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Abstract

Dans cette note on donne une définition du degré topologique pour une classe d’applications
(nommées orientables) de Fredholm d’indice zéro entre des variétés de Banach réelles.

On introduit d’abord une notion algébrique d’orientation pour tout opérateur linéaire de Fredholm
d’indice zéro entre deux espaces vectoriels réels. Cette notion, qui est définie sans aucune structure
topologique, permet de donner une définition d’orientabilité pour des applications (non-linéaires) de
Fredholm d’indice zéro définies entre des variétés de Banach.

Le degré que nous présentons vérifie les plus importantes propriétés normalement connues dans
la théorie classique, et, en particulier, il est invariant par rapport & des homotopies de classe C*.

1 Introduction and preliminaries

In this paper we define an integer valued topological degree for a class of Fredholm maps of index zero
between real Banach manifolds (i.e. C! maps between manifolds such that at any point of the domain
the derivative is Fredholm of index zero). The material of the article is a revised and improved version
of part of the PhD dissertation of one of the authors (see [3]).

Our intention is to extend and simplify the Elworthy-Tromba approach to degree theory avoiding the
concept of Fredholm structure and any related notion of orientation on the source and target manifolds
(see [6] and [7]). To this aim we introduce a simple concept of orientation for Fredholm maps of index
zero between Banach manifolds. This notion does not coincide with the one introduced by Fitzpatrick,
Pejsachowicz and Rabier (see [8] and references therein), it is stable (in the sense that any map “sufficiently
close” to an orientable map is orientable), and not based on the Leray-Schauder degree theory (as in [8]).
Moreover, in the finite dimensional case, it turns out to be equivalent to the concept of orientation for
maps between not necessarily orientable manifolds introduced, with completely different methods, by Dold
in [5]. In particular, when f : M — N is a map acting between finite dimensional orientable manifolds of
the same dimension, an orientation of f (in our sense) can be regarded as a pair of orientations of M and
N, up to an inversion of both of them (thus, if M is connected and N = M, the map f has a canonical
orientation).

Our notion is merely based on an elementary, purely algebraic, concept that we introduce here: the
orientation of an algebraic Fredholm linear operator of index zero L : E — F acting between real vector
spaces (no additional structure is needed). It turns out that any such an operator has exactly two
orientations and, when the vector spaces F and F' are actually Banach and the operator L is bounded,
any of the two possible orientations of L induces, by a sort of continuity, an orientation on any operator
L’ sufficiently close to L (in the operator norm). Thus, roughly speaking, an oriented map from an open
subset Q of FE into F' is a nonlinear Fredholm map of index zero f : Q — F together with a function
a which assigns, in a continuous way, an orientation a(z) of the Fréchet derivative Df(z) of f at any



x € Q. This notion of oriented map between (real) Banach spaces is easily extended to the context of
(real) Banach manifolds.

We will show that any isomorphism L between Banach spaces (or, more generally, vector spaces)
admits a natural orientation v(L), and this will be crucial in our definition of degree.

As for the case of Brouwer degree, the first step is to introduce our notion of degree in a special case.
Namely, given a proper, oriented map f : M — N between Banach manifolds, and a regular value y € N,
the degree of f at y is the integer

deg(f, M,y) = sgnDf(w),

zef~(y)

where sgnD f(x) is 1 if the orientation a(x) of the derivative Df(x) : T,M — T} N coincides with
the natural orientation v(D f(z)), and —1 otherwise. In this way, when M and N are finite dimensional
oriented manifolds of the same dimension, f : M — N is a C! proper map, and y € N is a regular value,
we get exactly the Brouwer degree degg(f, M,y) of f at y.

The second step is a kind of finite dimensional reduction result (as in the Leray-Schauder degree
theory). Roughly speaking we prove that given a proper, oriented map f : M — N between Banach
manifolds, and a finite dimensional oriented submanifold N; of N which is transverse to f, then:

a) the manifold M; = f~1(N;), which is of the same dimension as Nj, inherits an orientation from the
orientations of f and Ny;

b) any regular value y € N; for the restriction of f to the pair of manifolds M; (as domain) and N; (as
codomain) is a regular value for f : M — N and the Brouwer degree degyg(f, M1,y) coincides with the
degree defined above.

Finally, as a consequence of the previous step, we prove that if f : M — N is a proper, oriented map
and y € N is any value, then there exists a neighborhood V' of y such that for any pair of regular values
for f, y1, y2 € V, one has

deg(f7 M7 yl) = deg(f7 Ma 292) :

It is clear now how we define the degree for any proper, oriented map f: M — N, at any y € N: let
R denote the (open dense) subset of N of the regular values of f, then

deg(f,M,y):= lim Rdeg(f, M,z).

z—Y, z€

Actually our degree will be extended to any triple (f, M,y), where f : M — N is an oriented map
and y € N is such that f~!(y) is compact. This extension is possible since, we recall, Fredholm maps
between Banach manifolds are locally proper.

We conclude our work by proving some fundamental properties of our degree, such as Normalization,
Additivity and Homotopy Invariance for C* Fredholm homotopies of index 1 (and not merely C? as in
[6], [7] and [8]).

