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Background

(M,ds2): connected simply connected Riemannian
homogeneous space

M = G/K where G = I(M,ds2) is the isometry group

M → Γ\M Riemannian covering

In other words Γ is a discrete subgroup of G and if γ ∈ Γ
has a fixed point on M then γ = 1.

Problem: when is Γ\M homogeneous?

First step: If Γ\M is homogeneous then every γ ∈ Γ is an
isometry of constant displacement.

Example: if Γ\Rn is homogeneous then Γ consists of
pure translations so Γ\Rn is the product of a torus and an
euclidean space.
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More Background

A less trivial example:

(M,ds2) has every sectional curvature ≦ 0

(M,ds2) = (M1, ds
2
1)× (M2, ds

2
2) (de Rham) where

(M1, ds
2
1) is the flat factor in the de Rham decomposition

(M2, ds
2
2) is the product of the irreducible factors

M → Γ\M universal Riemannian covering

Then the following are equivalent.
Γ\M is homogeneous
Every γ ∈ Γ is an isometry of constant displacement
Every γ ∈ Γ is an isometry of bounded displacement
Every γ ∈ Γ is just a pure translation along the
Euclidean factor (M1, ds

2
1) of (M,ds2)
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Yet More Background

A nontrivial example:

Sn−1 ⊂ Rn usual round sphere of dimension n− 1 in Rn

Γ finite group of fixed point free isometries of Sn−1, in
other words Γ\Sn−1 is a spherical space form

Suppose that Γ\Sn−1 is Riemannian homogeneous

Let L denote the normalizer of Γ in I(Sn−1) = O(n)

Then L0 centralizes Γ and is transitive on Sn−1

Schur’s Lemma: L0 is contained in the multiplicative
group of a real division algebra A = R,C or H. So

(1) If A = R: Γ ⊂ {±1}
(2) If A = C: Γ is cyclic of order > 2
(3) If A = H: Γ is binary dihedral, binary tetrahedral,
binary octahedral or binary icosahedral
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Constant Curvature
M → Γ\M universal Riemannian covering

Theorem. Suppose that M is complete and has constant
sectional curvature K. Then Γ\M is Riemannian
homogeneous if and only if every γ ∈ Γ is an isometry of
constant displacement

For K < 0: the less–trivial example says that Γ\M is
Riemannian homogeneous if and only if Γ = {1}

For K = 0: this is covered by the trivial example

For K > 0: this involves some nontrivial finite group
theory based on (i) γ 6= ±I has constant displacement if
and only if it has eigenvalues {λ, λ; . . . ;λ, λ} and (ii) an
induction involving binary polyhedral and SL(2;Zp)
groups
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Riemannian Symmetric

M → Γ\M universal Riemannian covering

Theorem. Suppose that M is a Riemannian symmetric
space. Then Γ\M is Riemannian homogeneous if and
only if every γ ∈ Γ is an isometry of constant
displacement

First reduction: to case where M is irreducible

Second reduction: to case where M is compact
irreducible

Compact irreducible case 1: M is a group manifold

Compact irreducible case 2: M = G/K with G compact
simple classical

Compact irreducible case 3: M = G/K with G compact
simple exceptional
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Finsler Symmetric

M → Γ\M universal Finsler covering

Theorem. Suppose that (M,F ) is a Finsler symmetric
space. Then Γ\M is Finsler homogeneous if and only if
every γ ∈ Γ is an isometry of constant displacement

(M,F ) is Berwald and
(M,F ) = (M0, F0)× (M1, F1)× (M2, F2) with (M0, F0)
Minkowski, (M1, F1) compact type, (M2, F2) noncompact
type

First reduction: constant displacement isometries
decompose so reduced to cases (M,F ) = (Mi, Fi)

Second reduction: take care of Minkowski and
noncompact type cases

Third reduction: reduce to irreducible Riemannian cases
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Dichotomy – Unbounded Cases

Putting Euclidean factors aside now there are two
disparate cases

Unbounded: here the evidence is that isometries of
bounded displacement are ordinary translations along the
Euclidean factor

