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Abstract. We give an existence result for a periodic boundary value problem involving mean curvature-

like operators. Following a recent work of R. Manásevich and J. Mawhin, we use an approach based on
the Leray-Schauder degree.

1. Introduction

In [5] (see also [6]) Manásevich and Mawhin proved an existence result for the periodic boundary value
problem  (φ(u′))′ = f(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

(1.1)

where f : [0, T ] × RN × RN → RN is Carathéodory and φ : RN → RN is a homeomorphism satisfying
particular monotonicity conditions which include for instance p-Laplacian-like operators. They used a
topological method: the properties of φ and f allowed to apply the Leray-Schauder degree to prove that
(1.1) admits a solution (see [5, Theorem 3.1]). In [1], proceeding in the general spirit of Manásevich-
Mawhin’s ideas, we proved an existence result for a different scalar problem. We considered in fact the
periodic boundary value problem  (φ(u′))′ = f(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

where f : [0, T ] × R × R → R is still a Carathéodory function, but φ : R → R is, in [1], an increasing
homeomorphism between R and the open interval (−1, 1), with φ(0) = 0. The interest in this class of
nonlinear operators u 7→ (φ(u′))′ is mainly due to the fact that they include the scalar version of the
mean curvature operator

u 7→ div

(
∇u√

1 + |∇u|2

)
.

which is usually considered in the case when u is a real function defined on an open subset of RN .

In this paper we extend the results obtained in [1] to the N -dimensional case. Precisely, we study the
problem  (φ(u′))′ = f(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

(1.2)
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assuming that f : [0, T ] × RN × RN → RN is a Carathéodory function and φ : RN → RN is a homeo-
morphism between RN and the open ball of RN with center zero and radius 1, verifying the following
condition:

(H1) φ(x) = w(‖x‖)x, for each x ∈ RN , where w : [0,+∞) → [0,+∞) is continuous.

We still follow here the topological approach of Manásevich and Mawhin as we did in [1]. Under
further assumptions on f , which we specify in the sequel, we apply the Leray-Schauder degree showing
(Theorem 3.1 below) that (1.2) admits a solution.

We would stress that the results presented here complement those obtained in [5], since we study a class
of operators not included in the setting of problems tackled by Manásevich and Mawhin. In particular,
referring to [5], an operator φ satisfying the above (H1) does not verify the assumption (H2) in [5] (page
369).

The paper is organized as follows. In the next section we consider our problem in the particular case
when f is independent of u and u′. The study of this simplified problem is the first step in the direction
of applying the Leray-Schauder degree, as done in Section 3. That section is, in particular, devoted to
the main theorem of this work, that is, an existence result for system (1.2). In the last section we present
an application of the main theorem to a particular system.

We refer to e.g. [3] or [4] for the definition and the main properties of the Leray-Schauder degree.

Standing notation. In what follows I will denote the closed interval [0, T ], with T fixed. In addition,
we will put C = C(I, RN ), C1 = C1(I, RN ), CT,0 = {u ∈ C : u(0) = u(T ) = 0}, C1

T = {u ∈ C1 : u(0) =
u(T ), u′(0) = u′(T )}, L1 = L1(I, RN ), and, finally, L1

m = {h ∈ L1 :
∫ T

0
h(t)dt = 0}. The norm in C and

CT,0 is defined by

‖u‖0 = max
t∈I

‖u(t)‖RN ,

the norm in C1 and C1
T by

‖u‖1 = ‖u‖0 + ‖u′‖0,

and the norm in L1 and L1
m by

‖h‖L1 =

[
N∑

i=1

∫ T

0

‖hi(t)‖2dt

]1/2

=

(
N∑

i=1

‖hi‖2
L1

)1/2

.

Finally, by ‖ · ‖, we simply denote the Euclidean norm of an element of RN .

Remark 1.1. By a solution of (1.2) we mean a C1 real function u on [0, T ], satisfying the boundary
conditions, such that φ(u′) is absolutely continuous and verifies (φ(u′))′ = f(t, u, u′) a.e. on [0, T ].