Regarding a comparison between the content of this paper and the Elworthy-Tromba theory, we
observe that a bounded linear automorphism of an infinite dimensional real Banach space which is not a
compact perturbation of the identity I (such as 27) is not admissible for their degree, unless one considers
two different Fredholm structures (and orientations) on the same space (one as domain and the other as
codomain). This peculiarity is still present in the extension of the Elworthy-Tromba degree to the case
of Fredholm maps with non-negative index due to Borisovich, Zvyagin and Sapronov [4]. In fact, in their
extension, the notion of orientation remains unchanged.

However, Fitzpatrick, Pejsachowicz and Rabier in [8], by means of the Leray-Schauder theory, define a
concept of orientability for any Fredholm map of index zero between real Banach manifolds which avoids
the additional (and often unnatural) notion of Fredholm structure on the manifolds (in this way, any such
a map is either orientable or not orientable). Using this concept, they successfully define an integer valued
degree for the class of C? oriented maps which satisfies fundamental properties such as Normalization,



Additivity and Homotopy Invariance, and coincides with our degree when both are defined. This is not
surprising since, as proved in [2], there is only one integer valued degree in Banach spaces satisfying
these three properties. We believe the same is true in Banach manifolds if we add two more properties:
Reduction and Topological Invariance (see section 3).

We observe however that the concept of orientability in [8] does not coincide with our notion. For
example a constant map from a non-orientable finite dimensional real manifold into a manifold of the
same dimension is orientable according to [8] and not orientable with our definition. With this example
one could show that their notion of orientability is unstable (i.e. small perturbations of orientable maps
may happen to be non-orientable).

We close this section with some notation.
Given a Banach manifold M and a point z € M, T,, M will denote the tangent space of M at x.

Given a map f between two Banach manifolds M and N, and a point x € M, Df(z) : T,M — TN
denotes (when defined) the Fréchet derivative of f at x.

If My, My and N are Banach manifolds, f : M; x My — N is a map, and (z,y) € M; X Moy,
Dy f(z,y) : TuMy — Ty(y,) N stands (when defined) for the partial derivative of f at (x,y) with respect
to the first variable; that is, the Fréchet derivative at x of the partial map f(-,y). An analogous notation
is given for the derivative in the second variable.

The use of the symbol “o” to denote the composition of maps is reserved only to the cases when its
omission could cause some confusion. In many cases we prefer the multiplicative notation.

2 Orientable maps

In this section we introduce a completely algebraic notion of orientation for Fredholm linear operators
of index zero between real vector spaces. We will show that, in the context of Banach spaces, an
oriented bounded operator induces, by “continuity”, an orientation to any sufficiently close operator.
This “continuous transport of orientation” allows us to define a concept of oriented C! Fredholm map of
index zero between open subsets of Banach spaces (or, more generally, between Banach manifolds).

Let F and F be two real vector spaces. We recall that a linear operator L : E — F' is said to be
(algebraic) Fredholm if both KerL and coKerL have finite dimension. The indezx of a Fredholm operator
L is the integer

indL = dim KerL — dim coKerL.

Given a Fredholm operator of index zero, L : E — F, we say that a linear operator A : E — F is
a corrector of L provided that its range is finite dimensional and L + A is an isomorphism. The set of
correctors of L will be denoted by C(L).

Tt is easy to see that C(L) is nonempty. Indeed, if L is an isomorphism the trivial operator is a
corrector of L; otherwise, take as a corrector any linear operator A : E — F which is injective on KerL
and such that KerA @ KerL = E and RangeA @ Rangel = F.

We introduce the following equivalence relation in C(L). Given A, B € C(L), consider the composition
(L + B)~'(L + A), which is clearly an automorphism of E. It is not difficult to check that the operator

K=I-(L+B)"Y(L+A4),

where [ is the identity of E, has finite dimensional range. Let Ey be any finite dimensional subspace
of E containing RangeK. Since I — K is an isomorphism and (I — K)(Ey) C Ejy, the restriction (I —
K)|g, : Eo — Ep is an isomorphism as well. We say that A is equivalent to B (or, more precisely, A is
L—equivalent to B), written A ~ B, if the determinant of (I — K)|g,, which is well defined, is positive
(we use the convention that this determinant is 1 when Ey is trivial, which may happen only if A = B).

To see that this definition is well posed we will show that, given another finite dimensional space Ey
containing RangeK, one has



det(I — K)|p, = det(I — K)|g,. (2.1)

Since the intersection of Fy and Ej is again a finite dimensional space containing RangekK, it is
sufficient to prove that (2.1) holds in the case when E; contains Fy. Assume therefore this condition is
verified and let E} be a complement of Fy in F;. That is, let

E, = E, @ Eq.

With this decomposition (I — K)|g, is represented by the matrix

( _I—%l (1—2{)|E0 >’ (22)

where I, is the identity of Efj and Ko is the projection onto Ey of the restriction of K to Ej. The
equality (2.1) follows immediately from (2.2).

We claim that “~” is actually an equivalence relation (with just two equivalence classes). Reflexivity
and symmetry are easy to verify. To check transitivity, consider A, B, C' € C(L) such that A ~ B, B~ C
and define the following operators:

Kap= I—(L+B)"YL+A),
Kpc= I—-(L+C) YL+ B),
Kac= I—-(L+C) YL+ A).