Riemannian manifolds of sectional curvature ≦ 0

Riemannian manifolds without focal points
Riemannian manifolds homogeneous under a
semisimple group with no compact factor
Riemannian manifolds homogeneous under an
exponential solvable Lie group of isometries
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Dichotomy – Bounded Cases

Bounded: here much of the progress on the conjecture
has been case by case verification

Riemannian or Finsler symmetric spaces
Compact homogeneous with a certain Weyl group
condition, e.g. Stieffel manifolds
Twistor bundles over Grassmann manifolds, hermitian
or quaternionic symmetric spaces, nearly-Kähler
(3–symmetric) spaces, the 5–symmetric E8/A4A4 , . . .

Example: M = G/K1 fibered over N = G/K1K2.
M and N carry normal Riemannian metrics from G

Γ: finite subgroup of ZGK2

Then Γ acts on M : by (z, k2)(gK1) = zgk−1
2 K1

This is isometric and centralizes the (transitive)
isometric action of G on M so Γ\M is homogeneous
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Idea of Proof: Sectional Curvature≦ 0

M is a complete simply connected manifold with every
sectional curvature ≦ 0

γ is an isometry of M of bounded displacement

t 7→ σ(t) geodesic ⇒ dγ(t) = dist(σ(t), γ(σ(t))) bounded

Geodesic segments σ(t), γ(σ(t)) fill out a flat totally
geodesic strip in M

So γ is ordinary translation along the euclidean factor of
the de Rham decomposition of M

Theorem. Suppose that M is homogeneous and
M → Γ\M is a Riemannian covering. Then Γ\M is
homogeneous if and only if every γ ∈ Γ is an isometry of
constant displacement. In that case Γ is a discrete group
of ordinary translations along the euclidean factor of M .
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Idea of Proof: Group Structure

If G is noncompact simple and α is a bounded
automorphism then α = 1. Essentially the same argument
as for sectional curvature ≦ 0: distinct 1–parameter
subgroups of hyperbolic type must diverge apart,

If M = G/K, G semisimple with no compact factor, and γ
is a bounded isometry then γ = 1. This uses I(M)0 =
{xK 7→ gxu−1K | g ∈ G, u isometry , u normalizes K

If M = G/K, G exponential solvable, and γ is a bounded
isometry then α = 1. This uses some basic unipotent
group theory, and includes the case of nilpotent G.
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Idea of Proof: Riemannian Symmetric

M : complete simply conn. Riemannian symmetric space

γ is an isometry of constant displacement

γ = γ0 × γ1 × · · · × γr along the de Rham decomposition
M = M0 ×M1 × · · · ×Mr , each γi constant displ. on Mi

So can assume that M is compact and irreducible

Γ ⊂ I(M), every γ ∈ Γ const. displ, M → Γ\M covering

If M = (L× L)/(diag L) group manifold then Γ is
I(M)-conjugate to a subgroup of L× {1}.

If M = G/K with G simple: run through the classification

Theorem. Let M → Γ\M be a Riemannian covering.
Then Γ\M is homogeneous if and only if every γ ∈ Γ is
an isometry of constant displacement.
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Idea of Proof: Twistor Bundles
Using Borel – de Siebenthal theory one obtains a list of
all bundles M̃ = G/K1 → G/K = M where
G compact simple, K = K1K2 maximal rank,
K ≃ K1 ×K2 with dim k1 6= 0 6= dim k2

M and M̃ are normal homogeneous spaces of G

M̃ → M is a Riemannian submersion

I(M̃)0 = G× r(K2) = {xK1 7→ gxk−1
2 K1 | g ∈ G, k2 ∈ K2}

I(M̃) =
⋃

α∈Out(G,K1)
I(M̃)0α where

Out(•) = Aut(•)/Int(•) outer automorphisms, and
Out(G,K1) = {α ∈ Aut(G) | α(K1) = K1 , α|K1

∈ Out(K1)}

Theorem. Let M̃ → Γ\M̃ be a Riemannian covering.
Equivalent: (1) γ ∈ Γ is of constant displacement
(2) Γ ⊂ ZG × r(K2), (3) Γ\M̃ is homogeneous.
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Thank you for your attention
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