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Abstract. We give an existence result for a periodic boundary value problem involving mean curvature-
like operators in the scalar case. Following [3], we use an approach based on the Leray-Schauder degree.

1. Introduction

In [3] (see also [4]) Manásevich and Mawhin prove an existence result for the periodic boundary value
problem

(φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (1.1)
where f : [0, T ]× Rn × Rn → Rn is Carathéodory and φ : Rn → Rn is a homeomorphism satisfying par-
ticular monotonicity conditions including for instance p-Laplacian-like operators. They use a topological
approach: the properties of φ and f allow to apply the Leray-Schauder degree to prove that (1.1) admits
a solution (see [3, Theorem 3.1]).

In this paper, proceeding in the general spirit of Manásevich-Mawhin’s ideas, we obtain an existence
result (Theorem 3.1 below) for a different problem. Precisely, we study the nonlinear scalar equation
with periodic boundary conditions

(φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (1.2)

where f : [0, T ]×R×R → R is still a Carathéodory function, but φ : R → R is, in our case, an increasing
homeomorphism between R and the open interval (−1, 1), with φ(0) = 0.

The interest in the above class of nonlinear operators u 7→ (φ(u′))′ is mainly due to the fact that they
include the scalar version of the mean curvature operator

u 7→ div

(
∇u√

1 + |∇u|2

)
.

The paper is organized as follows. In the next section we consider problem (1.2) in the particular case
when f is independent of u and u′. The study of this simplified problem is the first step in the direction of
tackling problem (1.2) by the Leray-Schauder degree, as done in Section 3. That section is, in particular,
devoted to the main theorem of this work, that is, an existence result for (1.2). In the last section we
present an application of the main theorem to a particular system.

We refer to [1] or [2] for the definition and the main properties of the Leray-Schauder degree.

In what follows I will denote the closed interval [0, T ], with T fixed. In addition, we will put C =
C(I, R), C1 = C1(I, R), CT,0 = {u ∈ C : u(0) = u(T ) = 0}, C1

T = {u ∈ C1 : u(0) = u(T ), u′(0) = u′(T )},
L1 = L1(I, R), and, finally, L1

m = {h ∈ L1 :
∫ T

0
h(t)dt = 0}.

Remark 1.1. We point out that by a solution of (1.2) we mean a C1 real function u on [0, T ], satisfying
the boundary conditions, such that φ(u′) is absolutely continuous and verifies (1.2) a.e. on [0, T ].

2. A simplified problem

Consider the following periodic boundary value problem

(φ(u′))′ = h(t), u(0) = u(T ), u′(0) = u′(T ), (2.1)

where h is in L1
m and φ is an increasing homeomorphism between R and (−1, 1), with φ(0) = 0. If a C1

function u : I → R solves the equation (φ(u′))′ = h(t), of course there exists a real a such that

φ(u′(t)) = a + H(h)(t), (2.2)
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where H is the continuous linear integral operator, that is,

H(h)(t) =
∫ t

0

h(s)ds.

Remark 2.1. Notice that the condition u′(0) = u′(T ) implies that
∫ T

0
h(t)dt = 0 and this justifies the

assumption that h ∈ L1
m.

By the inversion of φ in (2.2), we have

u′(t) = φ−1(a + H(h)(t)), (2.3)

and thus the image of H(h), which is a closed interval containing 0, has measure smaller than 2.
Call D̃ the set of functions h in L1

m such that there exists a real a with

a + H(h)(t) ∈ (−1, 1), ∀t ∈ I.

The set D̃ is unbounded in L1
m. Indeed, take for simplicity T = 1 and consider the sequence of functions

{hn} in L1
m, defined by

hn(t) =
{

n t ∈ [k/n, (2k + 1)/(2n))
−n t ∈ [(2k + 1)/(2n), (k + 1)/n) ∪ {1}, k = 0, . . . , n− 1.

