Geometry in the Large

July 15, 2016

1 Problem Session

Problem 1. What can we say about curvature-homogeneous Riemannian 3-manifolds? What about when assuming completeness or compactness? Can they be classified?

Curvature-homogeneous means that the eigenvalues of the Riemannian curvature are constant. The higher dimensional cases are likely easier.

Problem 2. Find a smooth (compact) manifold with 2 metrics g_0, g_1 such that $Ricci(g_0) = 0$ and $Ricci(g_1) = \lambda g_1$ for some $\lambda \neq 0$. (So it has both a Ricci-flat metric and an Einstein (but not Ricci-flat) metric.

It is not even known if S^4 has a Ricci-flat metric. There do exist manifolds with a Ricci-flat metric and also a positive scalar curvature metric.

Problem 3. Does any homogeneous space diffeomorphic to \mathbb{R}^n ever admit a closed geodesic?

This is unknown even for 3-manifolds. The stating example to consider is the universal cover of $SL(2,\mathbb{R})$.

Problem 4. Does the space of closed Sp(2)Sp(1)-structures on an 8-manifold satisfy the hprinciple? What about the same question for half-flat SU(3) structures on 6-manifolds?

SU(3) structures are equivalent to specifying ω, γ where ω is a 2-form which point-wise looks like $dq^1 \wedge d\bar{q}^1 + dq^2 \wedge d\bar{q}^2 + dq^3 \wedge d\bar{q}^3$ and γ is a 3-form that point-wise looks like $dz^1 \wedge dz^2 \wedge dz^3$. Half-flat means that $d(\omega^2) = 0$ and $(\text{Im } \gamma) = 0$

An Sp (2)Sp (1) structure is equivalent to specifying a 4-form Φ such that Φ point-wise looks like $\frac{1}{6}(\omega_I^2 + \omega_J^2 + \omega_K)^2$ where I, J, K are the standard quaternion structure on \mathbb{H}^2 .

Problem 5. Classify compact 3-manifolds M with metrics such that the Riemannian curvature tensor has a non-trivial kernel everywhere. This means that there is some non-zero $X \in T_pM$ for each $p \in M$ with $R(X, \cdot) = 0$.

It is known that outside flat points it locally splits with a Euclidean factor. If the set of flat points is small enough, then it is a graph manifold.

Problem 6. Classify the Riemannian submersions $\pi : \mathbb{E}^n \to M^{n-r}$ for r > 0. Are they all homogeneous?

Earlier work by Gromov and Walschap was not conclusive for r > 3.

Problem 7. Is the moduli space of all Zoll metrics on S^2 connected?

A metric on S^2 is called Zoll if every geodesic is simple and closed. It is known (Zoll, Guillemin) that the moduli space is infinite dimensional even if you assume rotational symmetry.

Problem 8. Which conformal classes of metrics on S^6 do not admit a compatible complex structure?

Since compatibility with complex structures places point-wise conditions on the Weyl tensor, it's reasonable to investigate the conformal structures. LeBrun showed that (S^6, g_{round}) , and all conformal structures sufficiently close to g_{round} , do not admit such a structure. Another question is to classify what "sufficiently close" means.

Problem 9. Is there an algebraic proof that homogeneous and Ricci-flat implies flat?

This appears to be a hard problem. Known proofs are non-algebraic, see for example in Besse "Einstein Manifolds" which uses the splitting principle.

Problem 10. Given two closed hyperbolic 3-manifolds M_1, M_2 and $\epsilon > 0$, do there exist finite covers \tilde{M}_1, \tilde{M}_2 with subsets $S_i \subseteq \tilde{M}_i$ so that S_1 is $(1 + \epsilon)$ -Lipshitz isomorphic to S_2 and $vol(\tilde{M}_i \setminus S_i) < \epsilon vol(\tilde{M}_i)$.

See the paper by Kahn-Markovič about the Ehrenpreis conjecture.