Given a finite dimensional subspace Ej of I/ containing the images of K4 g, Kp c and K4 ¢, one has

det((L +C) (L + A))[p, =
det((L+C)"Y (L + B)(L+B)~""(L+ A))|5, =
det((L + C)~H(L + B))|m, - det((L + B) " (L + A))|m,

and, consequently, A ~ C.

The set C(L) is easily seen to be composed of two equivalence classes. We can therefore introduce the
following definition of orientation for an algebraic Fredholm operator of index zero.

Definition 2.1 An orientation of an algebraic Fredholm operator of index zero L : E — F' is one of the
two equivalence classes of C(L). The operator L is said to be oriented if an orientation is actually chosen.

We point out that in the particular case when L : F — F' is a bounded Fredholm operator of index
zero between real Banach spaces, a partition in two equivalence classes of the set of compact correctors
of L was introduced for the first time (as far as we know) by Pejsachowicz and Vignoli in [12] (see also
[11] and reference therein for further applications of this idea). Namely, if A and B are compact (linear)
correctors of L, the map (L + B)~}(L + A) is of the form I — K, with K a compact operator. Thus the
Leray-Schauder degree of I — K is well defined (since (I — K)~!(0) is compact) and equals either 1 or —1
(by a well known result of Leray-Schauder). Now, the operator A is said to be in the same class of B if
the degree of I — K is 1 and in a different class otherwise. Clearly, as a consequence of the definition of
Leray-Schauder degree, this equivalence relation coincides with our notion in the case when one considers
only bounded correctors with finite dimensional image. Apart for the sake of simplicity, in introducing
our concept of orientation, the reason why we do not use the equivalence relation in [12] is due to the
fact that we want to base our degree just upon the Brouwer theory.

A prelude to the idea of partitioning the set of correctors of an algebraic Fredholm operator of index
zero L : E — F can be found in the pioneering paper of Mawhin [10]. Here is a brief description of this
idea. Fix a projector P : E — E onto KerL and a subspace Fj of F' such that F; & RangeL = F. To any
isomorphism J : KerL — F} one can associate the corrector JP of L (this of course does not exhaust



C(L)). Two such correctors, Jy P and Jo P, are equivalent if det(J; *.J;) > 0. One can check that, except
in the case when L is an isomorphism (which is crucial to us), this equivalence relation produces two
equivalence classes, each of them contained in one class of C(L) (and not both in the same one).

According to Definition 2.1, an oriented operator L is a pair (L,w), where L : E — F'is a Fredholm
operator of index zero and w is one of the two equivalence classes of C(L). However, to simplify the
notation, we shall not use different symbols to distinguish between oriented and nonoriented operators
(unless it is necessary).

Given an oriented operator L : E — F'| the elements of its orientation will be called the positive
correctors of L and denoted by C;(L). The complement of C4 (L) in C(L) are the negative correctors of
L (denoted by C_(L)).

The composition Lyl of two oriented operators can be naturally oriented by taking as a positive
corrector the operator LoA; + As Ay + As Ly, where Ay and Ay are positive correctors of L1 and Lo,
respectively. From now on, unless otherwise stated, the composition of two (or more) oriented operators
will be considered as an oriented composition.

We point out that any isomorphism L admits a special orientation, namely the equivalence class
containing the trivial operator 0. We shall refer to this equivalence class as the natural orientation v(L)
of L. However, if an isomorphism L happens to be already oriented, it is convenient to define its sign as
follows: sgnL = 1 if the trivial operator 0 is a positive corrector of L (i.e. if the orientation of L coincides
with v(L)), and sgnL = —1 otherwise.

It is interesting to observe, and not difficult to show, that, in the case when E and F' are finite
dimensional (necessarily of the same dimension), an orientation of a linear operator L : E — F' determines
uniquely an orientation of the product space E x F' (and vice versa). In fact, if L is an oriented operator
from F into F, to determine an orientation of F x F' take any of the two orientations of F, take any
positive corrector A of L, and consider the orientation of F' induced by the chosen one in E through the
isomorphism L + A (that is, in such a way that L + A becomes orientation preserving). Thus F x F
turns out to be oriented by considering the product of the two orientations of E and F'. It is simple to
check that this orientation of the product space does not depend on the chosen one of E and the positive
corrector of L. Conversely, given an orientation of E x F', every linear operator L : E — F can be
oriented by choosing as positive correctors of L those linear operators A : £ — F which make L + A an
orientation preserving isomorphism (this makes sense since an orientation of E x F' can be regarded as a
pair of orientations of E and F, up to an inversion of both of them).

An important particular case is when L is an endomorphism of a finite dimensional space F. In this
situation the product E x E turns out to be canonically oriented (as a square of any orientation of F).
Thus every L : E — E turns out to be canonically oriented as well (with orientation denoted by x(L)).
It is easy to check that, with this canonical orientation, if L : E — FE is an isomorphism, the sign of L
(defined above) is just the sign of its determinant. In other words, if L is an automorphism of a finite
dimensional space, det(L) is positive if and only if the canonical and the natural orientations coincide.