(2.4)

It is straightforward to see that {hn} ⊆ D̃ and that, in particular, for each n, H(hn) is a nonnegative
function with norm 1/2. On the other hand, ‖hn‖L1 = n and this shows that D̃ is not bounded in L1

m.
Moreover D̃ is open in L1

m. To see this, let h ∈ D̃ be given and consider any ε in L1
m. For any t one

has ∫ t

0

h(s)ds− ‖ε‖L1 ≤
∫ t

0

h(s)ds +
∫ t

0

ε(s)ds ≤
∫ t

0

h(s)ds + ‖ε‖L1 .

If [c, d] is the image of H(h), then D̃ contains the open ball in L1
m of center h and radius [2− (d− c)]/2.

Coming back to problem (2.1), if u is a solution, we have

u(t) = u(0) +
∫ t

0

φ−1(a + H(h)(s))ds.

The boundary condition u(0) = u(T ) implies that∫ T

0

φ−1(a + H(h)(t))dt = 0. (2.5)

Therefore problem (2.1) admits a solution in C1
T if and only if h belongs to the subset D of D̃ defined

as the set of functions h ∈ D̃ such that there exists a ∈ R verifying the (2.5). The following proposition
lists some properties of D.

Proposition 2.2. The following conditions hold:
(1) the set D is open and unbounded in L1

m;
(2) D contains the open ball in L1

m centered at 0 with radius 1;
(3) for any h ∈ D the real a such that∫ T

0

φ−1(a + H(h)(t))dt = 0

is unique and then defines a map α : D → R which is bounded and continuous.

Proof. (1) The unboundedness of D can be proved in the same way as done for D̃. In the simple case
T = 1, take the sequence {hn} defined by formula (2.4). For any n the function

Gn(a) =
∫ 1

0

φ−1(a + H(hn)(t))dt

is well defined in (−1, 1/2). Of course, Gn(a) > 0 if a ≥ 0 and Gn(a) < 0 if a ≤ −1/2. As Gn is
continuous, it admits a zero in its domain. Therefore {hn} ⊆ D.

To prove that D is open in L1
m, define the set

C =

{
l ∈ CT,0 : ∃ a ∈ R with − 1 < a + l(t) < 1,∀t ∈ I, and

∫ T

0

φ−1(a + l(t))dt = 0

}
.
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The set C is open in CT,0. Indeed, fix l ∈ C and let al be such that∫ T

0

φ−1(al + l(t))dt = 0.

Denote by (a1, a2) the open interval, containing al, such that φ−1(a + l(t)) is well defined for every
a ∈ (a1, a2) and every t ∈ I. Since φ−1 is strictly increasing, we can take a1 < a1 < al < a2 < a2 such
that ∫ T

0

φ−1(a1 + l(t))dt < 0 and
∫ T

0

φ−1(a2 + l(t))dt > 0.

Then, consider a neighborhood U of l in CT,0 such that for each m ∈ U one has∫ T

0

φ−1(a1 + m(t))dt < 0 and
∫ T

0

φ−1(a2 + m(t))dt > 0.

The existence of U is a consequence of the fact that, for i = 1, 2, the map

l 7→
∫ T

0

φ−1(âi + l(t))dt

is well defined and continuous in a neighborhood of l. It follows that U ⊆ C which turns out to be open
in CT,0. Now, as D = H−1(C), where H is here the integral operator restricted to L1

m and valued in CT,0,
we have that D is open in L1

m.

(2) The set C, defined above, contains the open ball B in CT,0 of center zero and radius 1/2. Indeed
let l ∈ B be given. If

∫ T

0
φ−1(l(t))dt = 0, clearly l is in C. Otherwise, without loss of generality, suppose

that the above integral is positive. As supt l(t) < 1/2 and inft l(t) > −1/2, one can find a real a, close
enough to −1/2, such that −1 < a + l(t) < 0 for each t ∈ I, and thus∫ T

0

φ−1(a + l(t))dt < 0.

