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1 Introduction and preliminaries

One of the most important and deep properties of the Leray-Schauder degree
is the well-known Leray Product Formula for the computation of the degree
of a composite map (see, e.g., [3], [14], [15], [17], [19]). In this paper, using
the concept of boundary set of a map introduced in [1], among other results
we give an extension of the Leray formula (Theorem 3.5) and we provide, as
a consequence, a simple proof of the generalized Jordan-Brouwer Separation
Theorem due to Leray (see [14]).

As it is well-known, the integer valued degree has been extended by several
authors to the framework of Fredholm maps between real Banach manifolds. A
pioneering work in this direction is due to Elworthy and Tromba (see [8], [9]).
In [1], still in the context of nonlinear Fredholm maps, the first two authors
introduce an elementary notion of oriented map (see below) which differs from
the one given in [10] in some aspects which are pointed out in [2]. By means
of this notion they define an integer valued degree which coincides, for a large
variety of maps, with the degree introduced in [10] and can be considered an
evolution of the oriented degree of Elworthy-Tromba.

This work contains two versions of the Product Formula for the oriented
degree of [1], namely Theorem 3.1 and Theorem 3.7. The first one is the analogue
of Theorem 3.5. The second one is a more general formula containing, as a
particular case, an extended additivity property for the degree of oriented maps.
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At the end a Jordan’s like separation theorem in Banach manifolds is deduced
from Theorem 3.1.

We need some preliminaries.

Let E and F be two real Banach spaces. We recall that a bounded linear
operator is said to be Fredholm if both KerL and coKerL have finite dimension.
In this case its index is the integer

indL = dim KerL− dim coKerL.

A map f : M → N between real Banach manifolds is Fredholm of index zero
(see [18]) if it is C1 and its Fréchet derivative Df(x), from the tangent space
TxM of M at x to the tangent space Tf(x)N of N at f(x), is Fredholm of index
zero for any x ∈M .

A map f : M → N between manifolds is said to be proper if f−1(K) is com-
pact for any compact subset K of N . In particular, let us recall that Fredholm
maps are locally proper (see [18]).

A map f : X → E defined on a subset X of a Banach space E is a compact
vector field if it is a completely continuous perturbation of the identity; that is,
if it has the form f(x) = x − ϕ(x), with ϕ : X → E sending bounded subsets
of X into relatively compact subsets of E. We observe that if f : X → E is
a compact vector field, X is closed, and ||f(x)|| → ∞ as ||x|| → ∞, then f is
proper. In particular, a compact vector field is proper on bounded closed sets.

2 Orientation and degree

In this section we give a brief review of the notion of degree for oriented maps
between real Banach manifolds introduced in [1]. This notion is essentially based
on the concept of orientability for Fredholm maps developed in [1] and [2].

Let L : E → F be a bounded Fredholm linear operator of index zero between
real Banach spaces. We say that a bounded linear operator A : E → F with fi-
nite dimensional range is a corrector of L provided that L+A is an isomorphism.
Observe that the set of correctors of L is nonempty. In fact, any (possibly triv-
ial) bounded linear operator A : E → F such that KerA ⊕ KerL = E and
RangeA⊕ RangeL = F is a corrector of L.

Let A and B be two correctors of L. Observe that the isomorphism T =
(L+B)−1(L+A) is a finite dimensional perturbation of the identity I. Moreover,
given any finite dimensional subspace E0 of E containing the image of I−T , one
has T (E0) ⊂ E0. Thus, the determinant of the restriction of T to E0, detT |E0 ,
is well defined. It is not difficult to show that this determinant does not depend
on the choice of the finite dimensional space E0 containing Range (I −T ). This
common value will be denoted detT . We say that A is equivalent to B or, more
precisely, A is L-equivalent to B, if detT > 0. This is an equivalence relations
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on the set of correctors of L with just two equivalence classes (see [1]). An
orientation of L is, by definition, one of the two equivalence classes.

Given an oriented operator L : E → F , the elements of its orientation will
be called the positive correctors of L.

We point out that any isomorphism L admits a special orientation, namely
the equivalence class containing the trivial operator 0. We shall refer to this
equivalence class as the natural orientation ν(L) of L. However, if an isomor-
phism L happens to be already oriented, we define its sign as follows: signL = 1
if the trivial operator 0 is a positive corrector of L (i.e. if the orientation of L
coincides with ν(L)), and signL = −1 otherwise.

Unless otherwise stated, the composition L2L1 of two oriented operators will
be oriented by taking as a positive corrector the operator L2A1 +A2A1 +A2L1,
where A1 and A2 are positive correctors of L1 and L2, respectively.