We conclude this algebraic preliminaries by pointing out a property which may be regarded as a sort
of reduction of the orientation of an operator to the orientation of its restriction to a convenient pair
of subspaces (of the domain and codomain, respectively). This will be useful in the next section where
we will show that our degree is just the Brouwer degree of a suitable restriction to finite dimensional
manifolds.

Let E and F' be two real vector spaces and let L : E — F be an algebraic Fredholm operator of index
zero. Let Fy be a subspace of F' which is transverse to L (that is, F; + RangeL = F'). Observe that in
this case the restriction L; of L to the pair of spaces E; = L™1(F}) (as domain) and F; (as codomain) is
again a Fredholm operator of index zero. We claim that an orientation of L gives an orientation of L,
and vice versa. To see this, let Ey be a complement of E; in E and split E and F as follows: F = Eg® E,
F = L(Ey) ® Fy. Thus L can be represented by a matrix

Ly O
0 L



where Lo — the restriction of L to the spaces Ey and L(Ey) — is an isomorphism. Now our claim is a
straightforward consequence of the fact that any linear operator A : E — F', represented by

0 0
0 A
is a corrector of L if and only if A; is a corrector of L.
According to the above argument, it is convenient to introduce the following definition.

Definition 2.2 Let L : E — F be a Fredholm operator of index zero between real vector spaces, let Fy
be a subspace of F' which is transverse to L, and denote by L the restriction of L to the pair of spaces
L=1(Fy) and F;. Two orientations, one of L and one of Ly, are said to be correlated (or one induced by
the other) if there exist a projector P : E — E onto E; and a positive corrector A; of Ly such that the
operator A = JA; P is a positive corrector of L, where J : F} — F' is the inclusion.

The concept of orientation of an algebraic Fredholm operator of index zero L : E — F does not
require any topological structure on F and F', which are supposed to be just real vector spaces. However,
in the context of Banach spaces, this completely algebraic attribute of L has a sort of “local influence”
to its “neighbors”. More precisely, assume that L : E — F' is a Fredholm operator of index zero between
real Banach spaces; that is, L is algebraic Fredholm of index zero and, in addition, bounded. Given an
orientation of L, choose a positive bounded corrector A of L (whose existence is ensured by the Hahn-
Banach theorem) and observe that A is still a corrector of any bounded operator L’ in a convenient
neighborhood of L in the Banach space of bounded linear operators from E into F. Therefore, any L’
with the property that L’ + A is an isomorphism can be oriented by choosing A as a positive corrector.
Roughly speaking, this means that L induces, by a sort of stability, an orientation to any sufficiently
close bounded operator.

From now on, unless otherwise specified, F and F will denote real Banach spaces, L a Fredholm
operator from E into F' and L(E, F') the Banach space of bounded linear operators from E into F. If
E = F we will write L(E) instead of L(E, E).

For the sake of simplicity, in the context of Banach spaces, the set of continuous correctors of L will
be still denoted by C(L), as in the algebraic case, instead of C(L) N L(E, F'). Therefore, from now on, by
a corrector of L we shall actually mean a continuous corrector. It is clear that an orientation of L in the
previous sense can be regarded as an equivalence class of continuous correctors of L.

We recall that the set ®(F, F') consisting of the Fredholm operators from E into F'is open in L(E, F),
and the integer valued map ind : ®(E, F') — Z is continuous. Consequently, given n € Z, the set ®,,(E, F)
of Fredholm operators of index n is an open subset of L(E, F).

We introduce now a concept of orientation for a continuous map into ®o(E, F').

Definition 2.3 Let A be a topological space and h : A — ®g(FE, F) a continuous map. An orientation
of h is a continuous choice of an orientation a(A) of h(A) for each A € A; where “continuous” means that
for any A € A there exists Ay € a(A) which is a positive corrector of h(\’) for any A in a neighborhood
of A. A map is orientable if it admits an orientation and oriented when an orientation has been chosen.
In particular, a subset A of ®(F, F) is said to be orientable (or oriented) if so is the inclusion ¢ : A —
Oy (E, F).

Given L € ®y(E, F'), one can prove that if A € C(L) is L—equivalent to B, then A is L'—equivalent
to B for any L’ sufficiently close to L. This implies that the above notion of “continuous choice of an
orientation” is equivalent to the following: “for every A\ € A and every positive corrector A of h()\) there
exists a neighborhood U of A such that A € a(\'), VN € U”.

Clearly any orientable map h : A — ®o(FE, F') admits at least two orientations. In fact, if h is oriented
by «, reverting this orientation at any A € A, one gets what we call the opposite orientation «_ of h.



Observe also that two orientations of h coincide in an open subset of A, and for the same reason the
set in which two orientations of h are opposite one to the other is open. Therefore, if A is connected,
two orientations of h are either equal or one is opposite to the other. Thus, in this case, h, if orientable,
admits exactly two orientations.