Hence, there exist â ∈ (a, 0) such that ∫ T

0

φ−1(â + l(t))dt = 0

and this proves that l ∈ C.
Now, let h ∈ L1

m with ||h||L1 < 1. Define

h+(t) =
{

h(t) if h(t) ≥ 0
0 if h(t) < 0

and h−(t) =
{

0 if h(t) ≥ 0
−h(t) if h(t) < 0.

As
∫ T

0
h(t)dt = 0, one has that ||h+|| = ||h−|| < 1/2. It follows that |H(h)(t)| < 1/2 for any t ∈ I and

hence H(h) ∈ C. Thus h ∈ D and the claim follows.

(3) Since φ−1 is strictly increasing, for any h ∈ D the real a such that∫ T

0

φ−1(a + H(h)(t))dt = 0

is unique and then defines a map α : D → R. The boundedness of α is a consequence of the fact that,
for each h ∈ D, H(h)(0) = 0 and thus |H(h)(t)| < 2, for any t ∈ I.

To see the continuity of α we proceed as follows. For any function l ∈ C the real a such that∫ T

0

φ−1(a + l(t))dt = 0

is unique. Therefore it is well defined the map α̃ : C → R, such that, for each l ∈ C,∫ T

0

φ−1(α̃(l) + l(t))dt = 0.

Let us prove the continuity of α̃. Let {ln} be a sequence in C, converging to l ∈ C. Since α̃ is bounded,
any subsequence of α̃(ln) admits a convergent subsequent, say α̃(lnj

) → a as j → ∞. Let us show first
that φ−1(a + l(t)) is well defined. To see this, call (a1, a2) the domain of the map Gl, defined as

Gl(a) =
∫ T

0

φ−1(a + l(t))dt.
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Then, consider a1 and a2 in (a1, a2) such that

Gl(a1) < 0 and Gl(a2) > 0.

Let U be a neighborhood of l in C such that, for any m in U ,

Gm(a1) < 0 and Gm(a2) > 0.

This implies that, for j sufficiently large, α(lnj ) ∈ [a1, a2] and hence a ∈ [a1, a2].
Now, from the continuity of the map x 7→

∫ T

0
φ−1(x(t))dt and since∫ T

0

φ−1(α(lnj
) + lnj

(t))dt = 0,

it follows that ∫ T

0

φ−1(a + l(t))dt = 0

and this proves the continuity of α̃. Finally, α is continuous being the composition α̃ = H ◦ α. �

For any h ∈ D, problem (2.1) has infinite solutions which differ by a constant and can be written as

u(t) = u(0) + H
(
φ−1[α(h) + H(h)]

)
(t), (2.6)

where, by an abuse of notation, in the above formula φ−1 is the operator which associates to any map g
the map t 7→ φ−1(g(t)).

Define P : C1
T → C1

T as Pu = u(0). Observe that C1
T admits the splitting

C1
T = E1 ⊕ E2, (2.7)

where E1 contains the maps ũ such that ũ(0) = 0 and E2 is the one-dimensional subspace of constant
maps. It is immediate to see that P is the continuous projection onto E2 by the above decomposition.

In addition consider Q : L1 → L1, defined as Qh = 1
T

∫ T

0
h(t)dt. One can split L1 as

L1 = L1
m ⊕ F2, (2.8)

where F2 is the one-dimensional subspace of constant maps. The operator Q turns easily out to be the
continuous projection on F2 with the above splitting of L1.

Then, consider the subset D̂ of L1, D̂ = D + F2, and the nonlinear operator K : D̂ → C1
T , defined as

K(h)(t) = H
(
φ−1[α((I −Q)h) + H((I −Q)h)]

)
(t). (2.9)

If a C1 function u is a solution of (2.1), for a given h ∈ D, of course u solves the equation

u = Pu + Qh + K(h). (2.10)

Conversely, if u ∈ C1
T is a solution of (2.10), for a given h ∈ D̂, it follows that h actually belongs to D

and u solves (2.1).

