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Background

(M, ds*): connected simply connected Riemannian
homogeneous space

M = G/K where G = Z(M, ds?) is the isometry group
M — I'\M Riemannian covering

In other words I is a discrete subgroup of G and if v € T
has a fixed point on M then v = 1.

Problem: when is I'\ M homogeneous?

First step: If I'\ M is homogeneous then every v € ' Is an
Isometry of constant displacement.

Example: if '\R" Is homogeneous then I" consists of
pure translations so I"'\R"” is the product of a torus and an
euclidean space. J

_p2



-

9

<

More Background

A less trivial example:
(M, ds*) has every sectional curvature < 0

(M, ds?) = (My,ds?) x (Ms,ds3) (de Rham) where
s (Mjy,ds?) is the flat factor in the de Rham decomposition
s (My,ds3) is the product of the irreducible factors

#® M — I'\ M universal Riemannian covering

# Then the following are equivalent.

o

s I'\M Is homogeneous

s Every v € I' Is an isometry of constant displacement
s Every v € I' Is an isometry of bounded displacement
» Every v € I' Is just a pure translation along the

Euclidean factor (M, ds?) of (M, ds?) o
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Yet More Background

D A nontrivial example:
# S"~1 c R™ usual round sphere of dimension n — 1 in R”

» T finite group of fixed point free isometries of S*~1, in
other words I'\S”~! is a spherical space form

® Suppose that I'\ S"~! is Riemannian homogeneous
»® Let L denote the normalizer of I" in Z(S" 1) = O(n)
# Then LY centralizes I and is transitive on S~ 1

® Schur's Lemma: LY is contained in the multiplicative
group of a real division algebra A = R, C or H. So

® (HIfA=R: T cC{£1}
(2) If A = C: I' is cyclic of order > 2
(3) If A = H: T" is binary dihedral, binary tetrahedral,
binary octahedral or binary icosahedral

-
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Constant Curvature

M — I'\M universal Riemannian covering T

Theorem. Suppose that M Is complete and has constant
sectional curvature K. Then I'\ M I1s Riemannian
homogeneous if and only if every v € I Is an isometry of
constant displacement

For K < 0: the less—trivial example says that I'\ M Is
Riemannian homogeneous if and only iIf I' = {1}

For K = 0: this is covered by the trivial example

For K > 0: this involves some nontrivial finite group
theory based on (i) v # +1 has constant displacement if
and only if it has eigenvalues {\, \;...; X, A} and (ii) an
Induction involving binary polyhedral and SL(2;Z,)
groups

|
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Riemannian Symmetric

D M — T'\M universal Riemannian covering T

#® Theorem. Suppose that M is a Riemannian symmetric
space. Then I'\ M Is Riemannian homogeneous if and
only if every ~ € T" Is an isometry of constant
displacement

® First reduction: to case where M is irreducible

#® Second reduction: to case where M Is compact
Irreducible

# Compact irreducible case 1: M Is a group manifold

# Compact irreducible case 2: M = G/K with G compact
simple classical

# Compact irreducible case 3: M = G/K with G compact

L simple exceptional J
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Finsler Symmetric

D M — T'\M universal Finsler covering T

# Theorem. Suppose that (M, F') Is a Finsler symmetric
space. Then I'\ M is Finsler homogeneous if and only if
every v € I' Is an iIsometry of constant displacement

® (M, F)is Berwald and
(M, F) — (M(), F()) X (Ml, Fl) X (MQ, FQ) with (M(), F())
Minkowski, (M7, F1) compact type, (M2, F>) noncompact
type

# First reduction: constant displacement isometries
decompose so reduced to cases (M, F) = (M;, F;)

® Second reduction: take care of Minkowski and
noncompact type cases

Lo Third reduction: reduce to irreducible Riemannian cases J
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Dichotomy — Unbounded Cases

.

disparate cases

Putting Euclidean factors aside now there are two

-

® Unbounded: here the evidence is that isometries of
bounded displacement are ordinary translations along the