The notion of continuity in the above definition could become the usual one by introducing the
following topological space (actually, a real Banach manifold). Let ®q(FE,F) denote the set of pairs
(L,w) with L € ®y(E, F) and w one of the two orientations of L. Given an open subset U of ®y(E, F)
and a bounded linear operator with finite dimensional range A : E — F, consider the set

Wy = {(L,w) € Bg(E,F): L e U, A€ w}.

It is easy to check that the family of sets obtained in this way constitute a base for a topology on <T>0 (E,F),
and the natural projection p : (L,w) — L is a double covering of ®o(E, F'). In this way an orientation of
amap h: A — ®u(E, F) could be regarded as a lifting h= (h,a) : A — ®o(E, F) of h, and known results
from covering space theory could be used for deducing properties of orientable maps (not quite needed
in this article). However, since the situation when E and F are replaced by real Banach manifolds is a
little bit more complicated and requires the concept of space of jets (or substitute notions), which would
bring us too far away from the purpose of this paper, this argument will be treated in a forthcoming work
regarding the orientation, in which we will show, among other results, that if £ is a separable infinite
dimensional Hilbert space, then ®y(FE) is not orientable.

It is clear that the above definition can be used to give a notion of orientation for nonlinear Fredholm
maps of index zero between open subsets of Banach spaces. In fact, let f : @ — F be a map from an open
subset €2 of a Banach space F into a Banach space F. Assume that f is Fredholm of index zero; that is
f is C! and the Fréchet derivative Df(z) of f at = belongs to ®q(E, F) for any = € Q. An orientation
of f is just an orientation of the continuous map Df : x — Df(z) € ®¢(F, F), and f is orientable (resp.
oriented) if so is D f according to Definition 2.3.

We extend now this notion to the context of Banach manifolds. Recall first that a map f: M — N
between Banach manifolds is Fredholm of index n if it is C! and its derivative, Df(z) : T,M — TN,
is Fredholm of index n for any x € M.

Definition 2.4 Consider two Banach manifolds M and N, and let f : M — N be Fredholm of index
zero. An orientation « of f is a continuous choice of an orientation a(x) of D f(z) for any = € M; where
continuous means that, given a selection of positive correctors {4, € a(x)},,,, and two local charts
p:U— FEandv:V — F of M and N respectively, with f(U) C V, the family of linear operators

{Dv(f(e71(2))) 0 Ap-1(ey © D™ (D)},

defines an orientation of the composite map 9 fo~t: p(U) — F.

We observe that when M and N are finite dimensional orientable connected manifolds (of the same
dimension), an orientation of f : M — N can be regarded as a pair of orientations, one of M and one
of N, up to an inversion of both of them. The orientation of the composition gf of two oriented maps
f and g can be defined as in the case of oriented linear operators. With this induced orientation gf will
be called the oriented composition of f and g. From now on, unless otherwise stated, the composition of
two (or more) oriented maps will be regarded as an oriented composition.

Remark 2.5 A local diffeomorphism f : M — N between two Banach manifolds can be oriented with
orientation v defined by 0 € v(D f(x)),Vz € M. We will refer to this orientation as the natural orientation
of the local diffeomorphism f.

Let f : M — N be an oriented map between Banach manifolds and let N7 be a submanifold of N which
is transverse to f; that is T(,) N1 + RangeD f(x) = T, N, Va € f~1(Ny). Tt is known that in this case



M; = f~1(N;) is a submanifold of M and the restriction f; of f to M; (as domain) and N; (as codomain)
is again a Fredholm map of index zero. Moreover, for any x € M, one has T, M; = Df(:c)’l(Tf(x)Nl)
(see for example [1] and [9] for general results about transversality). Therefore, according to Definition
2.2, given any x € M, the orientation of D f(x) : T, M — T4, N induces an orientation on its restriction
Dfi(x) : T,My — Ty N1, which is just the derivative of the restriction f; : M1 — Ni of f. As a
consequence of the “continuity” assumption in the definition of orientation of a Fredholm map of index
zero, such a collection of orientations of Df;(z), € My, is actually an orientation of f; : My — Ny
that, from now on, we shall call the orientation on f1 induced by f. Observe also that, given x € M,
Df(x) : TyM — Ty N is an isomorphism if and only if so is D fi(x) : Tp My — Ty N1 and, with
the induced orientation, one has sgnD f(z) = sgnDf1(z); and this will imply one of the fundamental
properties of the degree (Reduction property).

The above Definition 2.4 can be slightly modified in order to obtain a notion of orientation for
continuous homotopies of Fredholm maps of index zero between Banach manifolds M and N. For
simplicity, consider first the case when M is an open subset €2 of a Banach space F, and N is a Banach
space F. We say that a continuous map H : Q x [0,1] — F is an oriented homotopy if it is continuously
differentiable with respect to the first variable and, for any (z,t) € Q x [0,1], the partial derivative
Dy1H(z,t) : E — F is an oriented (Fredholm) operator (of index zero) with orientation «(x,t) which
depends continuously on (z, t); in the sense that « is an orientation of the map D1 H : Qx[0,1] — ®¢(E, F)
according to Definition 2.3.

