Quaternionic geometry in 8 dimensions

Simon Salamon

Differential Geometry in the Large In honor of Wolfgang Meyer, Florence, 14 July 2016

Four categories of manifolds

... all equipped with an action of I, J, K on each tangent space $T_{x} M^{4 n}(n \geqslant 2)$ and a torsion-free G connection:

Hyperkähler	Hypercomplex
$S p(n)$	$G L(n, \mathbb{H})$
Quaternion-kähler	Quaternionic
$S p(n) S p(1)$	$G L(n, \mathbb{H}) S p(1)$

'Hypercomplex' implies that I, J, K are complex structures.
'Quaternionic' implies that the tautological complex structure on the 2-sphere bundle $Z(\rightarrow M)$ is integrable, and the (e.g.) Fueter operator can be defined.

One could also add $S L(n, \mathbb{H}) U(1)$ structures to the 2 nd column.

Hyperkähler manifolds

We shall soon focus on non-integrable $\operatorname{Sp}(2) \operatorname{Sp}(1)$ structures, but by way of introduction:

For a hyperkähler manifold, the holonomy of the Levi-Civita connection lies in $S p(n)$, and the Ricci tensor vanishes.
Calabi gave explicit complete examples on (e.g.) $T^{*} \mathbb{C P}{ }^{n}$.
Many HK metrics can be constructed via the HKLR quotient construction, and abound on moduli spaces (e.g. $8 k-3 \rightsquigarrow 8 k$).
Any K3 surface admits a HK metric by Yau's theorem.
Beauville described two families $K^{4 n}$ and $A^{4 n}$ of compact HK manifolds, arising from Hilbert schemes of points on a K3 or Abelian surface. They satisfy $24 \mid(n \chi)$.

Quaternion-kähler manifolds

This time, the holonomy of the Levi-Civita connection lies in $S p(n) S p(1)$. QK manifolds are Einstein, we assume not Ricci-flat. Curvature-wise, they are 'nearly hyperkähler'.

Wolf showed that there is a QK symmetric space (and its dual) for each compact simple Lie group G, and that its twistor spaces has a complex contact structure. This talk will focus on $G_{2} / S O(4)$.

These spaces are the only known complete QK manifolds with $s>0$, but there is an incomplete metric defined by any pair $\mathfrak{s u}(2) \subset \mathfrak{g}$, combining work of Kronheimer and Swann (next slide).
Alekseevsky and Cortés have constructed families of complete non symmetric/homogeneous examples with $s<0$. LeBrun had shown that there is an infinite-dimensional moduli space.

The miraculous case of $G=S U(3)$

Up to conjugacy, $\mathfrak{s u (3)}$ has two TDA's: $\mathfrak{s u (2)}$ and $\mathfrak{s o (3)}$.
The first gives rise to the Wolf space $\mathbb{C P}^{2}=\frac{S U(3)}{S(U(1) \times U(2))}$.
The second gives rise to the Grassmannian \mathbb{L} of special Lagrangian subspaces $\mathbb{R}^{3} \subset \mathbb{C}^{3}$, and there are $S U(3)$-equivariant maps:

$$
\begin{array}{ll}
\frac{G_{2}}{S O(4)} \backslash \mathbb{C P}^{2} \cong & \mathbb{V} \\
\downarrow & \begin{array}{l}
\text { obvious } \mathrm{VB} \\
\text { with fibre } \mathbb{R}^{3}
\end{array} \\
\operatorname{SU(3)/SO(3)}= & \mathbb{L}
\end{array}
$$

Now, \mathbb{Z}_{3} acts freely on $G_{2} / S O(4) \backslash \mathbb{C P}^{2}$, and the quotient is a submanifold U of $\mathbb{G r}_{3}(\mathfrak{s u}(3))$ invariant under a Nahm flow. Its Swann bundle is $\mathscr{N}=\left\{A \in \mathfrak{s l}(3, \mathbb{C}): A^{3}=0, A^{2} \neq 0\right\}$.

Coassociative submanifolds

The Wolf space $G_{2} / S O(4)$ parametrizes coassociative subspaces $i: \mathbb{R}^{4} \subset \mathbb{R}^{7}$. These are subspaces for which $i^{*} \varphi=0$, where

$$
\varphi=e^{125}-e^{345}+e^{136}-e^{426}+e^{147}-e^{237}+e^{567}
$$

is the standard 3 -form with stabilizer G_{2}.
The space \mathbb{L} parametrizes some special coassociative submanifolds $L^{\perp} \subset \pi^{-1}\left(\mathbb{R P}^{2}\right)$ of the 7 -dimensional total space

$$
\mathbb{R P}^{2} \subset \quad \stackrel{C P}{ }^{\Lambda_{-}^{2} T^{*} \mathbb{C P}^{2}}
$$

with the Bryant-S metric with holonomy G_{2} [Karigiannis-MinOo]. Moreover, $G_{2} / S O(4)$ is intimately connected with this total space.

