u = (u/b) b, (u/b) ∈ R+. So we might also say that a positive space
is a “one-dimensional” semi-vector space. Actually, the map u 
→ u/b turns out to be a semi-linear
isomorphism. This fact and the cancellation law for R+ imply the cancellation law for U , i.e.,
u + w = v + w⇒ u = v (u, v, w ∈ U ).

If U and V are positive spaces, then the semi-vector space sLin(U ,V ) turns out to be a positive
space. In particular, we have the positive spaces U∗ := sLin(U ,R+) and sLin(U ,U ). The latter is
naturally isomorphic to R+, since any semi-linear map f : U → U is of the type f: u 
→ r u with
r ∈ R+.

B. Tensor products of positive spaces

With regard to basic notions, the algebra of positive spaces is nearly a straightforward rephrasing
of vector space algebra. Tensor products require some care.

We denote by U , V , and W arbitrary positive spaces, and by V and W arbitrary real vector
spaces of finite dimension. A map U × V → W which is semi-linear with respect to the first factor
and linear with respect to the second factor is called sesqui-linear.

A (left) sesqui-tensor product of a positive space U and a vector space V is defined to be
a vector space U ⊗ V along with a sesqui-linear map U × V → U ⊗ V fulfilling the following
universal property: if f : U × V → W is a sesqui-linear map, then there is a unique linear map
f̃ : U ⊗ V → W such that f = f̃ ◦⊗. It can be proved16 that the sesqui-tensor product indeed
exists, is unique up to a distinguished linear isomorphism and is linearly generated by the image of
the map ⊗ : U × V → U ⊗ V .

If {bi } ⊂ V , i = 1, . . . , dim V is a basis of V , and if b ∈ U , then it is not difficult to prove that
{b⊗ bi } is a basis of U ⊗ V . Thus dim(U ⊗ V ) = dim V . Moreover, the right semi-tensor product
V ⊗U can be defined similarly, and turns out to be naturally isomorphic to U ⊗ V ; thus, we identify
v⊗ u ∈ V ⊗U with u ⊗ v, getting the “numberlike” behavior of elements in positive spaces.

A particular case is that of the universal vector extension R⊗U of U , which turns out to be
the disjoint union R⊗U = U− ∪ {0} ∪U+, where U+ := {1⊗ u : u ∈ U} and U− := {(−1)⊗ u :
u ∈ U} are positive spaces. By virtue of the universal property one also proves the following:

• Every semi-linear map U → W can be uniquely extended to a linear map R⊗U → W ;
• there is a natural isomorphism R⊗ (U∗) ↔ (R⊗U )∗;
• there is a natural isomorphism U ⊗ V ↔ (R⊗U )⊗ V .

A semi-tensor product of positive spaces U and V is a positive space U ⊗V along with a semi-
bilinear map ⊗ : U × V → U ⊗V fulfilling the following universal property: if W is a positive
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space and f : U × V → U ⊗V is a semi-bilinear map, then there exists a unique semi-linear map
f̃ : U ⊗V →W such that f = f̃ ◦⊗.

While the uniqueness of the semi-tensor product is easily established by a standard procedure,
proving its existence is a more intricate task,16 which involves the universal vector extensions of U
and V . Eventually everything works fine, and one has natural semi-linear isomorphisms

R+ ⊗U ∼= U ⊗R+ ∼= U , R⊗ (U ⊗V ) ∼= (R⊗U )⊗ (R⊗V ),

V ⊗U∗ ∼= sLin(U ,V ), Tr : U ⊗U∗ → R+.

The semi-tensor product can be easily generalized to any number of factors and turns out to be
associative. In particular, for any n ∈ N we consider the nth semi-tensor power

⊗nU := U ⊗ . . . ⊗U︸ ︷︷ ︸
n times

, ⊗0U := R+, ⊗1U := U ,

so that we obtain a “semi-tensor algebra” ⊕n∈N⊗nU . Usually, it will be convenient to adopt a
“numberlike” notation: we write uv ≡ u ⊗ v if either u or v (or both) is an element in a positive
space. If u ∈ U , then the unique u−1 ∈ U∗ such that 〈u− 1, u〉 = 1, namely, the dual element of u,
is also called the inverse of u.

C. Rational powers of positive spaces

We say that a function f : U → R+ is of degree α ∈ R if

f (r u) = rα f (u) ∀ r ∈ R+, u ∈ U .

The set Fα(U ) of all such functions turns out to be a positive space. Note that each element in Fα(U )
is determined by the value it takes on any fixed element in U . Conversely, each u ∈ U determines a
distinguished element fu ∈ Fα(U ) by the rule fu(u) = 1.

In particular, F0(U ) ∼= R+ and F1(U ) ∼= U∗. If n ∈ N, then Fn(U ) ∼= ⊗nU∗. A natural semi-
linear isomorphism F−1(U ) ∼= U∗∗ ∼= U is determined by the identification of f ∈ F−1(U ) with
u− 1, where u ∈ U is characterized by f(u)= 1. More generally, F−α(U ) ∼= Fα(U∗). We will use the
convenient shorthand

Uα ≡ F−α(U ).

If u ∈ U , then uα is defined to be the unique element in Uα such that uα(u− 1) = 1.
Essentially, we are interested in the case when α is rational. The reason is that if n ∈ N, then

we have a natural semi-linear isomorphism

(U1/n)n ≡ U1/n ⊗ . . . ⊗U1/n︸ ︷︷ ︸
n factors

↔ U : u1/n ⊗ . . . ⊗ u1/n ↔ u.

Then we are led to regard the positive space U1/n ≡ F1/n(U∗) as the n-root of U . We find that
rational powers of positive spaces behave quite naturally, since for any p, q ∈ Q, one has

(Uq )p ∼= U p q , U p ⊗Uq ∼= U p+q .

In particular, (Uq )∗ ∼= (U∗)q .

D. Physical scales

In many physical theories it is convenient to take the following positive spaces as basic spaces
of scales: the space T of time scales, the space L of length scales, the space M of mass scales. An
arbitrary scale space is then a positive space of the type

S ≡ S[d1, d2, d3] := T d1 ⊗Ld2 ⊗Md3 , di ∈ Q.

An element s ∈ S is also called a scale (or possibly a unit of measurement). A variable scale is an
S-valued map.
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A “scaled” version of a vector bundle E � M is a fibered tensor product S⊗ E � M. Fibered
operations on E translate to scaled operations so, for example, if F � M is another bundle over
the same base manifold and D : sec(M, E) → sec(M, F) is a linear differential operator, then one
has the linear differential operator (denoted by the same symbol)

D : sec(M,S⊗ E) → sec(M,S⊗ F) : σ 
→ Dσ := s⊗D(s−1|σ ),

which is clearly independent of the choice of s ∈ S. If α : M → S⊗∧pT∗M is a p-form (p ∈ N)
on a manifold M, then one gets the “scaled exterior differential” dα : M → S⊗∧p+1T∗M; if v is
a vector field on M, then one gets the “scaled Lie derivative” L[v]α : M → S⊗∧pT∗M. A linear
connection � of E � M determines a linear connection of S⊗ E � M : the covariant derivative
of a section σ : M → S⊗ E is a section ∇σ : M → S⊗T∗M ⊗ E; note that the coefficients of �

in a frame
(
θi

)
of E coincide with the coefficients of the induced connection in the frame

(
s⊗ θi

)
,

where s ∈ S is any constant scale. Two sections σ : M → E and σ ′ : M → S⊗ E of differently
scaled vector bundles can be compared if we avail of a scale factor s : M → S, called a coupling
scale, or possibly a coupling constant.

The commonest coupling constants are the speed of light c ∈ T−1⊗L; Planck’s constant
� ∈ T−1⊗L2⊗M; Newton’s gravitational constant G ∈ T−2⊗L3⊗M−1; the positron charge
e ∈ T−1⊗L3/2⊗M1/2; a particle’s mass m ∈M. Note that c determines an isomorphism T ∼= L,
and together with � also an isomorphism M ∼= L−1. Actually in QFT, one usually expresses all
physical dimensions as powers of just one scale (namely, the setting c = � = 1).

The metric, either Euclidean or Lorentz-type, is appropriately described as a scaled tensor field.
Focusing our attention on the spacetime (M, g) of general relativity, the metric is a section

g : M → L2⊗T∗M ⊗T∗M,

so that the scalar product of vectors is valued into R⊗L2 ≡ R⊗L⊗L. On the other hand, g can
be seen as an R-valued Lorentz metric on the fibers of the bundle

H ≡ L−1⊗TM ≡ L∗ ⊗TM −→ M.

Conversely, we write TM ≡ L⊗ H . We also get

∧4TM ∼= L4⊗∧4 H, ∧4T∗M ∼= L−4⊗∧4 H∗.

If X is an oriented n-dimensional manifold, then we write V X ≡ (∧n X)+, so that V−1 X � X
is the bundle of all positive volume forms on X . In the case of spacetime, the metric determines a
unique positive scaled normalized volume form

η : M → ∧4 H∗ ≡ L4⊗V−1 M.