Proposition 2.3. The map K is continuous and sends equi-integrable sets of D̂ into relatively compact
sets in C1

T .

Proof. The continuity of K is a straightforward consequence of the fact that this map is a composition
of continuous maps.

Consider an equi-integrable set S of L1, contained in D̂, and let g ∈ L1 be such that

|h(t)| ≤ g(t) a.e. in I.

Let us show that K(S) is compact. To see this consider first a sequence {kn} of K(S) and let {hn} ⊆ S
be such that K(hn) = kn. For any t1, t2 ∈ I we have

|H(I −Q)(hn)(t1)−H(I −Q)(hn)(t2)| ≤
∣∣∣∫ t1

t2
hn(s)ds

∣∣∣+ |Qhn| |t1 − t2|

≤
∣∣∣∫ t1

t2
g(s)ds

∣∣∣+ t1 − t2
T

∫ T

0
g(s)ds.

Therefore the sequence {H(I −Q)(hn)} is bounded and equicontinuous and then, by Ascoli-Arzelà The-
orem, it admits a convergent subsequence in C, say {H(I − Q)(hnj

)}. Up to a subsequence, {α((I −
Q)(hnj

)) + H((I −Q)(hnj
)} converges in C. In addition we have that

(K(hnj
))′(t) = φ−1

[
{α((I −Q)(hnj

)) + H((I −Q)(hnj
)}
]
(t)
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and, by the continuity of φ−1, (K(hnj
))′ is convergent in C. Therefore {knj

} = {K(hnj
)} converges in

C1
T .

Now consider a sequence {kn} belonging to K(S) (that is, not necessarily to K(S)). Let {ln} ⊆ K(S)
be such that ||ln − kn|| → 0 as n →∞. Let in addition {lnj

} be a subsequence of {ln} that converges to
l. Therefore, l ∈ K(S) and {knj

} → l, and this completes the proof. �

3. Main result

In this section we present the main result of the paper, that is, an existence theorem for the periodic
boundary value problem

(φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (3.1)

where φ is as in the above section and f : I × R× R → R is a Carathéodory function, that is,
i) for almost every t ∈ I, f(t, ·, ·) is continuous;
ii) for any (x, y) ∈ R2, f(·, x, y) is measurable;
iii) for any ρ > 0 there exists g ∈ L1 such that, for almost every t ∈ I and every (x, y) ∈ R2, with

|x| ≤ ρ and |y| ≤ ρ, we have
|f(t, x, y)| ≤ g(t).

Theorem 3.1. Let Ω be a bounded open subset of C1
T such that the following conditions hold:

(1) for any u ∈ Ω the map t 7→ f(t, u(t), u′(t)) belongs to D̂;
(2) for each λ ∈ (0, 1) the problem

(φ(u′))′ = λf(t, u, u′), u(0) = u(T ), u′(0) = u′(T ) (3.2)

has no solution on ∂Ω;
(3) the equation

F (a) :=
∫ T

0

f(t, a, 0)dt = 0 (3.3)

has no solution on ∂Ω2, where Ω2 := Ω ∩ E2 and E2 is the subspace of C1
T in the splitting (2.7);

(4) the Brouwer degree
degB(F,Ω2, 0)

is well defined and nonzero.
Then problem (3.1) has a solution in Ω.

Proof. Let Nf denote the Nemytski operator associated to f , that is,

Nf : C1
T → L1, Nf (u)(t) = f(t, u(t), u′(t)).