Assume now that M and N are two Banach manifolds and H : M x [0,1] — N is a continuous map.
As above, H is an oriented homotopy if it is continuously differentiable with respect to the first variable
and, for any (z,t) € M x [0, 1], the partial derivative D1 H (z,t) : T, M — Tg(54)N is an oriented operator
with orientation a(x,t) which is continuous as a function of (x,t). Where, in this case, continuous means
that, given any two local charts ¢ : U — F and ¢ : V — F of M and N respectively, the map

(2,t) = DY(H(p™ ' (2),1)) o D1H (07" (2),1) 0 D' (2) € ®o(E, F),

which is defined in an open (possibly empty) subset of E x [0, 1], turns out to be oriented (according to
Definition 2.3) by

(z,t) = {DY(H (¢ (2),1)) 0 Ao Dp™'(2) : A€ a(p™'(2),1)} .

Clearly, given an oriented homotopy H : M x [0,1] — N, any partial map H; := H(-,t) is an oriented
map from M into N, according to Definition 2.4. One could actually show that, given a homotopy
H : M x [0,1] — N of Fredholm maps of index zero, if both H and D;H are continuous and Hy is
orientable, then all the partial maps H; are orientable as well, and an orientation of Hy induces a unique
orientation on any H; which makes H an oriented homotopy (this result is not needed here and will
appear elsewhere).

3 Degree for oriented maps

Let f : M — N be an oriented map between Banach (boundaryless) manifolds. Given an element y € N,
we call the triple (f, M,y) admissible (or we say that f is y-admissible in M) if f~1(y) is compact.
Given f as above, the pair (f,y) contains the same information as the triple (f, M,y) (the domain M and
the codomain N of f being implicit in the definition of f). However, the redundant notation (f, M,y)
is convenient in order to consider the restriction of f to an open subset U of M (which is still a Banach
manifold). In this case we say that the triple (f,U,y) is admissible if so is (f|v, U, y), that is if the set
f~Y(y) NU is compact.

A triple (f, M, y) is called strongly admissible provided that M is an open subset of a Banach manifold
R, f admits a continuous extension to the closure M of M (again denoted by f), this extension is proper,
and y ¢ f(OM). Clearly any strongly admissible triple is also admissible. Moreover, if (f, M,y) is



strongly admissible and U is an open subset of M such that U N f~!(y) is compact, then (f,U,y) is
strongly admissible as well. Finally, we recall that Fredholm maps are locally proper; thus, if (f, M,y) is
admissible, the compactness of f~1(y) implies the existence of an open neighborhood U of f~!(y) which
makes (f,U,y) a strongly admissible triple; and this fact will be crucial in this section.

Our aim here is to define a map, called degree, which to every admissible triple (f, M,y) assigns an
integer, deg(f, M,y), in such a way that the following five properties hold:

i) (Normalization) If f: M — N is a naturally oriented diffeomorphism and y € N, then

deg(f, M,y) = 1.

ii) (Additivity) Given an admissible triple (f, M,y) and two open subsets Uy, Us of M, if Uy NU; = 0
and f~1(y) C Uy UUy, then (f,Uy,y) and (f,Us,y) are admissible and

dEg(fa Ma y) = deg(fa Ulvy) + deg(f7 U27y)‘

iil) (Topological Invariance) If (f, M,y) is admissible, ¢ : R — M is a naturally oriented diffeomorphism
from a Banach manifold R onto M and ¢ : N — Z is a naturally oriented diffeomorphism from the
codomain N of f onto a Banach manifold Z, then

deg(f, M,y) = deg(¢ fo, R, (y)),

where 1 f is the oriented composition.

iv) (Reduction) Let f : M — N be an oriented map and let Ny be a submanifold of N which is transverse
to f. Denote by f; the restriction of f to the pair of manifolds M; = f~!(N;) and N; with the orientation
induced by f. Then

deg(fa M? y) = deg(flleay)7

provided that f~!(y) is compact.
v) (Homotopy Invariance) Let H : M x [0,1] — N be an oriented homotopy and let y : [0,1] — N be a
continuous path. If the set

{(z,t) e M x [0,1] : H(z,t) = y(t)}

is compact, then deg(H;, M, y(t)) is well defined and does not depend on ¢ € [0, 1].
In the sequel we shall refer to i)—v) as the fundamental properties of degree.

We define first our notion of degree in the special case when (f, M,y) is a regular triple; that is
when (f, M,y) is admissible and y is a regular value for f in M. This implies that f~!(y) is a compact
discrete set and, consequently, finite. In this case our definition is similar to the classical one in the finite
dimensional case. Namely

deg(f, M,y) = Z senDf(x), (3.1)
z€f~(y)
where, we recall, sgnD f(z) = 1 if the trivial operator is a positive corrector of the oriented isomorphism
Df(x):T,M — TyN, and sgnD f(xz) = —1 otherwise.

It is evident that the first four fundamental properties of the degree hold true for the class of regular
triples, and after Definition 3.3 below it will be clear that they are still valid in the general case.

A straightforward consequence of the Additivity is the following property that we shall need (for the
special case of regular triples) in the proof of Lemma 3.2 below.

vi) (Ezcision) If (f, M,y) is admissible and U is an open neighborhood of f~1(y), then

deg(f, M,y) = deg(f,U,y).