Remark: In Einstein spacetime, let T ⊂ M be the world-line of a classical particle. Then the
particle’s velocity is the tangent map T T → TM of the inclusion. The good clock hypothesis
implies T T ∼= T × T , a trivial bundle, so that the velocity can be seen as a map T → T−1⊗TM.
Multiplying by the particle’s mass we obtain 4-momentum T →M⊗T−1⊗TM. Since the Lorentz
metric is L2-scaled, the covariant form of 4-momentum is valued in

P ∼=M⊗L2⊗T−1⊗T∗M.

The speed of light and the Planck constant jointly yield semi-linear isomorphisms T ∼= L and
M ∼= L−1, hence we write P ∼= T∗M.

III. CLASSICAL GEOMETRY

By a “classical” manifold I mean a finite-dimensional Hausdorff manifold. More generally, the
“classical geometry” underlying a quantum theory is constituted by the finite-dimensional geometric
structures (manifolds, bundles) needed for the corresponding classical field theory.
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A. Two-spinors basics

In previous papers,1–3 I discussed a partly original approach to 2-spinors, which turns out to
be convenient for an integrated approach to Einstein-Cartan-Maxwell-Dirac fields starting from
minimal geometric assumptions. More recently,4 I also discussed the extension of that setting to
more general gauge field theories. This section contains a summary of some results to be used later.
We first state some purely algebraic results about certain complex vector spaces. Then we will deal
with vector bundles having fiber structures of the considered types; by abuse of language, these
bundles will be denoted with the same symbol as the corresponding spaces.

First, we recall that if V is a complex vector space, then Hermitian transposition is a natural anti-
linear involution of V ⊗ V (where V denotes the conjugate space). Thus one has the decomposition
into the direct sum of the real eigenspaces of the involution corresponding to eigenvalues ± 1,
namely,

V ⊗ V = H(V ⊗ V )⊕ i H(V ⊗ V ).

Starting from a two-dimensional complex vector space S, with no further assumption, the above
basic construction gives rise to a rich algebraic structure:

• The Hermitian subspace of ∧2 S⊗∧2 S is a real one-dimensional vector space with a dis-
tinguished orientation; its positively oriented semispace L2 (whose elements are of the type
w⊗ w̄, w ∈ ∧2 S) has the square root semispace L, which can be identified with the space of
length units.

• The 2-spinor space is defined to be U := L−1/2⊗ S. The space ∧2U is naturally endowed with
a Hermitian metric, namely, the identity element in

H[(∧2U�)⊗ (∧2U�)] ∼= L2⊗H[(∧2 S�)⊗ (∧2 S�)],

so that normalized “symplectic forms” ε ∈ ∧2U� constitute a U(1)-space (any two of them are
related by a phase factor). Each ε yields the isomorphism ε	 : U → U� : u 
→ u	 := ε(u, ).

• The identity element in H[(∧2U�)⊗ (∧2U�)] can be written as ε⊗ ε̄ where ε ∈ ∧2U� is any
normalized element. This natural object can also be seen as a bilinear form g on U ⊗U , via
the rule g(u⊗ v̄, r ⊗ s̄) = ε(u, r ) ε̄(v̄, s̄) extended by linearity. Its restriction to the Hermitian
subspace H ≡ H(U ⊗U) turns out to be a Lorentz metric. Null elements in H are of the form
±u⊗ ū with u ∈ U (thus there is a distinguished time-orientation in H).

• Let W ≡ U ⊕ U�. The linear map γ : U ⊗U → End(W ) : y 
→ γ (y) acting as

γ (r ⊗ s̄)(u, χ ) =
√

2
(〈χ, s̄〉 p, 〈r 	, u〉 s̄	

)
is well-defined independently of the choice of the normalized ε ∈ ∧2U� yielding the iso-
morphism ε	. Its restriction to H turns out to be a Clifford map. Thus one is led to regard
W ≡ U ⊕ U� as the space of Dirac spinors, decomposed into its Weyl subspaces. The anti-
isomorphism W → W � : (u, χ ) 
→ (χ̄ , ū) is the usual Dirac adjunction (ψ 
→ ψ̄ in traditional
notation), associated with a Hermitian product k having the signature ( + , + , − , − ).

An arbitrary basis (ξA) of S, A=1,2, determines bases of the various associated spaces, in particular
the bases l ∈ L (a length unit),

(
ζA

) ≡ (
l−1/2 ξA

) ⊂ U , ε ∈ ∧2U�. We have ε = εAB ζ A ∧ ζ B , where(
ζ A

) ⊂ U� is the dual basis of
(
ζA

)
and

(
εAB

)
denotes the antisymmetric Ricci matrix. As for the

basis of H ≡ H(U ⊗U) associated with (ζA) one usually considers the Pauli basis
(
τλ

)
, given by

τλ ≡ 1√
2 σ AA.

λ ζA ⊗ ζ̄A. where (σ AA.

λ ), λ= 0, 1, 2, 3, denotes the λth Pauli matrix (dotted indices refer
to components in conjugate spaces). This basis is readily seen to be g-orthonormal. The associated
Weyl basis of W is defined to be the basis (ζ α), α = 1, 2, 3, 4, given by

(ζ1, ζ2, ζ3, ζ4) := (ζ1, ζ2,−ζ̄ 1,−ζ̄ 2),

where ζ 1 is a simplified notation for (ζ 1 , 0), and the like.

Remark: In contrast to the usual 2-spinor formalism, no symplectic form is fixed. The 2-form
ε is unique up to a phase factor which depends on the chosen 2-spinor basis, and determines
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isomorphisms ε	 : U → U� and ε# : U� → U . Also note that no Hermitian form on S or U is
assigned; actually, because of the Lorentz structure of H , the choice of such an object turns out to
be equivalent to the choice of an “observer”.

We now consider a complex vector bundle S � M with two-dimensional fibers. By performing
the above sketched constructions fiberwise we obtain various vector bundles, which are denoted, for
simplicity, by the corresponding symbols. We observe that some appropriate topological restrictions
are implicit in what follows; we will assume the needed hypotheses to hold without further comment.

A linear connection ⨏� on S determines linear connections on the associated bundles, and, in
particular, connections G of L, Y of ∧2U and �̃ of H ; on turn, it can be expressed in terms of these
as

⨏� A
a B = (Ga + i Ya)δA

B + 1
2 �̃ AA.

a B A· .

If M is four-dimensional, then a tetrad is defined to be a linear morphism � : TM → L⊗ H .
An invertible tetrad determines, by pull-back, a Lorentz metric on M and a metric connection of
TM � M, as well as a Dirac morphism TM → L⊗EndW .

A non-singular field theory in the above geometric environment can be naturally formulated1

even if � is not required to be invertible everywhere. If the invertibility requirement is satisfied, then
one gets essentially the standard Einstein-Cartan-Maxwell-Dirac theory, but with some redefinition
of the fundamental fields: these are now the 2-spinor connection ⨏�, the tetrad �, the Maxwell field
F, and the Dirac field ψ : M → L−3/2⊗W . Gravitation is represented by � and �̃ together. G
is assumed to have vanishing curvature, dG = 0, so that we can find local charts such that Ga

= 0; this amounts to “gauging away” the conformal “dilaton” symmetry. Coupling constants arise as
covariantly constants sections of Lr (r rational). One then writes a natural Lagrangian which yields
all the field equations: the Einstein equation and the equation for torsion; the equation F= 2 dY (thus
Y is essentially the electromagnetic potential) and the other Maxwell equation; the Dirac equation.2

B. Fermi transport of spinors

The usual Fermi transport of spacetime tensors along a timelike one-dimensional submanifold
T ⊂ M can be naturally (though somewhat not uniquely) extended to spinors.17 We sketch the basic
result, because it enters our definition of free-particle states.

Let HT � T denote the restriction of H to the base T . We obtain a distinguished section
� : T → T∗T ⊗∧2 HT by the rule

v�� = 2 (∇vτ )∧ τ, v ∈ T T ,

where τ : T → L−1⊗TT ⊂ L−1⊗TM is the unit future-oriented (scaled) tangent vector field of
T . By lowering the second index in � through the Lorentz metric we then get a section �	 : T →
T∗T ⊗ HT ⊗ H∗

T . Covariant derivation along T determines a connection �T of HT � T , which can
be modified as �F := �T +�	; this provides the standard Fermi transport. By taking half the trace of
�	 with respect to conjugate 2-spinor indices we obtain a section φ : T → T∗T ⊗UT ⊗U�

T , where
UT � T denotes the base T restricted bundle U .

Using base coordinates (xa) ≡ (x1, x2, x3, x4) such that ∂x4 ≡ ∂/∂x4 is tangent to T , and a Pauli
frame (τλ) of HT such that τ 0 ≡ τ , we have the coordinate expressions

� λ
4 μ ≡ (�	) λ

4 μ = −�̃ λ
4 μ, φ A

4 B = 1
2 � AA.

4 B A. = 1
2 �̃

0 j
4 σ

A

j B

(hence � 0
4 0 = �

j
4 j = � λ

4 λ = 0 and φ A
4 A
= 0). Let now ⨏�T be the connection of UT � T determined

by ⨏�; the sum

⨏�F := ⨏�T + φ

is a new connection on the same bundle, which we call the spinor Fermi connection. It turns out that
the induced connection ⨏�F⊗ ⨏̄�F of HT � T coincides with the Fermi connection �F; moreover, any
other linear connection ⨏�′F of UT � T yielding �F differs from ⨏�F by a term of the type i α⊗ 1 with
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α : T → T∗T , namely,

(⨏�′F ) A
4 B = (⨏�F)

A
4 B + i α4 δA

B.