Consider the problem

(φ(u′))′ = λNf (u) + (1− λ)QNf (u), u(0) = u(T ), u′(0) = u′(T ). (3.4)

For λ ∈ (0, 1], if u is a solution of (3.2), then, as seen in the previous section, condition u′(0) = u′(T )
implies QNf (u) = 0 and hence u solves problem (3.4) as well. Conversely, if u is a solution of problem
(3.4), then QNf (u) = 0 since it is easy to see that

Q[λNf (u) + (1− λ)QNf (u)] = QNf (u),

and thus u solves problem (3.2) (λ still belongs to (0, 1]).
Let us now consider problem (3.4). It can be written in the equivalent form

u = K(u, λ), (3.5)

where
K(u, λ) = Pu + QNf (u) + (K ◦ [λNf + (1− λ)QNf ])(u)

= Pu + QNf (u) + (K ◦ [λ(I −Q)Nf ])(u)

is well defined in Ω × [0, 1]. Suppose that (3.4) has no solution on ∂Ω for λ = 1, since, otherwise, the
theorem is proved. Take λ = 0. Problem (3.4) becomes

(φ(u′))′ =
1
T

∫ T

0

f(t, u(t), u′(t))dt, u(0) = u(T ), u′(0) = u′(T ). (3.6)



6 P. BENEVIERI, J.M. DO Ó, AND E.S. MEDEIROS

It follows that
∫ T

0
f(t, u(t), u′(t))dt = 0 and this implies that u is a constant function, say u(t) = c.

Therefore, we have ∫ T

0

f(t, c, 0)dt = 0.

By assumption (2) c /∈ ∂Ω2. Hence the equation

u−K(u, λ) = 0

has no solution on ∂Ω× [0, 1]. In addition, as f is Carathéodory, the nonlinear map N : C1
T × [0, 1] → L1,

defined by
N (u, λ) = λNf (u) + (1− λ)QNf (u), (3.7)

is continuous and takes bounded sets into equi-integrable sets. This implies that, recalling Proposition
2.3, K is completely continuous. We can apply the homotopy invariance property of the Leray-Schauder
degree to the map (u, λ) 7→ u−K(u, λ), obtaining

degLS(I −K(·, 0),Ω, 0) = degLS(I −K(·, 1),Ω, 0). (3.8)

We can now say that problem (3.1) has a solution in Ω if we prove that degLS(I − K(·, 0),Ω, 0) 6= 0.
To see this we apply a finite-dimensional reduction property of the Leray-Schauder degree. Observe first
that K(0) = 0, then

K(u, 0) = Pu + QNf (u).
To compare the Leray-Schauder degree of the triple (I−K(·, 0),Ω, 0) with the Brouwer degree of (F,Ω2, 0),
consider the splitting (2.7) of C1

T . The operator I −K(·, 0) can be represented in block-matrix form as

I −K(·, 0) =
(

IE1 −K12

0 −F

)
.

By the properties of the Leray-Schauder degree we have that

degLS(I −K(·, 0),Ω, 0) = −degB(F,Ω2, 0)
and this completes the proof. �

4. An application

In this section we show an application of Theorem 3.1. Consider the problem
u′′

(1 + (u′)2)3/2
= (t2 − t + 1/2)(u3 + (u′)4) + η, u(0) = u(1), u′(0) = u′(1), (4.1)

where η is a real constant.

Remark 4.1. Recalling Remark 1.1, if u ∈ C1
T solves the equation, φ(u′) is absolutely continuous (φ

being defined as φ(t) = t/
√

1 + t2). It is immediate to verify that u′ is absolutely continuous as well.
Now, observe that a solution u of (4.1) is such that u′′ coincides a.e. with a continuous function, that is,
can be continuously extended to [0, 1]. This implies that u′ is actually C1 and then any solution of the
problem is actually a C2 function.

Observe first that be the open ball B of C1
T with center zero and radius 1 is admissible for problem

(4.1) in the sense that, for any u ∈ B, the map

t 7→ (t2 − t + 1/2)(u3(t) + (u′(t))4) + η

belongs to the set D̂, introduced in the above section. To see this, it is sufficient to show that, for any
u ∈ B, the map t 7→ (t2 − t + 1/2)(u3(t) + (u′(t))4) belongs to D. This follows easily from the inequality

sup
t
|(t2 − t + 1/2)(u3(t) + (u′(t))4)| < 1,

and the fact that D contains the open ball in L1
m centered at 0 with radius 1 (Proposition 2.2).