Euclidean factor

» Riemannian manifo
» Riemannian manifo
s Riemannian manifo

ds of sectional curvature < 0
ds without focal points
ds homogeneous under a

semisimple group with no compact factor

» Riemannian manifolds homogeneous under an
exponential solvable Lie group of isometries

o
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Dichotomy — Bounded Cases

B Bounded: here much of the progress on the conjecture T

has been case by case verification
» Riemannian or Finsler symmetric spaces

» Compact homogeneous with a certain Weyl group
condition, e.g. Stieffel manifolds

» Twistor bundles over Grassmann manifolds, hermitian
or quaternionic symmetric spaces, nearly-Kahler
(3—symmetric) spaces, the 5—symmetric Eg/A4Ay, ...

o Example: M = G/K; fibered over N = G/ K Ko.

o

s M and N carry normal Riemannian metrics from G
o I': finite subgroup of Z4 Ko
o Then I acts on M: by (z, k2)(gK1) = zgk; ' K3

s This Is iIsometric and centralizes the (transitive)
Isometric action of G on M so I'\ M I1s homogeneous J
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ldea of Proof: Sectional Curvature < ()

D M is a complete simply connected manifold with every T
sectional curvature < 0

# ~ Is an isometry of M of bounded displacement
® t— o(t) geodesic = d.(t) = dist(o(t),v(o(t))) bounded

# Geodesic segments o(t),v(o(t)) fill out a flat totally
geodesic strip in M

#® So v Is ordinary translation along the euclidean factor of
the de Rham decomposition of M

#® Theorem. Suppose that M is homogeneous and
M — I'\M Is a Riemannian covering. Then I'\ M is
homogeneous if and only if every v € I' Is an isometry of
constant displacement. In that case I' is a discrete group
L of ordinary translations along the euclidean factor of M. J
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ldea of Proof: Group Structure

.

If G Is noncompact simple and « is a bounded T
automorphism then o« = 1. Essentially the same argument

as for sectional curvature = 0: distinct 1-parameter
subgroups of hyperbolic type must diverge apart,

8 If M =G/K, G semisimple with no compact factor, and ~
is a bounded isometry then v = 1. This uses Z(M)" =
(2K +— gru 'K | g € G,u isometry ,u normalizes K

8 If M =G/K, G exponential solvable, and ~ Is a bounded
Isometry then o = 1. This uses some basic unipotent
group theory, and includes the case of nilpotent G.

o |
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ldea of Proof: Riemannian Symmetric

E M: complete simply conn. Riemannian symmetric space T
# ~ IS an isometry of constant displacement

® v =1 X7 XX, along the de Rham decomposition
M = My x My x --- x M, , each ~; constant displ. on M;

# S0 can assume that M is compact and irreducible
® ['CI(M),everyy eI const. displ, M — I'\ M covering

® If M = (L x L)/(diag L) group manifold then I is
Z(M)-conjugate to a subgroup of L x {1}.

8 If M =G /K with G simple: run through the classification

# Theorem. Let M — I'\ M be a Riemannian covering.
Then I'\ M Is homogeneous if and only if every v € T' Is
L an isometry of constant displacement. J
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|dea of Proof: Twistor Bundles

D Using Borel — de Siebenthal theory one obtains a list of T
all bundles M = G/K; — G/K = M where
s (G compact simple, K = K1 K5 maximal rank,
o K ~ K1 x Ko with dim€; # 0 # dim £
s M and M are normal homogeneous spaces of G
s M — M is a Riemannian submersion

® IT(M ) =G x1r(Ks) = {oKy — grky; 'Ky | g € G, ks € Ko}

® I(M) = Uneour(c,i) Z(M)° where
Out(e) = Aut(e)/Int(e) outer automorphisms, and
Out(G, K1) ={a € Aut(G) | a(Ky) = K1, a|g, € Out(K1y)}

» Theorem. Let M — F\J\7 be a Riemannian covering.
Equivalent: (1) v € I' Is of constant displacement
(2) T C Zg x r(K>2), (3) '\M Is homogeneous. J
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Thank you for your attention
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