Remark 1.2. During the redaction of this work we have known that a similar result has been obtained,
independently, by Bereanu and Mawhin (see [2]). More precisely, they study the Neumann boundary
value problem

(φ(u′))′ = f(t, u, u′), u′(0) = u′(T ) = 0, (1.3)

where φ : R → (−a, a) is a homeomorphism such that φ(0) = 0 and f : [0, T ]×R×R → R is continuous.
Bereanu and Mawhin follow a topological approach based on the Leray-Schauder degree (analogously
to [5]), and, to this purpose, they find interesting a priori estimates involving the function f and the
operator φ.
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2. An auxiliary problem

Consider the following periodic boundary value problem (φ(u′))′ = h(t)
u(0) = u(T )
u′(0) = u′(T ),

(2.1)

where h is in L1
m and φ is a homeomorphism between RN and the open ball of RN , with center zero and

radius 1, verifying condition (H1). The next lemma turns out to be useful in the sequel.

Lemma 2.1. For any x, y ∈ RN with x 6= y one has

〈φ(x)− φ(y), x− y〉 > 0.

Proof. Consider first the particular case when y = λx, with λ ≥ 0, λ 6= 1 and x 6= 0. One has that

〈φ(x)− φ(λx), x− λx〉 = 〈w(‖x‖)x− w(‖λx‖)λx, (1− λ)x〉
= (w(‖x‖)‖x‖ − w(‖λx‖)‖λx‖)(1− λ)‖x‖.

Using the fact that t 7→ w(t)t is strictly increasing, one can easily show that

[w(‖x‖)‖x‖ − w(‖λx‖)‖λx‖](1− λ) > 0, ∀λ ≥ 0, λ 6= 1.

Consider now any x, y ∈ RN , x 6= y. We have

〈φ(x)− φ(y), x− y〉 = w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 − (w(‖x‖) + w(‖y‖)) 〈x, y〉
≥ w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 − (w(‖x‖) + w(‖y‖)) ‖x‖ ‖y‖.

Take y1 = λx such that ‖y1‖ = ‖y‖, with λ ≥ 0. It follows that

w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 − (w(‖x‖) + w(‖y‖)) ‖x‖ ‖y‖
= w(‖x‖)‖x‖2 + w(‖y1‖)‖y1‖2 − (w(‖x‖) + w(‖y1‖)) ‖x‖ ‖y1‖
= 〈φ(x)− φ(y1), x− y1〉 > 0

(the last inequality holds by the first case). Then the claim follows. �

Coming back to problem (2.1), if a C1 function u : I → RN solves the equation (φ(u′))′ = h(t), of
course there exists a ∈ RN such that

φ(u′(t)) = a + H(h)(t), (2.2)

where H is the integral operator

H(h)(t) =
∫ t

0

h(s)ds.

Remark 2.2. Notice that the condition u′(0) = u′(T ) implies that
∫ T

0
h(t)dt = 0 and this justifies the

assumption that h ∈ L1
m.

By the inversion of φ in (2.2), we have

u′(t) = φ−1(a + H(h)(t)),

and thus the image of H(h), which contains the origin of RN , is included in an open ball with radius 1.
Call D̃ the set of functions h in L1

m such that there exists a ∈ RN with

‖a + H(h)(t)‖ < 1, ∀t ∈ I.
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The set D̃ is unbounded in L1
m. Indeed, take for simplicity T = 1 and consider the sequence of real

functions {hn}n∈N, where

hn : [0, 1] → R, hn(t) =
{

n t ∈ [k/n, (2k + 1)/(2n))
−n t ∈ [(2k + 1)/(2n), (k + 1)/n) ∪ {1}, (2.3)

k = 0, . . . , n − 1. Consider the sequence {kn} ⊆ L1
m, where kn = (hn, 0, . . . , 0). A straightforward

computation shows that, for each n,

‖kn‖L1 = n, and ‖H(kn)‖0 = 1/2,

that is, {kn} is an unbounded sequence contained in D̃.
Moreover D̃ is open in L1

m. To see this, let h ∈ D̃ be given. Suppose, without loss of generality, that
‖H(h)(t)‖ < 1, for each t ∈ I. Given any ε in L1

m, one has

‖H(h + ε)‖0 ≤ ‖H(h)‖0 + ‖H(ε)‖0 ≤ ‖H(h)‖0 + ‖ε‖L1 .

Therefore D̃ contains the open ball in L1
m of center h and radius 1− ‖H(h)‖0 and the claim follows.

The open ball of L1
m of center zero and radius 2 is contained in D̃. To see this, consider first any map

g ∈ L1(I, R) such that
∫ T

0
g(t)dt = 0. Then, define

g+(t) =
{

g(t) if g(t) ≥ 0
0 if g(t) < 0

and g−(t) =
{

0 if g(t) ≥ 0
−g(t) if g(t) < 0.