An orientation of a bounded Fredholm operator of index zero induces, by a
sort of stability, an orientation to any sufficiently close bounded operator. In
fact, if A is a corrector of L, then L′ + A is an isomorphism whenever L′ is
sufficiently close to L. Thus, any such L′ can be oriented by choosing A as a
positive corrector.

Assume now f : M → N is a Fredholm map of index zero between real
Banach manifolds. An orientation of f at a point x ∈ M is an orientation of
the Fréchet derivative Df(x) of f at x. An orientation of f is a “continuous”
assignment of an orientation at any point of M (see [1] and [2] for a precise
notion of continuous assignment). By an oriented map we mean a Fredholm
map between real Banach manifolds with a given orientation. Let us point out
that, when M and N are finite dimensional orientable connected manifolds (of
the same dimension), an orientation of f : M → N can be regarded as a pair of
orientations, one of M and one of N , up to an inversion of both of them. The
simplest example of a nonorientable Fredholm map (of index zero) is a constant
function from a finite dimensional nonorientable manifold M into a manifold N
of the same dimension as M . An example of a nonorientable map in the flat
case, i.e. acting between open sets of Banach spaces, can be found in [2].

Notice that a local diffeomorphism f : M → N can be oriented by choosing
the natural orientation at any x ∈ M . This makes sense since Df(x) is an
isomorphism for any x ∈ M . Thus, for example, the covering projection from
the two dimensional sphere S2 onto the (nonorientable) projective space P 2 is
orientable. As shown in [2], if M is simply connected, then any Fredholm map of
index zero f : M → N is orientable (and, consequently, an orientation of f can
be given by assigning an orientation at a chosen point of M). Thus, actually,
any (C1) map from S2 into P 2 is orientable.

A homotopy H : M × [0, 1] → N is called an oriented homotopy provided
that any partial map Hλ := H(·, λ) is Fredholm of index zero, the partial
derivative D1H(·, λ) depends continuously on (x, λ), and a “continuous” choice
of an orientation of D1H(x, λ) is assigned for any (x, λ). Thus, an oriented
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homotopy induces an orientation on any partial map Hλ. In [2] it is proved
that an orientation of any given partial map Hλ induces a unique compatible
orientation on H. As a consequence of this we observe the following. Let
T : E → E be a linear operator in a real Banach space of the form I−K, where I
is the identity and K is a compact operator. Then T has a canonical orientation
induced by the natural orientation of I through the homotopy H(x, λ) = x −
λKx. When T happens to be an isomorphism (i.e. when 1 is not an eigenvalue
of K), two associated orientations can be considered: the natural one and the
canonical one. We define the sign of T to be 1 if these two orientations coincide
and −1 otherwise. One can show that when E is finite dimensional (or, more
generally, when I − T has finite dimensional range), signT coincides with the
sign of the determinant of T . Actually, we point out that, in general, still under
the assumption that T = I −K is invertible, signT coincides with the sign of
the Leray-Schauder index of T at zero (i.e. the Leray-Schauder degree of T in
a ball around zero).

The orientation of the composition gf of two oriented maps, f and g, can
be defined as in the linear case. With this induced orientation, gf will be called
the oriented composition of f and g. From now on, the composition of two (or
more) oriented maps will be regarded as an oriented composition.

Let f : M → N be an oriented map. Given an open subset U of M and
an element y ∈ N , we say that the triple (f, U, y) is admissible if f−1(y) ∩ U is
compact. The degree introduced in [1] is an integer valued function defined in
the class of all the admissible triples and satisfying the following main properties:

Normalization. If f : M → N is a naturally oriented diffeomorphism and
y ∈ N , then

deg (f,M, y) = 1.

Additivity. If (f,M, y) is a admissible triple and U1, U2 are two open
disjoint subsets of M such that f−1(y) ⊂ U1 ∪ U2, then

deg (f,M, y) = deg (f, U1, y) + deg (f, U2, y).

Homotopy invariance. Let H : M × [0, 1] → N be an oriented homotopy
and let y : [0, 1] → N be continuous. If the set

{
(x, λ) ∈ M × [0, 1] : H(x, λ) =

y(λ)
}

is compact, then deg (Hλ,M, y(λ)) does not depend on λ.

The degree of an admissible triple (f, U, y) is firstly defined when y is a
regular value (for f in U) as

deg (f, U, y) =
∑

x∈f−1(y)

signDf(x).

This restrictive assumption on y is then removed by means of the following
lemma of [1].
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Lemma 2.1 Let (f, U, y) be admissible and let W1 and W2 be two open neigh-
borhoods of f−1(y) such that W 1 ∪ W 2 ⊂ U and f is proper in W 1 ∪ W 2.
Then there exists a neighborhood V of y such that for any pair of regular values
y1, y2 ∈ V one has

deg(f,W1, y1) = deg(f,W2, y2).