Call Ω the open ball in C1
T with center zero and radius 3/4. Our purpose is to show that, by applying

Theorem 3.1, problem (4.1) admits a solution in Ω if |η| is sufficiently small. We start by showing that
(4.1) has no solution on ∂Ω for η in a suitable neighborhood of zero. Let u ∈ ∂Ω be given, that is,

||u||1 = ||u||0 + ||u′||0 = 3/4.

We will consider different cases.
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(i) Suppose ||u||0 > 1/2. This implies that |u(t)| > 1/4 for each t, since, otherwise, by the mean value
theorem, we have |u′(t′)| > 1/4 for some t′, and hence ||u||0 + ||u′||0 > 3/4. Notice that in this case u
does not change sign.

Assume first that u is positive. If η > −1/256, then the right hand side of the equation in (4.1) is
positive. If the left hand side is positive, then u′ is stricly increasing, but this is not possible because
u′(0) = u′(T ). If otherwise u is negative, the right hand side of the equation is negative if η < 3/1024.
Analogously to the above case, the left hand side cannot be negative for each t.

(ii) Suppose 1/3 < ||u||0 ≤ 1/2. This implies that 1/4 ≤ ||u′||0 < 5/12 and thus |u′(t)| ≥ 1/4, for some
t. In addition, u(0) = u(1) implies that u′(t′) = 0 for some t′, and thus, by the mean value theorem,
|u′′(t′′)| ≥ 1/4 for some t′′. Let us show that(

1 + (u′(t))2
)3/2 ∣∣(t2 − t + 1/2)(u3(t) + (u′(t))4) + η

∣∣ < 1/4, (4.2)

for each t ∈ [0, 1] and any η ∈ (−1/256, 3/1024). First we have that(
1 + (u′(t))2

)3/2
<

(
13
12

)3

< 1.28, ∀t ∈ [0, 1],

then ∣∣(t2 − t + 1/2)(u3(t) + (u′(t))4) + η
∣∣ ≤ ∣∣u3(t)

∣∣
2

+
(u(t)′)4

2
+ |η| < 1

16
+

1
2

(
5
12

)4

+
1

256
< 0.09,

for each t ∈ [0, 1] and η ∈ (−1/256, 3/1024). The left hand side of (4.2) turns out to be smaller than 0.12
and hence (4.2) holds.

(iii) Finally, the case when ||u||0 ≤ 1/3 is analogous to the previous one.

Summarizing this argument, problem (4.1) has no solution on ∂Ω, with η ∈ (−1/256, 3/1024). Let
us apply Theorem 3.1 to show that our problem has a solution in Ω. To this purpose, observe that the
problem

u′′

(1 + (u′)2)3/2
= λ

[
(2t2 − 2t + 1)(u3 + (u′)4) + η

]
, u(0) = u(1), u′(0) = u′(1) (4.3)

has no solution for any λ ∈ (0, 1], and this can be easily seen by the same argument used in the case
when λ = 1. Recalling points (3) and (4) in the statement of Theorem 3.1, the equation

Fη(a) =
∫ 1

0

[
(t2 − t + 1/2)a3 + η

]
dt =

1
3
a3 + η = 0

has no solution on ∂Ω2 = (−3/4, 3/4) for any given η ∈ (−1/256, 3/1024). It is immediate to see that

degB(Fη,Ω2, 0) = 1.

Thus we can apply Theorem 3.1 to conclude that (4.1) admits a solution in Ω for η ∈ (−1/256, 3/1024).
It is also immediate that any solution is nontrivial if η 6= 0.
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Everaldo Souto Medeiros, Departamento de Matemática, Universidade Federal da Paraiba, CCEN, 58059-

900 João Pessoa, PB, Brazil. E-mail address: everaldo@mat.ufpb.br