As
∫ T

0
g(t)dt = 0, one has that ‖g+‖L1 = ‖g−‖L1 = 1

2‖g‖L1 . In addition, one has∣∣∣∣∫ t

0

g(s)ds

∣∣∣∣ ≤ ‖g+‖L1 , ∀t ∈ I.

Hence

‖H(g)‖0 ≤
1
2
‖g‖L1 .

Now consider any h = (h1, . . . , hN ) ∈ L1
m, with ‖h‖L1 < 2. It is immediate to check that

‖H(h)‖0 ≤
1
2
‖h‖L1 < 1,

and this proves the assert.

Coming back to problem (2.1), we have seen that it admits a solution only if h belongs to D̃. Then,
any C1 solution u can be written as

u(t) = u(0) +
∫ t

0

φ−1(a + H(h)(s))ds.

The boundary condition u(0) = u(T ) implies that∫ T

0

φ−1(a + H(h)(t))dt = 0. (2.4)

Therefore problem (2.1) admits a solution in C1
T if and only if h belongs to the subset D of D̃ defined as

the set of functions h ∈ D̃ such that there exists a ∈ RN verifying (2.4). The following proposition lists
some properties of D.

Proposition 2.3. The following conditions hold.
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(1) For any h ∈ D the point a ∈ RN such that∫ T

0

φ−1(a + H(h)(t))dt = 0

is unique and then defines a map α : D → RN which is bounded and continuous.
(2) The set D is open, unbounded in L1

m, and contains the open ball in L1
m with center zero and

radius 2/3;

Proof. (1) Let h ∈ D be given and consider the function

GH(h)(a) =
∫ T

0

φ−1(a + H(h)(t))dt (2.5)

which is well defined and continuous on the set{
a ∈ RN : ‖a + H(h)(t)‖ < 1 ∀t ∈ I

}
.

We have that
〈GH(h)(a1)−GH(h)(a2), a1 − a2〉 > 0, if a1 6= a2. (2.6)

Indeed,

〈GH(h)(a1)−GH(h)(a2), a1 − a2〉 =∫ T

0
〈φ−1(a1 + H(h)(t))− φ−1(a2 + H(h)(t)), a1 + H(h)(t)− (a2 + H(h)(t))〉dt > 0.

The last inequality is a consequence of Lemma 2.1. Now (2.6) implies that GH(h) = 0 has a unique
solution and thus it turns out well defined the map α : D → RN . Since H(h)(0) = 0 for each h ∈ D,
then α is bounded having image contained in the open ball in RN with center zero and radius 1.

To see the continuity of α we proceed as follows. Define the set

C =

{
l ∈ CT,0 : ∃ a ∈ RN with ‖a + l(t)‖ < 1,∀t ∈ I, and

∫ T

0

φ−1(a + l(t))dt = 0

}
(2.7)

and consider the function α̃ : C → RN , such that, for each l ∈ C,∫ T

0

φ−1(α̃(l) + l(t))dt = 0.

Let us prove the continuity of α̃. Let {ln} be a sequence in C, converging to l ∈ C. Since α̃ is bounded,
any subsequence of α̃(ln) admits a convergent subsequence, say α̃(lnj

) → â as j →∞. Let us show that
φ−1(â + l(t)) is well defined. To this purpose, denote a = α̃(l) and call B an open ball centered at a
such that Gl is well defined on B, where Gl is given in (2.5). As seen for (2.6), Lemma 2.1 implies that
〈Gl(a), a− a〉 > 0 for each a ∈ B, a 6= a. In particular

〈Gl(a), a− a〉 > 0, ∀a ∈ ∂B. (2.8)

Observe that there exists a neighborhood U of l in CT,0 such that, for each x ∈ U , Gx is well defined on
B. In addition, the map

x 7→ inf
a∈∂B

〈Gx(a), a− a〉,

is easily seen to be continuous on U . Then

〈Gm(a), a− a〉 > 0, ∀a ∈ ∂B,

for each function m in a suitable neighborhood V ⊆ U of l. This implies, by a simple application of
the homotopy invariance property of the Brouwer degree, that the equation Gm(a) = 0 has its (unique)
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solution in B, given m in V . Hence α̃(lnj ) ∈ B, for j sufficiently large, and thus â belongs to B. Therefore
φ−1(â + l(t)) is well defined. Now, by letting j →∞ in∫ T

0

φ−1(α̃(lnj
) + lnj

(t))dt = 0,

we have that ∫ T

0

φ−1(α̂ + l(t))dt = 0,

and this proves the continuity of α̃. Finally, α = α̃ ◦ H and this shows the continuity of α, being H
continuous.