Lemma 2.1 justifies the following definition of degree for general admissible
triples, taking also into account that Fredholm maps are locally proper.

Definition 2.2 Let (f, U, y) be admissible and let W be any open neighborhood
of f−1(y) such that W ⊂ U and f is proper on W . The degree of (f, U, y) is
given by

deg(f, U, y) := deg(f,W, z),

where z is any regular value for f in W sufficiently close to y.

As pointed out in [1], no infinite dimensional version of the Sard Theorem
is needed in the above definition, since the existence of a sequence of regular
values for f |W which converges to y is a consequence of the Implicit Function
Theorem and the classical Sard-Brown Lemma.

This notion of degree can be compared with the classical ones of Brouwer
and Leray-Schauder as follows.

Assume that f : M → N acts between connected finite dimensional oriented
manifolds (of the same dimension) andM is compact (or, more generally, assume
that f is proper). Thus, the classical Brouwer degree, degB f , is defined. In
this case, if f is C1, the orientation associated in [1] to the pair of orientations
of M and N is such that deg(f,M, y) = degB f , for all y ∈ N .

As regards the Leray-Schauder degree, let f : Ω → E be a C1 compact
vector field on a bounded open subset Ω of a real Banach space E. Assume
that f admits a continuous extension (still denoted by f) to the closure Ω of
Ω. If y 6∈ f(∂Ω), the Leray-Schauder degree degLS(f,Ω, y) is defined. It can be
shown that if f is canonically oriented (i.e. f ′(x) has the canonical orientation
for any x ∈ Ω), then deg(f,Ω, y), which is clearly defined since f is proper on
Ω and f−1(y) ∩ ∂Ω = ∅, coincides with degLS(f,Ω, y).

Given an oriented map f : M → N , the degree deg(f,M, y) does not nec-
essarily depend continuously on y. To see this, observe, for instance, that the
triple (exp,R, y) is admissible for all y ∈ R, but the map y 7→ deg(exp,R, y)
is discontinuous at y = 0. To overcome this inconvenience we introduce the
boundary set ∂f of f , which is a subset of N with the property that the map
y 7→ deg(f,M, y) is well defined and continuous when restricted to N \ ∂f .

Given y ∈ N , we say that f is y-proper if there exists a neighborhood V of
y such that f−1(K) is compact for any compact subset K of V . Clearly, the set{

y ∈ N : f is y-proper}
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is open in N . Consequently, its complement, the boundary set of f , denoted by
∂f , is closed. As shown in Proposition 2.3 below, a map f : M → N is proper
if and only if ∂f is empty.

Given an open subset U of M and y ∈ N , we say that f is y-proper in U if
it is y-proper the restriction f |U of f to U . We will denote ∂(f, U) := ∂(f |U ).
The symbol “∂” in this notation is justified by the fact that, in many instances,
∂(f, U) coincides with f(∂U), where, as usual, ∂U stands for the boundary of
U .

In the following proposition we collect some properties of the boundary set
which will be useful in the next sections. Let us point out in particular that,
as a consequence of 2) below, when f : Ω → E is a compact vector field on the
closure of a bounded open subset Ω of a Banach space E, then ∂(f,Ω) := f(∂Ω).

Proposition 2.3 Let f : M → N and g : N → Z be two continuous maps
between Banach manifolds. The following properties hold true:

1) If K is any compact subset of N such that K ∩ ∂f = ∅, then f−1(K) is
compact. In particular, if ∂f = ∅, then f is proper.

2) Given any open set U ⊂ M , one has f(∂U) ⊂ ∂(f, U). Moreover, if f is
proper on the closure U of U , then ∂(f, U) = f(∂U).

3) If C ⊂ M is a closed set, then f(C) ∪ ∂f is closed. In particular, as
well-known, if ∂f = ∅ (i.e. f is proper), then f(C) is closed.

4) Let y 6∈ ∂f . Let U be a family of pairwise disjoint open subsets of M
whose union contains f−1(y). Then there exists an open neighborhood V
of y such that, for any compact K ⊂ V and any U ∈ U , the set f−1(K)∩U
is compact. In particular, y 6∈ ∂(f, U) for all U ∈ U .

5) ∂(gf) ⊂ g(∂f) ∪ ∂g.