In order to define the degree in the general case we will prove that, given any admissible triple (f, M, y),
if Uy and U, are sufficiently small open neighborhoods of f~!(y), and y1,y2 € N are two regular values
for f, sufficiently close to ¥, then

deg(f7 Ula yl) = deg(f7 UQ,:UQ)-

Let us show first that the degree of a regular triple (f, M,y) can be viewed as the Brouwer degree of
the restriction of f to a convenient pair of finite dimensional oriented manifolds.

Consider an admissible triple (f, M,y) (for the moment we do not assume y to be a regular value
of f) and let ¢ : V. — F be a local chart of N at y such that ¢(y) = 0. Given x € f~1(y), let F,
be a finite dimensional subspace of F' which is transverse to ¢ f at x. This implies the existence of an
open neighborhood U, of x in which ¢ f is transverse to Fj,. Since f~!(y) is compact, one can find a
finite dimensional subspace Fy of F' and an open subset U of f~1(V) containing f~!(y) in which v f is
transverse to Fy. Consequently, No = ¢~ (Fy) and My = (¢ f) "1 (Fy) N U are differentiable manifolds
of the same dimension as Fy, f is transverse to Ny in U, and the restriction fy : My — Ny of f is an
oriented map (with orientation induced by f). Since N is orientable (being diffeomorphic to an open
subset of a finite dimensional vector space) and fj is orientable, My is orientable as well. Therefore, the
orientation of fy induces a pair of orientations of My and Ny, up to an inversion of both of them (which
does not effect the Brouwer degree of fy at y). When a pair of these orientations are chosen, we say that
the two manifolds My and Ny are oriented according to f.

Before stating Lemma 3.1 below, we point out that if a Fredholm map f : M — N is transverse to a
submanifold Ny of N, then an element y € Ny is a regular value for f if and only if it is a regular value
for the restriction fo : f~*(Ng) — Np of f.

Lemma 3.1 Let (f, M,y) be a reqular triple and let Ny be a finite dimensional orientable submanifold of
the codomain N of f, containing y and transverse to f. Then My = f~1(Ny) is an orientable manifold
of the same dimension as Ny. Moreover, orienting My and Ny according to f, the Brouwer degree
deg, (fo, Mo, y) of fo aty coincides with deg(f, M,y).

Proof. Observe that, given € My, the tangent space T, No of Ng at f(x) is transverse to D f(x),
T, My coincides with D f(2) ' (Ty4)No), and these two spaces can be oriented according to the orientation
of Df(z). Tt is easy to check that, with this pair of orientations, if z € f~'(y) = f; '(y), then both
Df(x) and D fo(z) are (oriented) isomorphisms and sgnD fo(z) coincides with sgnD f(x). The assertion
now follows immediately from (3.1) and the definition of Brouwer degree. ad

As a consequence of Lemma 3.1 we get the following result which is crucial in our definition of degree.

Lemma 3.2 Let (f, M,y) be a strongly admissible triple. Given two neighborhoods Uy and Us of f~1(y),
there exists a neighborhood V' of y such that for any pair of reqular values y1,y2 € V one has

deg(fv Ula yl) = deg(f7 U2ay2)'

Proof. Since (f, M,y) is strongly admissible, M is an open subset of a Banach manifold R, and f is
actually defined, continuous and proper on the closure M of M. Let U; and U, be two open neighborhoods
of f~(y) and put U = Uy N Us. Since proper maps are closed, there exists a neighborhood V' of y with
VN f(M\U) = 0. Without loss of generality we may assume that V is the domain of a chart ¢ : V — F
whose image, ¥(V), is a ball in F'; so that, given two regular values y1,y2 € V, (V) contains the line
segment S joining ¥ (y1) and ¥ (yz). With an argument similar to the one used just before Lemma 3.1 one
can show the existence of a finite dimensional subspace Fy of F' containing 1 (y1) and 1 (y2) and transverse
to ¥ f in a convenient neighborhood W C U of the compact set (1 f)~1(S). Thus, both Ny = ¢ ~1(F)
and My = f~1(Nog) N W are finite dimensional manifolds of the same dimension as Fy, and they turn out
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to be oriented according to f (up to an inversion of both orientations). Denote by fo the restriction of f
to My (as domain) and Ny (as codomain). From Lemma 3.1 we obtain

deg (fo, Mo, y1) = deg(f, W, y1),

deg, (fo, Mo, y2) = deg(f, W, ya).

On the other hand, since f~1(y;) and f~!(y2) are contained in W, by the Excision property for regular
triples, we get deg(f, Uy, y1) = deg(f, W, y1) and deg(f, Uz, y2) = deg(f, W, y2). Therefore, it remains to
show that degB (f07 MOa yl) = degB (va M07 92)

Consider now the path y(-) : [0,1] — Np given by ¢ — ¥ ~1(ty; + (1 — t)y2) and observe that the set

{z € My : fo(x) = y(t) for some t € [0,1]}

coincides with (¢ f)~1(S), which is compact. Therefore, from the homotopy invariance of the Brouwer
degree we get

degB (.fCH MOa l/l) = degB (f07 M071U2)7

and the result is proved. O

Lemma 3.2 justifies the following definition of degree for general admissible triples.