(2) To prove that D is open in L1
m, we first observe that the set C, defined by (2.7), is open. Indeed,

this can be proved by the same argument following inequality (2.8). Now, as D = H−1(C), we have that
D is open in L1

m.

The unboundedness of D can be proved in the same way as done for D̃. Precisely, for simplicity let
T = 1, and take the sequence of real functions {hn}, defined by formula (2.3). Then, let {kn} ⊆ L1

m be
given by kn = (hn, 0, . . . , 0), n ∈ N. For any n the function

Gn(a) =
∫ 1

0

φ−1(a + H(kn)(t))dt

is well defined, in particular, for any a of the form a = (a1, 0, . . . , 0), with a1 ∈ (−1, 1/2). Denote by
Gn,j , j = 1, . . . , N , the j-th component of Gn. If a is selected as above, we have that

Gn,j(a) = 0

for any a and any j ≥ 2. In addition, Gn,1(a) > 0 if a1 ≥ 0 and Gn,1(a) < 0 if a1 ≤ −1/2. As Gn,1 is
continuous, it admits a zero for a suitable a. Therefore {kn} ⊆ D, which turns out to be not bounded.

In order to show that D contains the open ball in L1
m centered at zero with radius 2/3 we first prove

that the set C, defined by (2.7), contains the open ball in CT,0 of center zero and radius 1/3. Let l ∈ CT,0,
with ‖l‖0 < 1/3, be given. If l is identically zero, then it clearly belongs to C. Thus, suppose that l is
not zero for some t. Denote δ = ‖l‖0. Then consider 2δ < δ′ < 2/3 and let A be the closed ball in RN

with center zero and radius δ′. Observe that ‖a + l(t)‖ < 1 for any t ∈ I and any a ∈ A. We show now
that

〈Gl(a), a〉 > 0, if ‖a‖ = δ′. (2.9)

To this purpose denote v : [0, 1) → R the function such that φ−1(x) = v(‖x‖)x. We have

〈Gl(a), a〉 =
∫ T

0
〈φ−1(a + l(t)), a + l(t)〉dt−

∫ T

0
〈φ−1(a + l(t)), l(t)〉dt

≥
∫ T

0
v(‖a + l(t)‖)‖a + l(t)‖2dt−

∫ T

0
v(‖a + l(t)‖)‖a + l(t)‖‖l(t)‖dt

=
∫ T

0
v(‖a + l(t)‖)‖a + l(t)‖ (‖a + l(t)‖ − ‖l(t)‖)dt.

The last integral turns out to be positive if we show that, given a with ‖a‖ = δ′,

‖a + l(t)‖ > ‖l(t)‖, ∀t ∈ I. (2.10)

We have
‖a + l(t)‖2 ≥ ‖a‖2 + ‖l(t)‖2 − 2‖a‖‖l(t)‖ ≥ ‖l(t)‖2

because ‖a‖ > 2‖l(t)‖ for each t. Hence the (2.10) holds and this proves the (2.9). Therefore, by an
elementary topological degree argument, the equation Gl(a) = 0 has a solution in A and hence l ∈ C.
Thus, C contains the open ball in CT,0 of center zero and radius 1/3.
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Now, let h = (h1, . . . , hN ) ∈ L1
m with ‖h‖L1 < 2/3. Define, for i = 1, . . . , N ,

h+
i (t) =

{
hi(t) if hi(t) ≥ 0
0 if hi(t) < 0

and h−i (t) =
{

0 if hi(t) ≥ 0
−hi(t) if hi(t) < 0.

As
∫ T

0
h(t)dt = 0, one has that, for any i, ‖h+

i ‖L1 = ‖h−i ‖L1 = 1
2‖hi‖L1 and thus

‖h‖L1 = 2

(
N∑

i=1

‖hi‖2
L1

)1/2

.

In addition, ∣∣∣∣∫ t

0

hi(t)dt

∣∣∣∣ ≤ ‖h+
i ‖L1 , ∀t ∈ I, i = 1, . . . N.

Then
2 ‖H(h)(t)‖RN ≤ ‖h‖L1 , ∀t ∈ I,

and, finally,
2 ‖H(h)‖0 ≤ ‖h‖L1 .