Proof. 1) By the definition of ∂f , for any y ∈ K there exists an open
neighborhood Vy of y such that f is proper as a map from f−1(Vy) to Vy. For
any y ∈ K, let Wy be an open neighborhood of y such that W y ⊂ Vy. Clearly,
for any y ∈ K, f−1(W y ∩K) is compact. On the other hand, the compact set
K can be covered by a finite number of Wy’s, say Wy1 ,Wy2 ,...,Wyn . Therefore,

f−1(K) = f−1((∪n
i=1W yi

) ∩K) = ∪n
i=1f

−1(W yi
∩K)

is compact, being the union of a finite number of compact sets.
2) Take y ∈ f(∂U) and let x ∈ ∂U be such that f(x) = y. Given a sequence

{xn} in U converging to x, consider the compact set K = {f(xn) : n ∈ N}∪{y}.
Clearly, given any closed neighborhood C of y, the set U ∩ f−1(C ∩K) is not
compact, since {xn} converges to x 6∈ U . Thus, f(∂U) ⊂ ∂(f, U). Assume now
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that f is proper in U . We need to show that N \ f(∂U) ⊂ N \ ∂(f, U). Take
y 6∈ f(∂U). Then, since f is proper, V = N\f(∂U) is an open neighborhood of y.
Now, ifK is any compact subset of V , then f−1(K)∩U is compact. Moreover, by
construction, f−1(K)∩∂U = ∅. Consequently, the set f−1(K)∩U = f−1(K)∩U
is compact, i.e. f is y-proper on U .

3) Let {yn} be a sequence in f(C) ∪ ∂f converging to y ∈ N . If yn ∈ ∂f
for infinitely many n, then there exists in ∂f a subsequence of {yn} converging
to y so that, ∂f being closed, y ∈ ∂f . Otherwise, there exists n ∈ N such that
yn ∈ f(C) for n > n. Thus, for any n > n, there exists xn ∈ C such that
f(xn) = yn. Suppose y 6∈ ∂f . Since N \ ∂f is open, without loss of generality
we may assume yn ∈ N \∂f for all n > n. Therefore, K = {yn : n > n}∪{y} is
a compact subset of N \ ∂f . Hence, as proved above, f−1(K) is compact and,
consequently, f−1(K) ∩ C is a compact subset of M containing {xn : n > n}.
Thus, passing to a subsequence if necessary, we can assume xn → x ∈ C, so
that f(x) = y ∈ f(C).

4) Consider the closed setM\(∪U∈UU). By 3) above, f(M\(∪U∈UU))∪∂f is
a closed subset ofN not containing y. Therefore, V = N\(f(M\(∪U∈UU))∪∂f)
is an open neighborhood of y. Now, if K is any compact subset of V , then, by
1), the set f−1(K) is compact and, taking into account that any U is also closed
in ∪U∈UU , we have that f−1(K) ∩ U is compact too.

5) We can prove, equivalently, that if g is z-proper and g−1(z)∩∂f = ∅, then
gf is z-proper. To this end, take z 6∈ ∂g. By 3), the set g(∂f)∪∂g is closed and,
since z 6∈ g(∂f), V = Z \ (g(∂f)∪ ∂g) is an open neighborhood of z. Therefore,
for any compact K ⊂ V , g−1(K) is compact and, since g−1(K) ∩ ∂f = ∅,
(gf)−1(K) = f−1(g−1(K)) is compact as well. 2

Let us now go back to the degree and conclude this section by introducing
a notation which will be used in some of our statements below.

If f : M → N is an oriented map (between real Banach manifolds), then,
given y ∈ N \ ∂f , deg(f,M, y) is well defined and, because of the Homotopy
Property of the degree, depends only on the component V of N \ ∂f containing
y. This common value will be denoted deg(f,M, V ). More generally, given a
not necessarily connected open subset V of N , with the symbol deg(f,M, V )
we shall understand that V ∩ ∂f = ∅ and that deg(f,M, y) is independent of
y ∈ V .

3 The Multiplicativity Property

In this section we are interested in obtaining some extensions of the classical
Leray Product Theorem (see e.g. [19]) both for oriented maps between Banach
manifolds and, in the not necessarily C1 case, for compact vector fields in Banach
spaces.
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The first result is the following multiplicativity formula for the degree of
oriented maps between Banach manifolds.

Theorem 3.1 (Multiplicativity). Let M,N and Z be real Banach manifolds,
f : M → N and g : N → Z oriented maps, C a closed subset of N containing
∂f . Then, for any z /∈ g(C) ∪ ∂g one has

deg(gf,M, z) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ),

where gf is the oriented composition of f and g, and V denotes the family of
the components of N \ C. Therefore, if W is any connected open subset of
Z \ (g(C) ∪ ∂g) one has

deg(gf,M,W ) =
∑
V ∈V

deg(g, V,W ) deg(f,M, V ).