So we get a family of connections of the restricted bundle UT � T . Each element of the family
yields the standard Fermi transport of vectors, and is characterized by the arbitrary choice of an
imaginary function on T . Since ⨏�F (α = 0) is a distinguished element of the family, we see it as the
natural generalization of Fermi transport to 2-spinors.

C. Electromagnetic interaction at finite-dimensional algebraic level

In order to deal with quantum particles we will see the gravitational field as a fixed background
structure; this means that the tetrad � and the gravitational part of the spin connection are fixed (rather
than “field variables”). If no confusion arises, by using � we make the identification TM ∼= L⊗ H ,
and view 1-forms of M as scaled sections M → L−1⊗ H∗.

The classical interaction between the Dirac field and the e.m. potential can be deduced (following
the usual procedure) from the Dirac Lagrangian (a density constructed through certain contractions
of ψ̄ ⊗∇ψ) by extracting the relevant term after writing Y = e A, where A is a true 1-form, via
the choice of an e.m. gauge. Somewhat differently we can see the classical interaction as directly
deriving from the underlying geometric structure, namely, as the natural contraction

�int : W ⊗ H ⊗W → C : (φ̄, A, ψ) 
→ −e 〈φ̄, γ [A]ψ〉.
We can also see �int as a tensor field M → W �⊗ H∗ ⊗W �. From this, using the algebraic structures
of the fibers of the involved bundles, we can obtain eight tensor fields of different index types; these
correspond to different combinations of particle absorption and creation, respectively, represented
by covariant and contravariant indices.

In order to see how all this works precisely in the context of Dirac electrodynamics, one has to
introduce a few further notions. Let Pm ⊂ T∗M the subbundle over M whose fibers are the future
hyperboloids (“mass-shells”) corresponding to mass m ∈ {0} ∪ L−1. If p ∈ (Pm)x , x ∈ M, then we
have the Dirac splitting

Wx = W+
p ⊕ W−

p , W±
p := Ker(γ [p#]∓ m),

where p# ≡ g#(p) ∈ L−2⊗TM is the contravariant form of p. Thus we obtain two-fibered bundles
W±

m � Pm � M, where

W±
m :=

⊔
p∈Pm

W±
p ⊂ Pm ×

M
W .

We call W+
m and W−

m the electron bundle and the positron bundle, respectively. If
(
ζA(p)

)
is a

2-spinor frame such that p# ∝ τ0 in the associated Pauli frame, then the Dirac frame
(
uA(p), vB(p)

)
is k-orthonormal and adapted to the Dirac splitting; it is defined to be

u1 ≡ 1√
2 (ζ1, ζ̄

1), u2 ≡ 1√
2 (ζ2, ζ̄

2), v1 ≡ 1√
2 (ζ1,−ζ̄ 1), v2 ≡ 1√

2 (ζ2,−ζ̄ 2).

The special algebraic structure of W yields a natural restriction of �int, namely,

�′int : M → (W−
m ⊗ H ⊗W+

m )�.

Since (W+
m )� ∼= W+

m and (W−
m )� ∼= W−

m by virtue of Dirac adjunction, other fermion factors in
W �⊗ H∗ ⊗W � are seen as contravariant, and as such correspond to particle creation. The antici-
pated eight tensor fields obtained from �int then derive from the expansion of

�int : M →
(

W+
m ⊕ (W

−
m )�

)
⊗

(
H ⊕ H∗

)
⊗

(
(W+

m )� ⊕ W
−

m

) ∼= W ⊗
(

H ⊕ H∗
)
⊗ W ,

where direct sums and tensor products are fibered over the appropriate momentum bundles. If α

∈ H∗, then �int(φ̄, α, ψ) = �int(φ̄, α#, ψ), with α# ≡ g#(α) ∈ H . The extension of �int to complexified
e.m. vector fields α : M → C⊗ H is straightforward. The ordering is inessential, so one recovers
the possible point interactions, represented in a Feynman diagram as shown in Fig. 1. Wavy lines,
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FIG. 1. Point interactions of electrodynamics.

upward arrows, and downward arrows, respectively, represent photons, electrons, and positrons.
Time is flowing upwards, ingoing lines correspond to covariant factors (starred spaces) that is to
particle absorption, outgoing lines correspond to contravariant factors that is to particle creation. As
for the expression of �int in a Dirac frame, a dotted index always corresponds to a positron and a plain
index always corresponds to an electron (low and high indices correspond to ingoing and outgoing
particles, respectively).

Remark: We do not consider different interactions generated by moving indices through some
positive Hermitian metric h in the fibers of W or U . There is actually no need to include any such
structure in the fundamental assumptions; though this is actually considered in standard presentations
(and usually indicated as ψ 
→ψ†), it can be shown18,1, 3 that its assignment is equivalent to the
assignment of an observer.

In order to look at e.m. interaction from the point of view of 2-spinors, let

β ∈ C⊗ H ≡ U ⊗U, φ, ψ ∈ U ⊕ U� ≡ W ,

with φ ≡ (s, σ ) and ψ ≡ (u, χ ). Then

�int(φ̄, β, ψ) ≡ −
√

2 e
(〈β, σ̄ ⊗χ〉 + 〈β	, u⊗ s̄〉) = −√2 e

(
β AA.

σ̄A χA. + βAA. u A s̄ A. )
,

which is the sum of two interactions: one interaction is the absorption of a photon and two left-
handed fermions, the other is the absorption of a photon and two right-handed fermions. Note that,
since left-handed fermions are valued either in U� or in U�, index positions in �int relatively to
these particles are actually inverted with respect to the basic prescriptions of the general formalism.
Similarly, the absorption of a photon and of an electron and the creation of an electron is represented
by

�int�(β⊗ψ) = −
√

2 e
(
β�χ, u�β	

) = −√2 e
(
β AA.

χA. ζA, βAA. u A ζ̄ A. )
,

which again can be seen as the sum of two interactions: the absorption of a photon and a left-
handed fermion with the creation of a right-handed fermion, and the absorption of a photon and a
right-handed fermion with the creation of a left-handed fermion.

D. Boson and gauge fields

We deal with linear connections of a vector bundle E � M. A gauge is essentially a local
connection γ 0 with vanishing curvature tensor (a “flat” connection). Then an arbitrary connec-
tion γ is characterized locally by the difference α ≡ γ − γ0 : M → T∗M ⊗ E⊗ E∗, a true tensor
field. Conversely, the field α together with the choice of a gauge γ 0 determines the connection
γ = γ 0 + α. The need for a gauge choice derives from the fact that certain classical fields are
described as connections, while the description of the corresponding quantum particles requires
sections of vector bundles.

Let us focus on a “pre-quantum” treatment of gauge fields as tensor fields, based on the
assumption that fermion fields are described as sections of a bundle Y � M, where

Y ≡ YR ⊕ YL ≡ (FR⊗U)⊕ (FL⊗U�),

and where FR � M and FL � M are complex vector bundles (describing the internal fermion
structure besides spin) endowed with fibered Hermitian structures. In a previous paper,4 I proposed
to describe the fundamental boson fields in terms of sections of the vector bundles arising from
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expanding Y ⊗Y , namely,

Y ⊗Y ∼= (YR⊗YR)⊕ (YL⊗YL)⊕ (YR⊗YL)⊕ (YL⊗YR) ∼=

∼= (FR⊗ FR⊗U ⊗U)⊕ (FL⊗ FL⊗U�⊗U�)⊕

⊕ (FR⊗ FL⊗U ⊗U�)⊕ (FL⊗ FR⊗U�⊗U).

Because of the algebraic structure of the fibers, one gets various contractions among fermion and
bosons. We suppose that these contractions are related to the possible particle interactions (roughly
analogue to “chemical bonds”). In Sec. V, in particular, we will recover the interactions of the
electroweak theory.

Next, we observe that the Hermitian structures of FR and FL determine fibered isomorphisms
FR
∼= F�

R and FL
∼= F�

L ; one also has (Sec. III A) U ⊗U ∼= C⊗ H and U�⊗U� ∼= C⊗ H∗.
Furthermore, the Lorentz metric yields the isomorphism H ↔ H∗, and the tetrad � yields the
scaled isomorhism H∗ ↔ L⊗T∗M. Hence, after rearranging the order of tensor factors, sections
M → L−1⊗YR⊗YR and M → L−1⊗YL⊗YL can be seen as fields M → T∗M ⊗ FR⊗ F�

R and
M → T∗M ⊗ FL⊗ F�

L , respectively, and are obvious candidates for the role of gauge fields.
The case of sections M → YR⊗YL and M → YL⊗YR is somewhat different. Among all these

one can consider, in particular, those sections which are proportional to the identity of U or U ; the
Higgs field of the electroweak theory can be seen to arise exactly in this way (Sec. V A). On the other
hand, one could be lead to consider a larger class of fields in this sector, not obeying the condition
of proportionality to the identity.