This proves that D contains the open ball in L1
m with center zero and radius 2/3. �

We have seen that problem (2.1) has a solution if and only if h ∈ D. Actually, for any h ∈ D, we have
infinite solutions which differ by a constant and can be written as

u(t) = u(0) + H
(
φ−1[α(h) + H(h)]

)
(t),

where, by an abuse of notation, φ−1[α(h) + H(h)] is the continuous map t 7→ φ−1[α(h) + H(h)(t)].

Define P : C1
T → C1

T as Pu = u(0). Observe that C1
T admits the splitting

C1
T = E1 ⊕ E2, (2.11)

where E1 contains the maps ũ such that ũ(0) = 0 and E2 is the N -dimensional subspace of constant
maps. It is immediate to see that P is the continuous projection onto E2 by the above decomposition.
In addition consider Q : L1 → L1, defined as Qh = 1

T

∫ T

0
h(t)dt. One can split L1 as

L1 = L1
m ⊕ F2,

where F2 is the N -dimensional subspace of constant maps1. The operator Q turns easily out to be the
continuous projection on F2 with the above splitting of L1. Then, consider the subset D̂ of L1, given by

D̂ = D + F2, (2.12)

and the nonlinear operator K : D̂ → C1
T , defined as

K(ĥ)(t) = H
(
φ−1

[
α((I −Q)ĥ) + H((I −Q)ĥ)

])
(t).

If a C1 function u is a solution of (2.1), for a given h ∈ D, of course u solves the equation

u = Pu + Qh + K(h). (2.13)

1The reader could notice that E2 and F2 are actually different, being contained in different Banach spaces.
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Conversely, if u ∈ C1
T is a solution of (2.13), for a given h ∈ D̂, it follows that h belongs to D and u solves

(2.1). The idea of studying equation (2.13), in order to find a solution of (2.1), is particularly important
if we consider an abstract periodic problem (φ(u′))′ = G(u)(t)

u(0) = u(T )
u′(0) = u′(T ),

(2.14)

where G : C1 → D̂ can be supposed continuous. In fact, if we define G : C1
T → C1

T by

G(u) = Pu + QG(u) + K(G(u)),

we observe that problem (2.14) is equivalent to the fixed point problem

u = G(u),

which can be studied, under suitable conditions, by topological methods. Following this idea, in the
next section we will apply the Leray-Schauder degree to obtain our main result, that is, as said in the
Introduction, an existence theorem for the problem (φ(u′))′ = f(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

where φ is as above and f : I × Rn × RN → RN is a Carathéodory function.

We conclude this section by proving crucial properties of K.

Proposition 2.4. The map K is continuous and sends equi-integrable sets of D̂ into relatively compact
sets in C1

T .

Proof. The continuity of K as valued in C is a straightforward consequence of the fact that this map is
a composition of continuous maps. In addition

(K(ĥ))′(t) = φ−1[α((I −Q)ĥ) + H((I −Q)ĥ)](t).

That is, K ′ is a composition of continuous operators and thus K is continuous. Consider an equi-integrable
set S of L1, contained in D̂, and let g ∈ L1(I, R) be such that, for all h ∈ S,

‖h(t)‖ ≤ g(t) a.e. in I.

Let us show that K(S) is compact. To see this consider first a sequence {kn} of K(S) and let {hn} be
such that K(hn) = kn. For any t1, t2 ∈ I we have

‖H(I −Q)(hn)(t1)−H(I −Q)(hn)(t2)‖ ≤
∥∥∥∫ t1

t2
hn(s)ds

∥∥∥+ ‖Qhn‖ |t1 − t2|

≤
∣∣∣∫ t1

t2
g(s)ds

∣∣∣+ |t1 − t2|
T

∫ T

0
g(s)ds.