Before proving Theorem 3.1, it is convenient to make the following prelimi-
nary comments to the statement.

a) By assumption, g is z-proper and g−1(z) ∩ ∂f = ∅. Therefore, by 5) of
Proposition 2.3, it follows that z 6∈ ∂(gf). Thus, deg(gf,M, z) is defined.

b) Since g−1(z) ∩C = ∅, by 4) of Proposition 2.3 it follows that z 6∈ ∂(g, V )
for any component V of N \ C. Thus deg(g, V, z) is defined. Moreover, all but
a finite number of the terms deg(g, V, z) are equal to zero, since V is an open
covering of pairwise disjoint sets of the compact set g−1(z). Consequently, the
above sum is in fact finite.

Proof. As observed above, the assumptions imply that the composition gf
is z-proper on M .

Assume first that z is a regular value of gf . Hence, (gf)−1(z) is a finite set
and

deg(gf,M, z) =
∑

x∈(gf)−1(z)

signD(gf)(x).

Since f and g are Fredholm of index zero, then z is a regular value for g and
any y ∈ g−1(z) is a regular value for f . Thus,∑

x∈(gf)−1(z)

signD(gf)(x) =
∑

x∈(gf)−1(z)

signDg(f(x))signDf(x) =

∑
y∈g−1(z)

( ∑
x∈f−1(y)

signDf(x)
)
signDg(y) =

∑
y∈g−1(z)

signDg(y) deg(f,M, y).

Since, by assumption, z ∈ Z \ g(C), by considering the family V of the compo-
nents of N \ C, we can write∑

y∈g−1(z)

signDg(y) deg(f,M, y) =
∑
V ∈V

∑
y∈g−1(z)∩V

signDg(y) deg(f,M, y) =
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∑
V ∈V

∑
y∈g−1(z)∩V

signDg(y) deg(f,M, V ) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ).

Thus, the multiplicativity formula for the degree is proved in the case when z
is, in addition, a regular value of gf .

Consider now the general case and take any z 6∈ (g(C) ∪ ∂g). As a conse-
quence of 3) of Proposition 2.3, Z \ (g(C) ∪ ∂g) is an open set, so that, if z
is any regular value for gf in the component of Z \ (g(C) ∪ ∂g) containing z,
there exists a continuous path joining z and z and having image K contained in
Z \ (g(C) ∪ ∂g). Clearly, K is compact and K ∩ ∂(gf) = ∅. Hence, (gf)−1(K)
is compact, so that, by the homotopy invariance of the degree, one has

deg(gf,M, z) = deg(gf,M, z).

Therefore, by the first part of the proof,

deg(gf,M, z) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ).

On the other hand, by taking into account again that K ⊂ Z \ (g(C) ∪ ∂g), we
obtain that g−1(K) is compact and contained in N \ C. Moreover, since any
V ∈ V, being a component on N \C, is closed, the set g−1(K) ∩ V is compact.
Consequently, again by the homotopy invariance of the degree, it follows

deg(g, V, z) = deg(g, V, z), ∀ V ∈ V.

This completes the proof. 2

In many situations, the maps f and g above turn out to be proper. Hence,
if this is the case, ∂f and ∂g are empty. Therefore, by taking C = ∅, we obtain
the following simplified version of Theorem 3.1.

Corollary 3.2 Let f : M → N and g : N → Z be two proper oriented maps.
Let V be the family of the connected component of N . Then, for any connected
and open subset W of Z, one has

deg(gf,M,W ) =
∑
V ∈V

deg(g, V,W ) deg(f,M, V ).

In the case of finite dimensional oriented manifolds, one can clearly extend to
not necessarily proper maps the notion of Brouwer degree for triples (f,M, y)
with f : M → N continuous and y 6∈ ∂f . This extended notion of degree
will be denoted by degB(f,M, y). In this context, by using a standard smooth
approximation of continuous maps, from Theorem 3.1 we obtain the following
extension of the usual version of the multiplicativity property for Brouwer degree
(see e.g. [3], [15], [17], [19]).
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Theorem 3.3 Let M,N , and Z be oriented finite dimensional manifolds, f :
M → N and g : N → Z be continuous maps, C a closed subset of N containing
∂f . Then, for any z /∈ g(C) ∪ ∂g one has

degB(gf,M, z) =
∑
V ∈V

degB(g, V, z) degB(f,M, V ),

where V denotes the family of the components of N \C. Therefore, if W is any
connected open subset of Z \ (g(C ∪ ∂g) one has

degB(gf,M,W ) =
∑
V ∈V

degB(g, V,W ) degB(f,M, V ).