The question of which kinds of particles and interactions one ought eventually consider is rather
complex, and interwoven with the issue of constraints and the degrees of freedom of the gauge fields.
These will not be discussed here. We note that eventually, in general, one has to deal with many
more particle types than would be implied by a naı̈f application of “quantization rules” based on the
underlying classical-field structure (in which the gauge fields are derived from a connection).

Hence the presented approach must be completed by further study concerning symmetries and
constraints. We hope that this may shed some light on the relation between connections (i.e., classical
gauge fields) and quantum gauge particles.

IV. MULTI-PARTICLE SPACES, QUANTUM BUNDLES, AND INTERACTIONS

A. Discrete multi-particle spaces

Let X be any set, and consider the complex vector space freely generated by X , namely, the
space F (X) of all finite formal linear combinations of elements in X . We write

F (X) ≡
{
φ =

∑
x∈Xφ

φ(x) |x〉
}
, φ(x) ∈ C, X ⊃ Xφ finite,

namely, x ∈ X is written as |x〉 when seen as an element in F (X).
The dual space F �(X) ≡ [F (X)]� is the complex vector space F (X) of all functions X → C,

which we formally write as infinite sums

F �(X) =
{
θ =

∑
x∈X

θ (x) 〈x |
}
, θ (x) ∈ C, 〈x |x ′〉 = δ(x, x ′),

where δ(x, x′) is the ordinary Kronecker delta. When θ ∈ F �(X) is applied to φ ∈ F (X), one gets
the finite sum

〈θ, φ〉 =
∑
x∈X

x ′∈Xφ

θ (x) φ(x ′) 〈x |x ′〉 =
∑
x∈Xφ

θ (x) φ(x).
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Also note that there is a natural antilinear inclusion F (X) ↪→ F �(X), given by

φ =
∑
x∈Xφ

φ(x) |x〉 
−→ φ† =
∑
x∈Xφ

φ̄(x) 〈x |;

this is obviously associated with a Hermitian scalar product in F (X).
Let now Z be a finite-dimensional complex vector space and set

Z1 := F (X)⊗ Z, Z�1 := F �(X)⊗ Z,

namely, Z �1 is the vector space of all maps X → Z, while Z1 is its subspace of all such maps which
vanish outside a set of finite cardinality. Next, for n ∈ N we consider the n-particles space

Zn := nZ1 ≡
{∨nZ1 (bosons),

∧nZ1 (fermions),

where the shorthand is used, whenever the involved expressions are formally identical, to denote
either the symmetrised or the antisymmetrized tensor product. Moreover, we consider its extension

Z�n ⊂ F (Xn)⊗ n Z

defined to be the vector space of all maps X×X×···×X ≡ Xn → n Z which are either symmetric
or anti-symmetric in their arguments. Finally, we introduce the multi-particle spaces

Z :=
∞⊕

n=0

Zn, Z� :=
∞⊕

n=0

Z�n.

These are defined by analogy with the usual Fock spaces (we take no completion, namely, we
consider states constituted by a finite, arbitrarily large number of particles).

All the above constructions can be repeated with the same “source” set X and with the “target”
space Z replaced by either the dual space Z�, or the anti-dual space Z� ∼= Z� or the conjugate
space Z ∼= Z��. We obtain the multi-particle spaces indicated as

Z� :=
∞⊕

n=0

Z�n, Z� :=
∞⊕

n=0

Z�n, Z• :=
∞⊕

n=0

Z•n,

as well as the respective extended (primed) spaces. Note that we get couples of mutually dual
spaces; so, Zn and Z ��n are mutually dual, and the like. For example, the contraction between
z = ∑

x∈Xz
|x〉⊗ z(x) ∈ Z1 and ζ = ∑

x∈X 〈x | ⊗ ζ (x) ∈ Z��1 is given by

〈ζ, z〉 =
∑
x∈Xz

〈x ′|x〉 〈ζ (x ′), z(x)〉 =
∑
x∈Xz

〈ζ (x), z(x)〉.

Remark: More generally, the above constructions and notations apply if Z � X is a vector
bundle: then Z1 is defined to be the space of all sections X → Z which vanish outside a set of
finite cardinality, while Z�1 is defined to be the space of all sections X → Z (here we are using the
term “section” in the extended meaning of fibered sets, namely, to denote an arbitrary map X → Z
whose composition with the projection X � X is the identity: a section in this sense needs not be
smooth).

B. Generalized semi-densities and generalized frames

Let Z � X be a classical complex vector bundle over the real m-dimensional manifold X .
Denote as D◦(X,∧mT∗X ⊗ Z�) the vector space of all smooth sections X → ∧mT∗X ⊗ Z� (i.e.,
Z�-valued densities on X) which have compact support. This space is endowed with a standard
topology;19 its dual space D(X, Z) is called the space of generalized sections of Z � X . In
particular, any sufficiently regular ordinary section θ : X → Z can be seen as an element of D(X, Z)
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via the rule

〈θ, σ 〉 :=
∫

X
θ�σ, σ ∈ D◦(X,∧mT∗X ⊗ Z�),

the fiberwise contraction θ�σ being an ordinary C-valued m-form on X . For an arbitrary generalized
section we write θ : X � Z.

Suppose now that X is orientable and choose a positive semi-vector bundle V ≡ V X
≡ (∧nTX)+. Its square-root bundle V 1/2 � X and the dual bundle V−1/2 ≡ (V 1/2)∗ � X are
then well defined. Generalized Z-valued semi-densities (or half-densities) on X are now defined to
be generalized sections X � V−1/2⊗ Z, namely, elements of the vector space

/D(X, Z) ≡ D(X,V−1/2⊗ Z)

dual to

/D◦(X, Z�) ≡ D◦
(
X,V−1/2⊗ Z�) ∼= D◦

(
X,V−1⊗ (V 1/2⊗ Z�)

)
.

By varying the “target bundle” one also gets other kinds of generalized sections; in particular,
one gets generalized densities and generalized currents.19, 20 Semi-densities have a special status
because of the natural inclusion /D◦(X, Z) ⊂ /D(X, Z), but even more so if the fibers of the Z � X
are endowed with a Hermitian metric. In fact, in this case one has the space L2(X, Z) of all ordinary
semi-densities θ : X → V−1/2⊗ Z such that∫

X
θ̄�θ < ∞.

The quotient H(X, Z) = L2(X, Z)/0 is then a Hilbert space, where 0 ⊂ L2(X, Z) denotes the
subspace of all almost-everywhere vanishing sections, and we get a so-called rigged Hilbert space7

/D◦(X, Z) ⊂ H(X, Z) ⊂ /D(X, Z).

Elements in /D(X, Z) \H(X, Z) can then be identified with the “generalized states” (or “non-
normalizable” states) of the common terminology.

Let δ[x] be the Dirac density on X with support {x}, x ∈ X ; namely, δ[x] is the C-valued
generalized density acting as 〈δ[x], f〉 = f(x) for all functions f : X → C. If s : X → Z is
any ordinary section, then we say that δ[x]⊗ s is a Z-valued generalized density of Dirac-type.
In particular, a generalized semi-density of Dirac-type is of the form δ[x]⊗ v ∈ /D(X, Z) with
v : X → V 1/2⊗ Z, and a generalized section of Dirac-type is of the form δ[x]⊗α ∈ D(X, Z)
with α : X → V ⊗ Z.

Consider now the complex vector spaces

D(X, Z), /D(X, Z), D(X,V−1⊗ Z),

defined to be the spaces of all finite linear combinations of Dirac-type generalized sections, semi-
densities, and densities, respectively. If a volume form η : X → V−1 is assigned, then one gets
distinguished isomorphisms among the above spaces, determined by

δ[x]⊗ η−1 ←→ δ[x]⊗ η−1/2 ←→ δ[x].

Remark: An important result in the theory of distributions (see Schwartz,19 Chap. III, p. 75)
implies that these D spaces are dense in the respective “non-underlined” spaces; so, for example,
any element in D(X, Z) can be approximated with arbitrary precision (in the sense of the topology
of distributional spaces) by a finite linear combination of Dirac-type densities.

We can relate the above spaces to the space Z1 introduced in Sec. IV A (see the concluding
remark there); in fact there is a natural identification Z1 ∼= D(X,V−1⊗ Z), given by

|x〉⊗ z ←→ δ[x]⊗ z̃, x ∈ X, z ∈ Zx ,

where z̃ : X → Z in any section such that z̃(x) = z. If a volume form η is assigned, then one also
gets distinguished identifications Z1 ↔ D(X, Z) ↔ /D(X, Z). Consider, in particular, the latter
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space and the correspondence

|x〉⊗bα(x) ↔ Bx,α ≡ δ[x]⊗ η−1/2⊗ bα(x),

where
(
bα

)
is a frame of Z � X (for simplicity we assume here that the domain of the “classical”

frame
(
bα

)
is the whole X ; this assumption is actually true in the main cases of interest and could

be dropped at the price of a lengthier discussion).
We say that

(
Bx,α

)
is a generalized frame of the space /D(X, Z) of all generalized semi-densities.