Therefore the sequence {H(I −Q)(hn)} is bounded and equicontinuous and then, by Ascoli-Arzelà The-
orem, it admits a convergent subsequence in C, say {H(I − Q)(hnj )}. Up to a subsequence, {α((I −
Q)(hnj )) + H((I −Q)(hnj )} converges in C. In addition we have that

(K(hnj ))
′(t) = φ−1

[
{α((I −Q)(hnj )) + H((I −Q)(hnj )}

]
(t)

and, by the continuity of φ−1, (K(hnj
))′ is convergent in C. Therefore {knj

} = {K(hnj
)} converges in C1

T .
Now consider a sequence {kn} belonging to K(S) (that is, not necessarily to K(S)). Let {ln} ⊆ K(S) be
such that ‖ln − kn‖1 → 0 as n →∞. Let in addition {lnj

} be a subsequence of {ln} that converges to l.
Therefore, l ∈ K(S) and {knj} → l, and this completes the proof. �
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3. Main result

In this section we present the main result of this paper, that is, an existence theorem for the periodic
boundary value problem  (φ(u′))′ = f(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

(3.1)

where φ is as in the above section and f : I × RN × RN → RN is a Carathéodory function, that is,
i) for almost every t ∈ I, f(t, ·, ·) is continuous;
ii) for any (x, y) ∈ RN × RN , f(·, x, y) is measurable;
iii) for any ρ > 0 there exists g ∈ L1(I, R) such that, for almost every t ∈ I and every(x, y) ∈ RN×RN ,

with ‖x‖ ≤ ρ and ‖y‖ ≤ ρ, we have

‖f(t, x, y)‖ ≤ g(t).

Theorem 3.1. Let Ω be a bounded open subset of C1
T such that the following conditions hold:

(1) for any u ∈ Ω the map t 7→ f(t, u(t), u′(t)) belongs to D̂, where D̂ is defined by (2.12);
(2) for each λ ∈ (0, 1) the problem  (φ(u′))′ = λf(t, u, u′)

u(0) = u(T )
u′(0) = u′(T ),

(3.2)

has no solution on ∂Ω;
(3) the equation

F (a) :=
∫ T

0

f(t, a, 0)dt = 0 (3.3)

has no solution on ∂Ω2, where Ω2 := Ω∩E2 and E2 is the subspace of C1
T in the splitting (2.11);

(4) the Brouwer degree
degB(F,Ω2, 0)

is well defined and nonzero.
Then problem (3.1) has a solution in Ω.

Proof. Let Nf denote the Nemytski operator associated to f , that is,

Nf : C1
T → L1, Nf (u)(t) = f(t, u(t), u′(t)).

Consider the problem  (φ(u′))′ = λNf (u) + (1− λ)QNf (u)
u(0) = u(T )
u′(0) = u′(T ).

(3.4)

For λ ∈ (0, 1], if u is a solution of (3.2), then, as seen in the previous section, condition u′(0) = u′(T )
implies QNf (u) = 0 and hence u solves problem (3.4) as well. Conversely, if u is a solution of problem
(3.4), then QNf (u) = 0 since it is easy to see that

Q[λNf (u) + (1− λ)QNf (u)] = QNf (u),

and thus u solves problem (3.2) (λ still belongs to (0, 1]). Let us now consider problem (3.4). It can be
written in the equivalent form

u = K(u, λ), (3.5)
where

K(u, λ) = Pu + QNf (u) + (K ◦ [λNf + (1− λ)QNf ])(u)

= Pu + QNf (u) + (K ◦ [λ(I −Q)Nf ])(u)



10 P. BENEVIERI, J.M. DO Ó, AND E.S. MEDEIROS

is well defined in Ω × [0, 1]. Suppose that (3.4) has no solution on ∂Ω for λ = 1, since, otherwise, the
theorem is proved. Take λ = 0. Problem (3.4) becomes (φ(u′))′ = 1

T

∫ T

0
f(t, u(t), u′(t))dt

u(0) = u(T )
u′(0) = u′(T ).

(3.6)

It follows that
∫ T

0
f(t, u(t), u′(t))dt = 0 and this implies that u is a constant function, say u(t) = c.

Therefore, we have ∫ T

0

f(t, c, 0)dt = 0.

By assumption (2), c /∈ ∂Ω2. Therefore we obtain that the equation

u−K(u, λ) = 0

has no solution on ∂Ω× [0, 1]. In addition, as f is Carathéodory, the nonlinear map N : C1
T × [0, 1] → L1,

defined by
N (u, λ) = λNf (u) + (1− λ)QNf (u), (3.7)

is continuous and takes bounded sets into equi-integrable sets. This implies that, recalling Proposition
2.4, K is completely continuous. We can apply the homotopy invariance property of the Leray-Schauder
degree to the map (u, λ) 7→ u−K(u, λ), obtaining

degLS(I −K(·, 0),Ω, 0) = degLS(I −K(·, 1),Ω, 0). (3.8)

We can now say that problem (3.1) has a solution in Ω if we prove that degLS(I −K(·, 0),Ω, 0) 6= 0. To
see this we apply a finite-dimensional reduction property of the Leray-Schauder degree, associated with
assumption (3). Observe first that K(0) = 0, then

K(u, 0) = Pu + QNf (u).