Definition 3.3 Let (f, M,y) be admissible and let U be any open neighborhood of f~!(y) such that

U C M and f is proper on U. Put
deg(f, M,y) := deg(f, U, 2),

where z is any regular value for f in U, sufficiently close to y.

To justify the above definition we point out that the existence of regular values for f|y which are
sufficiently close to y can be directly deduced from Sard’s Lemma. In fact, as previously observed, one
can reduce the problem of finding regular values of a Fredholm map to its restriction to a convenient pair
of finite dimensional manifolds.

Given an oriented map f : M — N, the degree of f at y, deg(f, M,y), which is defined whenever
f~Y(y) is compact, does not necessarily depend continuously on y € N, as the following trivial example
shows.

Consider the exponential map exp : R — R with the canonical orientation (which makes sense, since
the derivative of any real function is a linear endomorphism of R). Observe that the triple (exp, R,y) is
admissible for any ¥ € R and
0 if y <O,

deg(exp, R, y) = { 1 if y>0.

Thus the map y — deg(exp, R, y) is discontinuous at y = 0.

There are some ways to avoid discontinuities of the map y +— deg(f, M,y). One is to restrict the
attention to the class of strongly admissible triples, and in this case the continuity is a direct consequence
of the definition. Another way, more general than the previous one, is the following. Let f : M — N
be an oriented map and consider the open subset of N consisting of those elements y € N, called proper
values of f in M, which admit an open neighborhood V with the property that f~!(K) is compact
whenever K C V is compact (this means that the restriction f : f=1(V) — V is proper). We say that
y € N is a boundary value for f in M, and we write y € A(f, M), if y is not a proper value. One can
check that the closed set A(f, M) coincides with f(OM) in the case when f is continuous and proper on
the closure M of an open set M of a Banach manifold Z. Therefore, in the general situation, the limit
set A(f, M) is a valid substitute for f(OM). Incidentally, observe that A(exp, R) = {0}.

It is easy to see that, given f : M — N oriented, the map y — deg(f, M,y) is well defined and
continuous in the open subset N \ A(f, M) of N. Thus, deg(f, M,y) depends only on the connected
component of N\ A(f, M) containing y.
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Theorem 3.4 The degree satisfies the above five fundamental properties.

Proof. The first four properties are an easy consequence of the analogous ones for regular triples.
Let us prove the Homotopy Invariance. Consider an oriented homotopy H : M x [0,1] — N and let
y :[0,1] — N be a continuous path in N. Assume that the set

C={xeM:H(z,t)=y(t) for some t € [0,1]}.

is compact. Since H is locally proper, there exists an open neighborhood U of C in M such that H is
proper on U x [0,1]. Consequently, H; = H(-,t) is proper on U for all t € [0,1], and, by the definition of
degree,

deg(Hy, M, y(t)) = deg(Hy, U, y(t)), ¥t € [0,1].

We need to prove that the function o(t) = deg(Hy, U, y(t)) is locally constant. Let 7 be any point in [0, 1].
Since H is proper on U x [0,1] and y(7) ¢ H,(dU), one can find an open connected neighborhood V' of
y(7) and a compact neighborhood J of 7 (in [0, 1]) such that y(¢t) € V for t € J and H(OU x J)NV = ().
Thus, if z is any element of V', one has o(t) = deg(H;,U, z) for all ¢t € J. To compute this degree we
may therefore assume that z is a regular value for H, in U, so that H-1(2) is a finite set {1, 72,...,7,}
and the partial derivatives Dy1H (x;,7), ¢ = 1,2,...,n, are all nonsingular. Consequently, given any z;
in H-1(z), the Implicit Function Theorem ensures that H~!(z), in a neighborhood W; x J; of (z;,7), is
the graph of a continuous curve «y; : J; — M. Since H is proper in U x J (recall that .J is compact) and
z ¢ H(OU x J), the set H=1(2) N (U x J) is compact. This implies the existence of a neighborhood Jy
of 7 such that for ¢t € Jy one has

H;I(Z) = {71(t)7'72(t)7 o a’yn(t)}'

Moreover, by the continuity of D1 H, we may assume that z is a regular value for any Hy, t € Jy. Finally,
since H is an oriented homotopy, the continuity assumption in the definition of orientation implies that,
for any 4, sgnDy H(~;(¢),t) does not depend on ¢ € Jy, and from the definition of degree of a regular triple
we get that o(t) is constant in Jo. a

We close pointing out that in the finite dimensional context the notion of orientation and the concept
of degree can be extended to the continuous case. This is mainly due to the following facts regarding
maps acting between finite dimensional (not necessarily orientable) manifolds: 1) any continuous map
can be arbitrarily approximated by C! maps; 2) if two C! maps are sufficiently close, then they are
C! homotopic; 3) given a C' homotopy H : M x [0,1] — N, an orientation of Hy (when it makes
sense) induces uniquely an orientation on Hi. An exhaustive analysis of these concepts regarding the
finite dimensional case will appear in a forthcoming paper. In particular we will show that in the finite
dimensional case our notion of degree coincides with the one introduced (with different methods) by A.
Dold (see [5], exercise 6, p. 271).
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