This is natural in view of the theorem cited in the above remark, and a “generalized index” notation
turns out to be handy: we write Bx,α ≡ δ[x]⊗ η−1/2⊗bα(x), where

(
bα

)
is the dual classical frame.

Though a contraction of two distributions is not defined in general, a straightforward extension of
the discrete-space operation yields

〈Bx ′,α′ , Bx,α〉 = δx ′,α′
x,α η(x).

This is consistent with “index summation” in a generalized sense. Actually, let f ∈ /D◦(X, Z) and
λ ∈ /D◦(X, Z�) be test semi-densities and write

f x,α ≡ f α(x) ≡ 〈Bx,α, f 〉, λx,α ≡ λα(x) ≡ 〈λ, Bx,α〉.
Then also

〈λ, f 〉 ≡ λx ′,α′ f x,α 〈Bx ′,α′ , Bx,α〉 ≡
∫

X
λα(x) f α(x) η(x),

namely, we interpret index summation with respect to the continuous variable x as integration
(provided by the chosen volume form). Possibly, this formalism can be extended to the contraction
of two generalized semi-densities whenever it makes sense.

The identification Z1 ↔ /D(X, Z) naturally extends to Zn ↔ n /D(X, Z), and the latter space
turns out to be dense in /D(Xn,

n Z), where Xn ≡ X × · · · × X . Then one straightforwardly intro-
duces frames of multi-particle spaces of generalized semi-densities.

C. Distributional quantum bundles

The notion of smoothness introduced by Frölicher,21 or F-smoothness, provides a general
setting for calculus in functional spaces22, 23 and differential geometry in functional bundles.10, 23–25

An important aspect of that approach is that the essential results can be formulated in terms of finite-
dimensional spaces and maps, without heavy involvement in infinite-dimensional topology and other
intricated questions. In particular, the notion of a smooth connection on a functional bundle has been
applied in the context of the “covariant quantization” approach to quantum mechanics,9–11 The F-
smooth geometry of distributional bundles and quantum connections has been studied in a previous
paper.6

Let (M, g) be Einstein’s spacetime. Taking the speed of light and the Planck constant into
account (see the remark concluding Sec. II D), the covariant form of a particle’s 4-momentum turns
out to be valued into Pm ⊂ P ∼= T∗M, where

Pm := {p ∈ P : g#(p, p) = −m2, p future pointing } � M

is the bundle of “mass -shells” corresponding to mass m ∈ {0} ∪ L−1.
Let now Z → Pm be a vector bundle (representing the “internal degrees of freedom” of the

considered particle type). At each x ∈ M we can perform the constructions of Sec. IV A, with the
generic manifold X replaced now by (Pm)x . In particular, we have spaces

Z1
x := F ((Pm)x )⊗ Zx , Z�1

x := F �((Pm)x )⊗ Zx ,

and the like. The fibered sets

Z1 :=
⊔
x∈M

Z1
x , Z�1 :=

⊔
x∈M

Z�1
x

have natural F-smooth structures of vector bundles over M. Furthermore, the multi-particle bundles
Z := ⊕

n Zn � M and Z� := ⊕
n Z�n � M, n ∈ {0} ∪N, can be straightforwardly constructed
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by an obvious extension of the procedure of Sec. IV A. Their role in the representation of asymptotic
quantum states will be made precise below.

Analogous constructions yield distributional bundles over M. In particular, we are inter-
ested in the bundle of generalized semi-densities: for each x ∈ M we consider the vector space
/D((Pm)x , Zx ) and get the F-smooth vector bundle

/D(Pm, Z) :=
⊔
x∈M

/D((Pm)x , Zx ) � M,

and its sub-bundle /D(Pm, Z) whose fibers are constituted of finite linear combinations of Dirac-
type semi-densities. In order to describe quantum states as sections of bundles of generalized
semi-densities, we need an isomorphism Z1 ↔ /D(Pm, Z), namely, we need a volume form on the
fibers of Pm → M. There is actually a distinguished scaled such form, namely, the Leray form
ωm : Pm → L−2⊗∧3T∗Pm of the mass-shells;26 this is usually indicated as δ(p2 − m2) where
p2 ≡ g#(p, p). In practice, however, one uses a related but somewhat different form, determined by
the choice of an observer (Sec. IV D).

Remark: Summarizing, a finite-dimensional two-fibered bundle Z � Pm � M is the basic
classical geometric datum underlying the description of a particle type. Now the spacetime connec-
tion � determines a connection �m of Pm → M; this, together with a linear connection of Z � M
projectable over �, determines a linear connection of the distributional bundle /D(Pm, Z) � M
which can be characterized in the simplest way as follows. Let N ⊂ M be any one-dimensional
submanifold; let p : N → Pm and z(p) : N → Z be parallely transported sections of the restricted
bundles; then

δ[p]⊗ω−1/2
m ⊗ z(p) : N → L⊗ /D(Pm, Z)

is parallely transported. Actually, z(p) projects over p since the connection of Z � M is projectable
over �m (which is true for most relevant physical theories). We could use this parallel transport,
along a detector’s world-line (Sec. IV D), in order to define the free-particle states. However, we
will actually consider a variation of this construction.

D. Detectors and free-particle states

In particle physics, one needs some kind of an observer. We will now see how considering a
detector, represented by a given (timelike) world-line T ⊂ M, suffices for reproducing, in terms of
generalized semi-densities, essentially the standard momentum space formalism. This can be seen
as a sort of a complicated “clock” carried by the detector.

If PT � T is the restriction of P ≡ T∗M � M, then one has the g-orthogonal splitting

PT = P‖ ⊕T P⊥.

The restriction of g# to the fibers of P⊥ � M is an L−2-scaled Euclidean metric, yielding an
L−3-scaled volume form

η⊥ : P⊥ → L−3⊗∧3(P⊥)∗.

If τ0 : T → L−1⊗TM is the normalized scaled vector field tangent to T , then τ0 ∧ η⊥ : T →
L−4⊗∧4TM is the spacetime contravariant scaled volume form determined by g.

The restriction of the orthogonal projection P → P⊥ over T yields distinguished diffeomor-
phisms Pm ↔ P⊥ for all m ∈ {0} ∪ L−1. The pull-back of η⊥ is then an L−3-scaled volume form on
Pm , which is denoted, by abuse of language, by the same symbol. Then we have

ωm(p) = 1

2 p0
η⊥ = 1

2 Em(p⊥)
η⊥, p ∈ Pm,

where p = p‖ + p⊥ with p‖ ∈ P‖ and p⊥ ∈ P⊥ and

p0 ≡ Em(p⊥) ≡
√

p‖2 =
√

m2 + p⊥2 ∈ L−1.
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Since ωm and η⊥ are scaled volume forms, they yield isomorphisms

Z1 ↔ L⊗ /D(Pm, Z), Z1 ↔ L3/2⊗ /D(Pm, Z),

determined respectively by the correspondences

|p〉 ↔ δ[p]⊗ω−1/2
m , |p〉 ↔ δ[p]⊗ η−1/2

⊥ ,

where δ[p] ∈ D(Pm,V−1 Pm) is the Dirac density with support {p}, p ∈ Pm . We need a fixed length
unit l ∈ L in order to obtain unscaled correspondences; in particular, we write

Z1 ↔ /D(Pm, Z) : |p〉 ↔ Xp ≡ l−3/2 δ[p]⊗ η−1/2
⊥ .

Remark: Unscaled reference states will be needed in order to recover a consistent theory; the
need for the choice of a unit of length l ∈ L comes at this point (compare with the usual “box
quantization” argument).

We will use orthonormal L−1-scaled coordinates
(
pλ

) ≡ (
p0, p1, p2, p3

)
in the fibers of Pm ,

and write

η⊥ = p1 ∧p2 ∧p3 ≡ d3p ⇒ ωm = 1

2 p0
d3p.

We will also use the shorthand p⊥ ≡
(
p1, p2, p3

)
.

We obtain a generalized frame of free quantum states along T as follows. First, at some event
t0 ∈ T ⊂ M we choose a frame of Z → (Pm)t0 , namely, we smoothly choose a basis

(
bα(p)

)
of Zp

for each p ∈ (Pm)t0 ; hence the family of generalized semi-densities

Ap,α ≡ Xp ⊗bα(p) ∈ /D(Pm, Z)t0

is a generalized frame at t0. Next, Ap,α has to be to transported along T , via some transport of p and
z(p). As observed at the end of Sec. IV C, one could use the parallel transport determined by the
spacetime connection and by a connection of Z � M projectable onto the first. We note, however,
that η⊥ (appearing in the definition of Xp) is not parallely transported along T unless T is geodesic;
thus using Fermi transport for p seems natural, since η⊥ is actually Fermi-transported. As for z(p), it
will typically have spinor and non-spinor factors; the former can be Fermi transported (Sec. III B),
while the latter is parallely transported along p or just T (the non-spinor part of the internal structure
is often described by a vector bundle over M).