To compare the Leray-Schauder degree of the triple (I−K(·, 0),Ω, 0) with the Brouwer degree of (F,Ω2, 0),
consider the splitting (2.11) of C1

T . The operator I −K(·, 0) can be represented in block-matrix form as

I −K(·, 0) =
(

IE1 −K12

0 −F

)
.

By the properties of the Leray-Schauder degree we have that

degLS(I −K(·, 0),Ω, 0) = (−1)N degB(F,Ω2, 0)

and this completes the proof. �

4. An application

In this section we show an application of Theorem 3.1 to the two-dimensional problem

(
u′1√

1 + |u′|2

)′

= g1(t)(u5
1 + (u′1)

6) + η1,(
u′2√

1 + |u′|2

)′

= g2(t)(u5
2 + (u′2)

6) + η2,

u1(0) = u1(1), u′1(0) = u′1(1),
u2(0) = u2(1), u′2(0) = u′2(1),

(4.1)

where g1, g2 are continuous real functions on [0, 1] such that 1/2 ≤ gi(t) ≤ 1, for each t ∈ [0, 1], i = 1, 2,
and η1, η2 are real constants. Our purpose is to prove that, for η1, η2 sufficiently small, (4.1) admits a
solution in the closed ball Ω of C1

T (T = 1) with center zero and radius 1/2.
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Remark 4.1. Recalling Remark 1.1, if u ∈ C1
T solves system (4.1), φ(u′) is absolutely continuous (φ being

defined as φ(t) = t/
√

1 + t2). It is immediate to verify that u′ is absolutely continuous as well. Now,
observe that u′′ coincides a.e. with a continuous function and thus it can be continuously extended to
[0, 1]. This implies that u′ is actually C1 and then any solution of the problem is actually a C2 function.

We start by showing that (4.1) has no solution on ∂Ω for η1, η2 in a suitable neighborhood of zero.
Let u ∈ ∂Ω be given, that is,

‖u‖1 = ‖u‖0 + ‖u′‖0 = 1/2.

We consider different cases.
(i) Suppose 2/5 ≤ ‖u‖0 ≤ 1/2. Thus, for some t, u2

1(t) + u2
2(t) ≥ 4/25. We can suppose, without

loss of generality, that |u1(t)| ≥
√

2/5, for some t. Since ‖u‖0 ≥ 2/5, we have ‖u′‖0 ≤ 1/10, and then
|u′1(t)| ≤ 1/10 for every t ∈ [0, 1]. By the mean value theorem, |u(t)| ≥ (2

√
2 − 1)/10 for each t ∈ [0, 1].

In particular, u1 has constant sign.
If u1(t) is positive for any t, a computation shows that

g1(t)(u5
1 + (u′1)

6) + η1 > 0, ∀t ∈ [0, 1],

if η1 > −10−4. If otherwise u1(t) is negative for any t,

g1(t)(u5
1 + (u′1)

6) + η1 < 0, ∀t ∈ [0, 1],

for η1 < 10−4.
By the boundary conditions, u′1/

√
1 + |u′|2 cannot be strictly monotone on [0, 1]. That is, the first

equation in (4.1) has no solution on ∂Ω satisfying 2/5 ≤ ‖u‖0 ≤ 1/2, if η1 ∈ (−10−4, 10−4). Generalizing
this argument, problem (4.1) has no solution on ∂Ω with 2/5 ≤ ‖u‖0 ≤ 1/2, if η1, η2 ∈ (−10−4, 10−4).

(ii) Suppose 1/4 ≤ ‖u‖0 < 2/5. This implies 1/10 < ‖u′‖0 ≤ 1/4 and hence |u′1(t)| and |u′2(t)| are
≤ 1/4 for any t.

The two equations of (4.1) can be written in the following equivalent way: u′′1
(
1 + (u′2)

2
)
− u′1u

′
2u

′′
2 =

(
1 + |u′|2

)3/2 [
g1(t)(u5

1 + (u′1)
6) + η1

]
u′′2
(
1 + (u′1)

2
)
− u′1u

′
2u

′′
1 =

(
1 + |u′|2

)3/2 [
g2(t)(u5

2 + (u′2)
6) + η2

]
.