An immediate consequence of Theorem 3.3 is the following well-known prod-
uct formula (see [12], [13], [16]).

Corollary 3.4 Let f : M → N and g : N → Z be two continuous maps between
compact, connected and oriented finite dimensional manifolds. Then

degB gf = degB g degB f.

Let now Ω be a, not necessarily bounded, open subset of a Banach space
E, and let f : Ω → E be a compact vector field. Take y 6∈ ∂(f,Ω). Hence,
f−1(y) is a compact subset of Ω. Consequently, it makes sense to define the
Leray-Schauder degree of f in Ω with respect to y as follows:

degLS(f,Ω, y) := degLS(f,Ω1, y),

where Ω1 is any bounded open subset of Ω such that Ω1 ⊂ Ω and f−1(y) ⊂ Ω1.
Clearly, the excision property of the Leray-Schauder degree guarantees that the
above definition is independent of Ω1. In particular, if Ω is bounded and f
is defined on Ω, then, as already observed, f is proper on Ω and, by 2) of
Proposition 2.3, ∂(f,Ω) = f(∂Ω). Thus, as usual, we obtain that the degree is
defined for y 6∈ f(∂Ω). More generally, if f is defined only on ∂Ω and y 6∈ f(∂Ω),
then again we will use the notation degLS(f,Ω, y) to indicate the degree of any
compact vector field defined on Ω and coinciding with f on ∂Ω. This makes sense
because of the boundary dependence property of the Leray-Schauder degree.

In the context of compact vector fields in Banach spaces, the analogue of
Theorem 3.1 is the following result, which is an extension of the classical Leray
Product Theorem (see e.g. [3], [15], [17], [19]). We point out that this exten-
sion cannot be considered a corollary of Theorem 3.1, since the maps are not
necessarily of class C1. Nevertheless, the proof is similar and will be omitted.
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Theorem 3.5 Let E be a Banach space and Ω an open subset of E. Let f :
Ω → E and g : Ω̃ → E be (continuous) compact vector fields, where Ω̃ is an
open subset of E containing f(Ω). Then, if C is a closed subset of Ω̃ containing
∂(f,Ω) and z 6∈ g(C) ∪ ∂(g, Ω̃), one has

degLS(gf,Ω, z) =
∑
V ∈V

degLS(g, V, z) degLS(f,Ω, V ),

where V denotes the family of the components of Ω̃ \C. Therefore, if W is any
connected open subset of E \ (g(C) ∪ ∂(g, Ω̃)) one has

degLS(gf,Ω,W ) =
∑
V ∈V

degLS(g, V,W ) degLS(f,Ω, V ).

From Theorem 3.5 above, we obtain the following well-known multiplicativ-
ity formula for Leray-Schauder degree. In the proof of Corollary 3.6 below, we
will make use of the following fact, which we recall here for completeness. If
f : Ω → E is a compact vector field on a bounded open subset Ω of E, then
there exists a proper compact vector field f̂ : E → E extending f . To see this,
suppose f of the form f(x) = x−ϕ(x), with ϕ : Ω → E compact and recall that,
since ϕ(Ω) is relatively compact, by Dugundji extension theorem (see [7]) there
exists ϕ̂ : E → E coinciding with ϕ in Ω and with image contained in co ϕ(Ω),
the convex hull of ϕ(Ω). By Mazur theorem, co ϕ(Ω) is relatively compact (see
e.g. [6]). Thus, f̂(x) = x − ϕ̂(x) is a compact vector field extending f and, as
already observed in the Introduction, proper since ||f̂(x)|| → ∞ as ||x|| → ∞.

Corollary 3.6 Let E be a Banach space and Ω be a bounded open subset of
E. Let f : ∂Ω → E and g : f(∂Ω) → E be a compact vector fields. Then, if
z 6∈ gf(∂Ω), one has

degLS(gf,Ω, z) =
∑

V ∈V,V 6=V∞

degLS(g, V, z) degLS(f,Ω, V ),

where V denotes the family of the components of E \ f(∂Ω) and V∞ is the
unbounded component.