Remark: We then realize that different types of parallel transport can be considered for the
definition of free states. A detailed comparison among these may allow insight into gravitational
effects in quantum observations.

We use, along T , the linear correspondence

Z1
T ≡ F (Pm, Z)T ←→ /D(Pm, Z)T ↪→ /D(Pm, Z)T

characterized by

|p,A〉 ≡ |p, bα(p)〉 ←→ Ap,α ≡ l−3/2 δ[p]⊗ η−1/2
⊥ ⊗bα(p),

and determined by the spacelike volume form associated with the detector and the chosen length
unit. The free-particle states determine trivializations

/D(Pm, Z)T
∼= T × /D(Pm, Z)t0

and the like, where t0 ∈ T is some arbitrarily chosen event. In particular, (Z1)t0 can be identified
with the space of free one-particle states; the multi-particle space

Z t0 ≡
∞⊕

n=0

(Zn)t0 , (Zn)t0 ≡ n(Z1)t0

(see Sec. IV A) is the space of all quantum states for a given particle type.
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A realistic physical theory must have more than one particle types, of masses m′, m′′, . . . and
internal structure bundles Z′ → Pm ′ , Z′′ → Pm ′′ , . . . . We get multi-particle bundles Z ′, Z ′′ and the
like, and the total quantum bundle

V = Z ′ ⊗
M

Z ′′ ⊗
M
· · ·

of the considered theory (a tensor product of multi-particle bundles, one for each particle type).
Trivialization along a given detector naturally extends to V , namely,

VT
∼= T × Vt0 ,

so that Vt0 can be identified with the space Q of all quantum states considered in the Introduction.
By construction, the free-particle trivialization preserves particle type and number; the interaction
changes them by mixing the various subspaces of Q.

Remark: Let (TM)T � T be the restriction of the tangent bundle TM � M. Similar to the
g-orthogonal splitting of PT one has the splitting (TM)T = (TM)‖T ⊕T (TM)⊥T . Exponentiation deter-
mines, for each t ∈ T , a diffeomorphism from a neighbourhood of 0 in (TM)⊥t to a spacelike subman-
ifold Mt ⊂ M, and so a three-dimensional foliation of a neighbourhood of T . If ψ ∈ /D(Pm, Z)t is a
tempered generalized semi-density, then via Fourier transform we obtain a generalized semi-density
ψ̌ ∈ /D((TM)⊥t , Z). A suitable restriction of ψ̌ then yields, via exponentiation, a semi-density on
Mt . In flat spacetime, the correspondence ψ ↔ ψ̌ essentially amounts to the usual correspondence
between momentum-space and position-space representation.

E. Free-particle states in QED and gauge theories

In order to define appropriate generalized frames for free electron and positron states one needs,
for each p ∈ (Pm)T , a “classical” frame of Wp adapted to the splitting Wp = W+

p ⊕ W−
p . We use a

Dirac frame (Sec. III C) (
uA(p), vA(p)

)
, A = 1, 2,

required to be Fermi transported along T as well as p (Sec. III B), and get the generalized frames

ApA := Xp ⊗uA(p) : T → /D(Pm, W+
m ),

CpA. := Xp ⊗ v̄A. (p) : T → /D(Pm, W
−

m ),

respectively, for electrons and positrons.
Next, we consider the zero-mass sub-bundle P0 ⊂ T∗M of future null half-cones. We will use

the identifications H ∼= L−1⊗TM and H∗ ∼= L⊗T∗M determined by the fixed tetrad (Sec. III C).
Let H ′ � P0 � M be the two-fibered bundle whose fiber over any k ∈ (P0 )x , x ∈ M, is the three-
dimensional real vector space H ′

k := {y ∈ H : 〈k, y〉 = 0}. Since k# ≡ g#(k) ∈ L−1⊗ H ′, we have
the real vector bundle BR � P0 whose fiber over any k ∈ P0 is the two-dimensional quotient space
H ′

k/〈k〉 (here 〈k〉 denotes the vector space generated by k).
It turns out that the spacetime metric “passes to the quotient,” so it naturally determines a

negative metric gB in the fibers of BR � P0 , as well as a “Hodge” isomorphism ∗B which can be
characterized through the rule ∗(k ∧β) = −k ∧ (∗Bβ).

The complexified two-fibered bundle B := C⊗ BR � P0 � M (which we may call the optical
bundle, though this term has no unique meaning in the literature27) has the canonical splitting

B = B+ ⊕
P0

B−,

where the fibers of B± → P0 are complex one-dimensional gB-null subspaces defined to be the
eigenspaces of −i ∗B with eigenvalues ± 1 (self-dual and anti-self-dual subspaces).

If we restrict the above bundles to the detector’s world line T ⊂ M, then we can identify
BR � P0 � T with H ′ ∩ H⊥ � P0 � T (“radiation gauge”). For any k ∈ (P0 )x , x ∈ M, let

(
τλ

)
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be a Pauli basis of H at x such that τ 0 is tangent to T and k# ∝ τ0 + τ3; setting(
b1, b2) :=

(
1√
2 (τ1 + i τ2), 1√

2 (τ1 − i τ2)
)
⊂ C⊗ H ′ ∩ H⊥,

Bκ Q := Xk ⊗bQ(k), k ∈ P0 , Q = 1, 2,

one gets, by Fermi transport, a generalized frame
{
Bκ Q

}
of the quantum bundle /DM(P0 , B) � M.

This frame is adapted to the self-dual/anti-self-dual splitting.
Virtual photons, on the other hand, span a larger bundle: they are described as Fermi-transported

sections T → /D(P,C⊗ H), where one uses the generalized frame {Bkλ} := {Xk ⊗ τλ}, λ = 0, 1,
2, 3.

Generalized frames of free-particle states for more general gauge theories, of the kind sketched
in Sec. III D, can be introduced by a natural extension of the above constructions, by inserting
appropriate frames of the bundles FR and FL. Basically, we need an extended transport mechanism
along T . Fermi transport is not applicable to internal degrees of freedom which are not soldered to
spinors or spacetime vectors, so we will use covariant constancy relatively to background connections
of FR and FL which have to be assumed.

F. Quantum interactions

The main purpose of this paper is to discuss criteria by which a sensible interaction can be
constructed. While one could think of considering an interaction acting directly on the discrete
multi-particle spaces, a few attempts show that, in general, an approach of this kind can only work at
the lowest order. The full quantum formalism can be recovered if free-particle states are represented
as semi-densities, so that their interactions are described by a suitable endomorphism in the state
space of the theory. More precisely, interactions are described by a section

−i dt⊗H : T → T∗T ⊗End(V),

where the function t : T → R⊗T ∼= R⊗L (taking the speed of light c ∈ L⊗T−1 into account)
is the detector’s proper time, unique up to the choice of an “initial” time; thus dt : T → L⊗T∗T .
This means that H itself has to be an L−1-scaled morphism T → L−1⊗End(V).

Remark: We can see the free-particle trivialization as determined by a free-particle connection of
the functional bundle V � T . Thus the interaction is a tensor field which modifies that connection;
using the trivialization, the interaction can be seen as a 1-form on T valued into the endomorphisms
of a fixed space Q (say Vt0 ) as sketched in the Introduction.

Essentially, H arises as the tensor product of the classical interaction and a certain semi-density �

on the fibers of particle momenta (the “quantum ingredient” of the interaction). In order to make this
idea more precise we have to introduce some further notations. Consider r masses m ′, m ′′, . . . , m (r ),
and let the shorthand

P× := Pm ′ ×
M

Pm ′′ ×
M
··· ×

M
Pm(r ) � M

denote the bundle of r particle momenta corresponding to these masses. We can exhibit a distin-
guished scaled generalized density on the fibers of the restricted bundle P× → T ; this is characterized
by the requirement that it acts on a test element f ∈ D◦(P× ,C) as

f 
→
�

f
(
p′⊥, p′′⊥ , . . . , p(r−1)

⊥ ,−∑r−1
i=1 p(i)

⊥
)

d3p′ d3p′′ . . . d3p(r−1).

If we write this generalized density as

δ(r ) η′⊥ ⊗ η′′⊥ ⊗ ···⊗ η(r )
⊥ ≡ δ(p′⊥+p′′⊥+ . . .+p(r )

⊥ ) d3p′ ⊗ d3p′′ ⊗ . . . ⊗ d3p(r ),

then δ(r ) turns out to be an L3-scaled generalized function (this follows from the fact that η⊥ = d3p
is L−3-scaled). Mimicrying traditional notation we also write δ(r ) ≡ δ(p′⊥+p′′⊥+ . . .+p(r )

⊥ ).
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Next, we introduce the scaled generalized half-density

�(r ) := δ(r )
√

ωm ′ ⊗√ωm ′′ ⊗ ··· ⊗√ωm(r ) : T → L3−r ⊗ /D(P× ,C),

which has the coordinate expression

�(r ) = δ(p′⊥+p′′⊥+···+p(r )
⊥ )√

2r p′0 p′′0 . . . p(r )

0

√
d3p′ ⊗

√
d3p′′ ⊗ . . . ⊗

√
d3p(r ).