Since ‖u′‖0 ≥ 1/10, then (u′1)
2(t) + (u′2)

2(t) ≥ 1/100 for some t. Suppose, without loss of generality,
that |u′1(t)| ≥

√
2/20 for some t. By the boundary condition on u′1, there exists t′ ∈ [0, 1] such that

u′1(t
′) = 0. This implies that there exists t′′ ∈ [0, 1] such that |u′′1(t′′)| ≥

√
2/20.

Now, a computation shows that, if∣∣u′′1(t′′)
(
1 + (u′2)

2(t′′)
)
− u′1(t

′′)u′2(t
′′)u′′2(t′′)

∣∣ < 0.05,

then ∣∣u′′2(t′′)
(
1 + (u′1)

2(t′′)
)
− u′1(t

′′)u′2(t
′′)u′′1(t′′)

∣∣ > 0.05,

and this a consequence of the inequality

|u′1(t)u′2(t)| < 1/32, ∀t ∈ [0, 1].

Choosing η1, η2 ∈ (−10−4, 10−4), we obtain that, for any t ∈ [0, 1],(
1 + |u′|2

)3/2 ∣∣g1(t)(u5
1 + (u′1)

6) + η1

∣∣ ≤ 0.05,

and (
1 + |u′|2

)3/2 ∣∣g2(t)(u5
2 + (u′2)

6) + η2

∣∣ ≤ 0.05.

We conclude system (4.1) has no solution on ∂Ω if 1/4 ≤ ‖u‖0 ≤ 2/5, with η1, η2 ∈ (−10−4, 10−4).
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(3) As a final step, suppose ‖u‖0 < 1/4. This implies ‖u′‖0 > 1/4. In addition, |u′1(t)| and |u′2(t)| are
≤ 1/2 for any t. We proceed as in the above step. For some t, (u′1)

2(t) + (u′2)
2(t) > 1/16, and, without

loss of generality, assume that |u′1(t)| >
√

2/8. Analogously to the previous case, there exists t′′ such that
|u′′1(t′′)| >

√
2/8.

Choosing η1, η2 ∈ (−10−4, 10−4), we obtain that, for any t ∈ [0, 1],(
1 + |u′|2

)3/2 ∣∣g1(t)(u5
1 + (u′1)

6) + η1

∣∣ ≤ 0.13,

and (
1 + |u′|2

)3/2 ∣∣g2(t)(u5
2 + (u′2)

6) + η2

∣∣ ≤ 0.13.

On the other hand, if ∣∣u′′1(t′′)
(
1 + (u′2)

2(t′′)
)
− u′1(t

′′)u′2(t
′′)u′′2(t′′)

∣∣ < 0.13,

then ∣∣u′′2(t′′)
(
1 + (u′1)

2(t′′)
)
− u′1(t

′′)u′2(t
′′)u′′1(t′′)

∣∣ > 0.13,

and this implies that there is no solution.

Summarizing this argument, problem (4.1) has no solution on ∂Ω, with η1, η2 ∈ (−10−4, 10−4). Let
us apply Theorem 3.1 to show that our problem has a solution in Ω. To this purpose, observe that the
system 

(
u′1√

1 + |u′|2

)′

= λ
[
g1(t)(u5

1 + (u′1)
6) + η1

]
,(

u′2√
1 + |u′|2

)′

= λ
[
g2(t)(u5

2 + (u′2)
6) + η2

]
,

u1(0) = u1(1), u′1(0) = u′1(1),
u2(0) = u2(1), u′2(0) = u′2(1),

has no solution for any λ ∈ (0, 1] and any u ∈ ∂Ω, and this can be easily seen by the same argument used
in the case when λ = 1. Recalling points (3) and (4) in the statement of Theorem 3.1, the equation

F (a, b) =
(∫ 1

0

g1(t)dt a5 + η1dt

∫ 1

0

g2(t)dt b5 + η2dt

)
= (0, 0)

has no solution on ∂Ω2, where Ω2 = (−1/2, 1/2) × (−1/2, 1/2) for any given η1, η2 ∈ (−10−4, 10−4). It
is immediate to see that

degB(F,Ω2, 0) = 1.

Thus we can apply Theorem 3.1 to conclude that (4.1) admits a solution in Ω for η1, η2 ∈ (−10−4, 10−4).
It is also immediate that any solution is nontrivial if η1 and η2 are not both zero.
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