Proof. Let f̂ : E → E and ĝ : E → E be proper compact vector fields
extending f and g respectively. Hence, ∂ĝ = ∅ and, by 2) of Proposition 2.3,
∂(f̂ ,Ω) = f(∂Ω). Therefore, by applying to f̂ and ĝ Theorem 3.5 with Ω̃ = E

and C = f(∂Ω), we obtain, for any z 6∈ ĝf̂(∂Ω),

degLS(ĝf̂ ,Ω, z) =
∑
V ∈V

degLS(ĝ, V, z) degLS(f̂ ,Ω, V ),

where V denotes the family of the components of E \ f(∂Ω).
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Observe now that that one can restrict the above sum only to the bounded
components of E \ f(∂Ω) since degLS(f̂ ,Ω, V∞) = 0. To see this, it is enough
to compute degLS(f̂ ,Ω, y) with y 6∈ f̂(Ω). Moreover, if V is any bounded com-
ponent of E \ f(∂Ω), since ∂V ⊂ f(∂Ω), then ĝ = g on ∂V . Hence, by recalling
that the degree depends only on the restriction of a map to the boundary of an
open bounded set, the above equality becomes

degLS(gf,Ω, z) =
∑

V ∈V,V 6=V∞

degLS(g, V, z) degLS(f,Ω, V ),

as claimed. 2

The following more general version of Theorem 3.1 can be obtained by the
same proof as that given above.

Theorem 3.7 (Generalized multiplicativity). Let M,N and Z be Banach man-
ifolds and let f : M → N and g : N → Z be oriented maps. Given z ∈
Z \ (g(∂f) ∪ ∂g), let V be a family of pairwise disjoint open subsets of N \ ∂f
such that

i) g−1(z) ⊂ ∪V ∈VV ;

ii) for any V ∈ V and for any y1, y2 ∈ V, deg(f,M, y1) = deg(f,M, y2).

Then,
deg(gf,M, z) =

∑
V ∈V

deg(g, V, z) deg(f,M, V ).

By taking in Theorem 3.7 the map f to be the identity with the natural
orientation recalled in Section 2, we have deg(f,M, V ) = 1. Consequently, we
immediately obtain the following generalized additivity formula for the degree.

Theorem 3.8 (Generalized additivity). Let g : N → Z be an oriented map and
let z ∈ Z \ ∂g. Let V be a family of pairwise disjoint open subsets of N such
that g−1(z) ⊂ ∪V ∈VV . Then,

deg(g,N, z) =
∑
V ∈V

deg(g, V, z).

Another nice consequence of Theorem 3.7 is the following formula.

Corollary 3.9 Let f : M → N and g : N → Z be two oriented maps. For
any k ∈ Z, let Vk denote the open subset of N given by Vk = {y ∈ N \ ∂f :
deg(f,M, y) = k}. Then, given z ∈ Z \ (g(∂f) ∪ ∂g), one has

deg(gf,M, z) =
∑
k∈Z

k deg(g, Vk, z).
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4 Some Jordan like theorems

We apply now the multiplicativity formulas obtained in the previous section to
deduce some homotopic versions of Jordan’s theorem.

Let X and Y be two subsets of a Banach space E. We say that X and Y
have the same homotopy type with respect to compact vector fields if there exist
two compact vector fields f : X → Y and g : Y → X such that gf and fg are
homotopic to IX (the identity on X) and IY respectively, through homotopies
which are completely continuous perturbations of the identity.

Theorem 4.1 below is a consequence of the infinite dimensional version
of Alexander-Pontriagin duality due to Gȩba-Granas (see [11] and references
therein). Here we give a simple proof based on degree theory in the outline
of the argument due to Leray in [14], where he assumes that the two sets are
homeomorphic.

Theorem 4.1 Let E be a Banach space and let X and Y be two bounded closed
subsets of E having the same homotopy type with respect to compact vector fields.
Then, E \X and E \ Y have the same number of components.

Proof. By assumption there exist two compact vector fields f : X → Y
and g : Y → X and two homotopies H : X × [0, 1] → X and K : Y × [0, 1] → Y
of the form H(x, λ) = x − h(x, λ), K(y, λ) = y − k(y, λ) respectively, where
h : X×[0, 1] → E and k : Y ×[0, 1] → E are compact maps such that h(·, 0) = 0,
h(·, 1) = IX − gf , k(·, 0) = 0, k(·, 1) = IY − fg. As already observed in the
above section, f and g can be extended to proper compact vector fields on E,
say f̂ : E → E and ĝ : E → E respectively, such that I − f̂ and I − ĝ have
relatively compact image.

Let U and V denote the family of the components of E \ X and E \ Y
respectively. Observe first that, for any U ∈ U and V ∈ V, degLS(f̂ , U, V )
and degLS(ĝ, V, U) are defined. In fact, take for instance any V ∈ V and
y ∈ V . Since f̂ is proper in E (and, thus, in U), by 2) of Proposition 2.3,
∂(f̂ , U) = f(∂U). On the other hand, since ∂U ⊂ X, it follows f(∂U) ⊂ Y.

Hence, ∂(f̂ , U) ⊂ Y , so that degLS(f̂ , U, y) makes sense. A similar argument
holds for degLS(ĝ, V, x), x ∈ U .