If �(r ) is a tensor field describing the classical interaction of r particles, then

�(r )⊗�(r ) : T → L3−r ⊗Vr ,

where Vr ⊂ V denotes the sub-bundle of all tensors of rank r; by this tensor we construct the quantum
interaction through an analogue of the classical mechanism: contraction with s free-particle states,
s ≤ r, describes the absorption of s particles and the creation of r − s. The quantum part of this
operation, that is the contraction of semi-density distributions, is defined in a generalized sense as
discussed in Sec. IV B.

We can restate the above considerations by saying, by analogy with the finite-dimensional
situation, that the above tensor comes in several different “index types”: absorption corresponds to
a “covariant” index, creation to a “contravariant” index.

Now the classical part �(r ) already comes in various types, related by the underlying algebraic
structure. One must then allow analogous corresponding types for the quantum part �(r ) : these are
distinguished by the signs of the spatial momenta, a minus sign for the momentum of an incoming
particle. The complete prescription also requires a phase factor and a coupling constant λ ∈ Lr−4,
which will be expressed in terms of particle masses. Hence, eventually, one considers

�(r ) := λ e−i (±p′0±p′′0±···±p(r )
0 ) t �(r )⊗ �(r ) : T → L−1⊗Vr ,

where now

�(r ) = δ(±p′⊥±p′′⊥±···±p(r )
⊥ )√

2r p′0 p′′0 . . . p(r )

0

√
d3p′ ⊗

√
d3p′′ ⊗ . . . ⊗

√
d3p(r )

(we could distinguish the various types of �(r ) by different symbols,5 but the notation becomes rather
clumsy in general).

Summarizing, each one of these 2r types of �(r ) can be viewed as a section T → End(V), and
H is the sum of all these endomorphisms for all suitable values of r. Usually, one only deals with
three or four legs point interactions, namely, r = 3, 4. We will consider a few typical cases in the
context of electroweak theory.

In a previous paper,5 I showed how one recovers the electron and photon propagators from the
above ideas, and how one sets to calculate matrix elements. It is not difficult to convince oneself
that essentially the same arguments also work in a more general gauge theory situation such as that
sketched in Sec. III D.

Remark: A general discussion of quantum fields in the context of quantum connections on dis-
tributional bundles was presented in a previous paper.28 Those notions can be used to explicitly relate
the setting of this paper to standard presentations. Here, we just note that a creation operator in the
fibers of V � T can be naturally defined as the tensor product (either symmetric or antisymmetric)
by some given state vector, while an absorption operator is defined as the contraction by a given
vector. A quantum field is then defined to be a certain combination of creation and absorption oper-
ators. The various terms which constitute H can be seen as compositions of creation and absorption
operators.
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V. EXAMPLES: ELECTROWEAK INTERACTIONS

A. Electroweak geometry and fields

Electroweak geometry can be viewed as an extension of 2-spinor geometry. The main further
ingredient is a new complex vector bundle I → M, called the isospin bundle, whose two-dimensional
fibers are endowed with a positive Hermitian metric h : M → I�⊗M I . In a previous paper,4 I
discussed a setting in which the fermions of electroweak theory are described as sections of the
vector bundle

Y ≡ YR ⊕ YL ≡
(∧2 I ⊗U

)⊕ (
I ⊗U�)

,

namely, the setting sketched in Sec. III D with FR ≡ ∧2 I and FL ≡ I . Here, U � M is the same
2-spinor bundle of electrodynamics, with the further assumption that the 2-spinor connection ⨏�

determines a curvature-free connection of ∧2U . Then we can choose a 2-spinor frame
(
ζA

)
such that

∇ε ≡ ∇(ζ 1 ∧ ζ 2) = 0, i.e., ⨏� A
a A = 0.

An h-orthonormal local frame of I � M (isospin frame) will be denoted by
(
ξα

)
, α = 1, 2. We

write the coefficients of a linear connection X of I � M as

X α
a β = Xλ

a σ α
a β, Xλ

a : M → C, a = 1, 2, 3, 4, λ = 0, 1, 2, 3.

Though ⨏� is traceless, the connection of Y � M induced by ⨏� and X has a non-vanishing trace
part coming from X. The coefficients Xλ

a are imaginary if and only if X is Hermitian, i.e., fulfills the
condition ∇[X]h = 0.

By examining the conformal invariance requirements of the classical theory, one easily sees
that the fields must be scaled: the Fermion field has to be L−3/2-scaled, while the gauge fields
and the Higgs field have to be L−1-scaled. The coordinate expression of a field � ≡ �R+�L :
M → L−3/2⊗ (YR⊕YL) will be written as

� = � A ξ̂ ⊗ ζA +�α
A. ξα ⊗ ζ̄ A.

,

where ξ̂ ≡ ξ1 ∧ ξ2 : M → ∧2 I (the scaling is carried by the field’s components).
According to the ideas sketched in Sec. III D boson fields are viewed as sections of bundles

obtained from expanding Y ⊗Y , namely,

Y ⊗Y ∼= (∧2 I ⊗∧2 I ⊗ H)⊕ (I ⊗ I ⊗ H∗)⊕

⊕ (∧2 I ⊗ I ⊗EndU)⊕ (∧2 I ⊗ I ⊗EndU).

The gauge fields are represented by a section

W : M → L−1⊗ I ⊗ I ⊗ H∗ ∼= L−1⊗ (YL⊗YL),

which by natural operations also determines a section Ŵ : M → L−1⊗∧2 I ⊗∧2 I ⊗ H .
Next, we note that the two last bundles, in the above decomposition of Y ⊗Y , are mutually

conjugate, and that we can consider sections of the special form

φ⊗ 1U : M → L−1⊗∧2 I ⊗ I ⊗EndU, φ : M → L−1⊗∧2 I ⊗ I,

where 1U : M → U ⊗U� ∼= EndU denotes identity of U � M. The section φ will be called a
Higgs field. Then also φ̄⊗ 1U : M → L−1⊗∧2 I ⊗ I ⊗EndU .

Using the frame
(
ιλ

) ≡ (
σαα.

λ ξ̄α. ⊗ ξα

)
of I ⊗ I (λ = 0, 1, 2, 3) we write W = i

2 W μ
λ ιμ⊗ τλ.

If the field W is known, then the choice of an isospin gauge determines a isospin connection with
components X α

a β = q �λ
a hα. β W α. α

λ = i
2 q �λ

a W μ
λ σ

α
μ β , q ∈ R+ (these are unscaled because of the

scaling of the tetrad �, see Sec. III A).

B. Symmetry breaking

In standard electroweak theory, one assumes that there is one special section φ0 : M →
L−1⊗∧2 I ⊗ I , the “vacuum expectation value” of φ, supposedly arising as a minimum of the
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“Higgs potential” V [φ] := λ (2 m2 〈φ̄, φ〉 − 〈φ̄, φ〉2), with m ∈ L−1 and λ ∈ R+. This determines
an h-orthogonal decomposition I = I1 ⊕ I2 characterized by φ0 : M → L−1⊗∧2 I ⊗ I1. We can
choose the h-orthonormal isospin frame

(
ξα

)
in such a way that φ0 = m ˆ̄ξ ⊗ ξ1.

Next, one gets a decomposition of E ≡ I ⊗ I , yielding the targets of the gauge fields. We write
E = EA ⊕ EZ ⊕ E+ ⊕ E−, where

EA ≡ I1⊗ I1, E+ ≡ I1⊗ I2, E− ≡ I2⊗ I1,

and EZ is generated by

eZ ≡ − sin θ tan θ ι0 + cos θ ι3 = sec θ
[
cos(2θ ) ξ̄1⊗ ξ1 − ξ̄2⊗ ξ2

]
.

The parameter θ ∈ (0, π /2), a necessary ingredient of the theory, is called the Weinberg angle.
The gauge field is then written as the sum W = i

2 (A + Z +W+ +W−), in which the four
terms are, respectively, valued into

L−1⊗ H∗ ⊗ EA, L−1⊗ H∗ ⊗ EZ , L−1⊗ H∗ ⊗ E+, L−1⊗ H∗ ⊗ E−,

and their coordinate expressions are written as

A = Aλ τ λ⊗eA ≡ −2 sin θ Aλ τ λ⊗ ξ̄1⊗ ξ1,

Z = Zλ τ λ⊗eZ ≡ sec θ Zλ τ λ⊗ [
cos(2θ ) ξ̄1⊗ ξ1 − ξ̄2⊗ ξ2

]
,

W+ = W+
λ τ λ⊗e+ ≡

√
2 W+

λ τ λ⊗ ξ̄1⊗ ξ2,

W− = W−
λ τ λ⊗e− ≡

√
2 W−

λ τ λ⊗ ξ̄2⊗ ξ1

(in order to match the main usual formulas as closely as possible, some conventions have been
changed relatively to a previous paper4).