Let G1 and G2 be the free abelian groups generated by U and V respectively.
Define the homomorphisms ϕ : G1 → G2 and ψ : G2 → G1 by

ϕ(U) =
∑
V ∈V

degLS(f̂ , U, V )V, U ∈ U

and
ψ(V ) =

∑
U∈U

degLS(ĝ, V, U)U, V ∈ V.

The result follows if we show that ϕ and psi are isomorphisms.
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One has

ψϕ(U) = ψ(
∑
V ∈V

degLS(f̂ , U, V )V ) =
∑
V ∈V

degLS(f̂ , U, V )ψ(V ) =

∑
V ∈V

(
degLS(f̂ , U, V )

∑
W∈U

degLS(ĝ, V,W )W
)

=

∑
W∈U

( ∑
V ∈V

degLS(f̂ , U, V ) degLS(ĝ, V,W )
)
W.

Our aim now is to apply to f̂ and ĝ the multiplicativity Theorem 3.5 with
Ω = U , Ω̃ = E, C = Y . As observed above, Y is a closed subset of E containing
∂(f̂ , U). Moreover, since ĝ(Y ) ⊂ X, the connected open subset W of E \X is
in fact a connected open subset of E \ ĝ(Y ). Therefore, by Theorem 3.5, we
obtain∑

W∈U

( ∑
V ∈V

degLS(f̂ , U, V ) degLS(ĝ, V,W )
)
W =

∑
W∈U

degLS(ĝf̂ , U,W )W.

Let h :
(
E × {0}

)
∪

(
X × [0, 1]

)
∪

(
E × {1}

)
→ E be the map defined by

h(x, λ) =


0 if λ = 0
h(x, λ) if (x, λ) ∈ X × [0, 1]
x− ĝf̂(x) if λ = 1.

Clearly h is a continuous map defined on a closed subset of E×[0, 1] and it is easy
to check that its image is relatively compact. Hence, as previously observed,
h can be extended to a compact map ĥ : E × [0, 1] → E. Consequently, the
compact vector field Ĥ = IE − ĥ is a proper homotopy joining the identity with
ĝf̂ and satisfying Ĥλ(X) := Ĥ(X,λ) ⊂ X for all λ ∈ [0, 1]. Moreover, as above,
it is easily seen that ∂(Ĥλ, U) ⊂ X, ∀ λ ∈ [0, 1]. Therefore, degLS(Ĥλ, U,W ) is
defined and independent of λ. Hence,

degLS(I, U,W ) = degLS(Ĥ0, U,W ) = degLS(Ĥ1, U,W ) = degLS(ĝf̂ , U,W ).

Thus,

ψϕ(U) =
∑

W∈U
degLS(ĝf̂ , U,W )W =

∑
W∈U

degLS(I, U,W )W.

Clearly, degLS(I, U,W ) is equal to 1 if W = U and equal to 0 if W 6= U .
Consequently,

ψϕ(U) = U, U ∈ U .

By a similar argument we also obtain

ϕψ(V ) = V, V ∈ V.
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The above equalities show that the free abelian groups G1 and G2 have the
same rank, that is, the families U and V have the same cardinality. This proves
the assertion. 2

Since any continuous map in Rn is a compact vector field, we obtain the
following extension of the well known Jordan Separation Theorem. The same
result can also be deduced as a consequence of the classical Alexander duality
as is shown, for instance, in [4]. Another elegant proof of the Jordan theorem
can be found in [5].

Theorem 4.2 Let X and Y be compact subsets of Rn having the same homo-
topy type. Then, Rn \X and Rn \ Y have the same number of components.

We close the paper by noting that the multiplicativity property of the ori-
ented degree proved in Theorem 3.1 allows us to prove a quite general version
in Banach manifolds of a Jordan’s like separation theorem. To this end, let
M and N be Banach manifolds and let X and Y be two closed subsets of M
and N respectively. We say that (M,X) and (N,Y ) have the same proper
oriented homotopy type, provided that there exist two proper orientable maps
f̂ : (M,X) → (N,Y ) and ĝ : (N,Y ) → (M,X) such that ĝf̂ and f̂ ĝ are homo-
topic to the identity maps I(M,X) and I(N,Y ) through proper oriented homotopies
respectively.

We close with the following result whose proof is in the outline of that of
Theorem 4.1 above, and, therefore, will be omitted.

Theorem 4.3 Let M and N be two Banach manifolds and let X and Y be two
closed subsets of M and N respectively. Assume (M,X) and (N,Y ) have the
same proper oriented homotopy type. Then M \ X and N \ Y have the same
number of components.
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