With the choice of a gauge, the above fields are supposed to determine a Hermitian connection
of I � M. This implies that the coefficients Aλ and Zλ are real, while W+

λ and W−
λ are mutually

complex conjugate.
As for a Fermion field, after symmetry breaking it splits as � ≡ u + χ + ν ≡ ψ + ν, with

u ≡ �R = u A ξ̂ ⊗ ζA, χ = �1
A. ξ1⊗ ζ̄ A. ≡ χA. ξ1⊗ ζ̄ A.

, ν = �2
A. ξ2⊗ ζ̄ A. ≡ νA. ξ2⊗ ζ̄ A.

.

Now ψ ≡ (u, χ ) ≡ �R + χ ≡ ψR + ψL is viewed as the electron field, and ν is the neutrino.

C. Interactions among gauge particles

After symmetry breaking we identify the electron bundle as W ≡ (∧2 I ⊗U)⊕ (I1⊗U�),
and construct electron and positron generalized frames essentially as in QED. From the neutrino
bundle we obtain the generalized frame

{
Nk A.

} ≡ {
Xk ⊗ ξ2⊗ ζ̄A.

}
. Similarly, from classical frames

for gauge and Higgs fields one constructs the corresponding quantum frames via tensor product by
the generalized semi-densities Xk .

In standard approaches one finds the allowed interactions as terms of the total Lagrangian,
which in coordinates can be written as L = (�� + �φ + �X + �int) d4x with

�� = i√
2 (�−1)a

AA.

(
∇a�

A �̄ A. −� A ∇a�̄
A. + εAB ε̄A. B.

(�̄Bα ∇a�
α
B. − ∇a�̄Bα �α

B. )
)

det �,

�φ =
(

gab ∇aφ̄α ∇bφ
α + 2 λ m2 (φ̄α φα)− λ (φ̄α φα)2

)
det �,

�X = − 1

2 q2
gac gbd hα. α hβ. β R̄ α.

ab β. R α
cd β det �, �φ� = −

(
�̄Aα φα � A + �̄ A.

φ̄α �α
A.

)
det �,
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where �̄Bα ≡ hα. α �̄α.

B , φ̄α ≡ hα. α φ̄α.

, X is the isospin connection and R α
ab β denotes the components

of its curvature tensor.
Here we do not aim at a thorough examination of all possible interactions (by the way, a

discussion of QED interaction in terms of generalized semi-densities can be found in a previous
paper5). Instead we will recover, as an example, the interactions among the gauge fields, and we will
do that by a somewhat different procedure than usual.

The starting point of our discussion is the observation that a radiative e.m. field in flat spacetime
can be written in the form F= k∧ b, where k, b : M → T∗M, k · k= k · b= 0, and b≡ ± *A; this
is strictly related to the photon generalized frame, see Sec. IV E. While a field of this type obeying
the Maxwell equations may not exist in arbitrary spacetime, describing a “photon field” in this way
makes sense. This idea can be extended to any gauge field W as follows. First, remember that we
see all fields as sections of two-fibered bundles Z � P � M, so that fields explicitly carry the
information of their momentum k; then we consider the tensor field R[W ] : M → ∧2T∗M ⊗ E (of
“curvature type”) defined to be

R[W ] := i k ∧W − 1
2 q W ∧̄W,

where ∧̄ denotes h-contraction in the fibers and antisymmetrization of spacetime indices:

(k ∧W ) α. α
ab = k[a W α. α

b] , (W ∧̄W ) α. α
ab = hβ.β W α. β

[a W β.α

b] .

Next we consider the density

LW = −1

2
〈g#⊗ g#⊗ R[W̄ ]⊗ R[W ]〉 η : P → ∧4T∗M,

where the angle bracket indicates that all possible contractions are performed. Of course, this
corresponds to the Lagrangian density LX of the isospin connection when we make the replacement
∂a X α

b β → i q ka W α
b β . From this we can extract the interactions among the gauge fields (excluding

ghosts). Here we are not interested in the “kinetic terms,” that is the terms containing two fields and
two momenta: free-particles are already described by the appropriate states (by the way, we note that
in this context the kinetic terms can be subtracted through a natural operation). We obtain a density
L′W ≡ (�(0)

W + �
(1)

W ) d4x, with

�
(1)

W = �AW W + �W W Z , �
(0)

W = �AAW W + �AW W Z + �W W W W + �W W Z Z ,

1
|�| �AW W = i q sin θ (gad gbc− gac gbd )

(
k [A]

a Ab W−
c W+

d + k+a W+
b Ac W−

d − k−a W−
b Ac W+

d

)
,

1
|�| �W W Z = i q cos θ (gad gbc− gac gbd )

(
k [Z ]

a Zb W−
c W+

d − k+a W+
b W−

c Zd + K−
a W−

b W+
c Zd

)
,

1
|�| �AAW W = 1

2 q2 sin2 θ (gad gbc + gac gbd − 2 gab gcd ) Aa Ab W−
c W+

d ,

1
|�| �AW W Z = q2 sin θ cos θ (2 gad gbc − gac gbd − gab gcd ) Aa W−

b W+
c Zd ,

1
|�| �W W W W = − 1

2 q2 (gad gbc − gac gbd ) W−
a W−

b W+
c W+

d ,

1
|�| �W W Z Z = 1

2 q2 cos2 θ (gad gbc + gac gbd − 2 gab gcd ) W−
a W+

b Zc Zd ,

where we used the abbreviation |�| ≡ det � and indicated by k [A], k [Z ], and k± the momenta of
the corresponding particles. Hence the terms in �(1) correspond to one-point interactions of three
gauge particles; these depend from the particles’ momenta. The terms in �(0) correspond to one-point
interactions of four gauge particles, which are independent of momenta.
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By exchanging index names and rearranging terms we rewrite three-particle interactions as

1
|�| �AW W = i q sin θ

(
gab (k+ − k [A])c + gbc (k− − k+)a + gac (k [A] − k−)b

)
Aa W+

b W−
c ,

1
|�| �W W Z = i q cos θ

(
gab (k [Z ] − k+)c + gbc (k+ − k−)a + gac (k− − k [Z ])b

)
Za W+

b W−
c .

To conclude, let us see how to assemble the above “classical” interaction with its quantum
counterpart �, as indicated in Sec. IV F. We keep the discussion somewhat qualitative, as a thoroughly
formal one would require (because of the number of fields and combinations involved) a notational
apparatus to heavy for an article of this kind (a more complete notation for the simpler situation of
QED was introduced in a previous paper5).

Consider, for example, the term indicated as �AW W . Recall that we consider fields as sections
M → Z where Z � P � M is some two-fibered bundle. (Incidentally, in the case of the gauge
fields we are dealing with, this two-fibered bundle is actually of the “semi-trivial” type: for the field
A, for example, it is P0 × EA; but note that this simplification does not hold for the electron bundles
W±.) Now �AW W can be seen (using the notation of Sec. IV F) as a section

P× := P0 ×
M

Pm ′ ×
M

Pm ′ → E∗A⊗ E∗+ ⊗ E∗−,

since it is a multilinear contraction of the fields depending on their momenta (here m′ denotes the mass
of the W± ). Then it could be written as �̃(A+−)

∗
eA⊗ ∗

e+ ⊗ ∗
e−, where we denote as

( ∗
eA,

∗
e+,

∗
e−,

∗
eZ

)
the dual frame of

(
eA, e+, e−, eZ

)
and �̃(A+−) depends on the momenta. Using the finite-dimensional

geometric structure we obtain eight different index types of this tensor, each one suitable for
describing certain absorptions and creations. For the absorption of three particles we obtain the
semi-density

ei (k[A]
0 +k+0 +k−0 ) t �̃(A+−)(k

[A]

0 , k+0 , k−)
δ(k [A]

⊥ + k+⊥ + k−⊥ )√
8 k [A]

0 k+0 k−0

·(√d3k [A]⊗ ∗
eA

)⊗ (√
d3k+ ⊗ ∗

e+
)⊗ (√

d3k− ⊗ ∗
e−

)
.

Similarly, we can write �AW W Z = �̃(A+−Z )

∗
eA⊗ ∗

e+ ⊗ ∗
e− ⊗ ∗

eZ (where �̃(A+−Z ) is now independent
of the momenta), and obtain the semi-density

ei (k[A]
0 +k+0 +k−0 +k[Z ]

0 ) t �̃(A+−Z )

δ(k [A]
⊥ + k+⊥ + k−⊥ + k [Z ]

⊥ )√
16 k [A]

0 k+0 k−0 k [Z ]

0

·(√d3k [A]⊗ ∗
eA

)⊗ (√
d3k+ ⊗ ∗

e+
)⊗ (√

d3k− ⊗ ∗
e−

)⊗ (√
d3k [Z ]⊗ ∗

eZ
)
.

The above semi-densities are to be contracted with free states, which read Xk[Z ] ⊗eZ and the
like (Sec. IV D). Eventually, the complete operator H is a combination of many more terms. The
formalism used by physicists for matrix element calculations, with its tricks and shortcuts, turns
out to be handy, but a more explicit and tentatively precise notation may help to grasp underlying
concepts.
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10 J. Janyška and M. Modugno, “Covariant Schrödinger operator,” J. Phys. A 35, 8407–8434 (2002).
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