Groups containing $\mathbf{S p}(2)$

On $\mathbb{R}^{8}=\mathbb{H}^{2} \ni(p, q)$, define a 'hyperkähler triple'

$$
\frac{1}{2}(d p \wedge d p+d q \wedge d q)=\omega_{1} i+\omega_{2} j+\omega_{3} k
$$

of 2-forms

$$
\left\{\begin{array}{l}
\omega_{1}=e^{12}+e^{34}+e^{56}+e^{78} \\
\omega_{2}=e^{13}+e^{42}+e^{57}+e^{86} \\
\omega_{3}=e^{14}+e^{23}+e^{58}+e^{67}
\end{array}\right.
$$

The stabilizer of

$$
\Omega_{\lambda}=\frac{1}{2}\left(\lambda \omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}\right)
$$

is $S p(2) U(1) \subset S U(4)$ except that:

- $\operatorname{stab}\left(\Omega_{1}\right)=\operatorname{Sp}(2) \operatorname{Sp}(1)$.
- $\operatorname{stab}\left(\Omega_{-1}\right)=\operatorname{Spin}(7)$.

Closed versus parallel

A holonomy reduction occurs when $\nabla \Omega=0$.
For the Levi-Civita connection, obviously $\nabla \Omega=0 \Rightarrow d \Omega=0$.

- If $\Omega=\Omega_{-1}$ has stabilizer $\operatorname{Spin}(7)$ then $d \Omega=0 \Rightarrow \nabla \Omega=0$ [Fernández-Gray]. In this case,

$$
\nabla \Omega \in \Lambda^{1} \otimes \mathfrak{g}^{\perp} \cong \Lambda^{3} \cong \Lambda^{5}
$$

- If $\Omega=\Omega_{1}$ has stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$, by contrast, $d \Omega$ does not determine $\nabla \Omega$ [Swann]. It is therefore natural to generalize the class of QK manifolds to those almost-QH ones with

$$
\Omega \in \Lambda_{+}^{4}
$$

closed (so harmonic) but not parallel.

Instrinic torsion for $\operatorname{Sp}(2) \mathrm{Sp}(1)$

The space $\Lambda^{1} \otimes(\mathfrak{s p}(2)+\mathfrak{s p}(1))^{\perp}$ has 4 components:

If $\nabla \Omega$ lies in...
blue then $d \Omega=0$
red then 'ideal':
$d \omega_{i}=\sum \alpha_{i}^{j} \wedge \omega_{j}$,
work by Macía green then quaternionic.

Corollary. (Ideal or quaternionic) and $d \Omega=0 \Rightarrow \nabla \Omega=0$

Harmonic $\mathrm{Sp}(2) \mathrm{Sp}(1)$ reductions

A first example was found on $M^{8}=M^{6} \times T^{2}$ where $M^{6}=\Gamma \backslash N$ is a symplectic nilmanifold with a pair of simple closed 3-forms, defining a 'tri-Lagrangian geometry'. The structure group of M^{6} reduces to a diagonal $S O(3)$.
There are many more examples of the form $M^{7} \times S^{1}$ obtained by setting $\Omega=\alpha \wedge e^{8}+\beta$ and using the fact that

$$
S p(2) S p(1) \cap S O(7)=G_{2 \alpha}^{*} \cap G_{2 \beta}^{*}=S O(4)
$$

[Conti-Madsen classify 11 nilmanifolds and find solvmanifolds]. Are there simply-connected examples?

Theorem [CMS]. The parallel QK 4-form on $G_{2} / S O(4)$ can be 'freely' deformed to a closed form with stabilizer $\operatorname{Sp}(2) S p(1)$ invariant by the cohomogenous-one action by $S U(3)$.

Symmetric spaces in 8 dimensions

Apart from $\mathbb{C P}^{4}$ (whose holonomy $U(4)$ is not so special), there are 4 compact models which all admit a cohomogenous-one action, with principal orbits $S U(3) / U(1)_{1,-1}$ and two ends chosen from

$$
S^{5}, \quad \mathbb{C P}^{2}, \quad \mathbb{L}=S U(3) / S O(3)
$$

[Gambioli]. The first three are quaternion-kähler:

$\mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)$	$S U(4) / U(2) S p(1)$	$\mathbb{C P}^{2}, \mathbb{C P}^{2}$
\mathbb{H}^{2}	$S p(3) / S p(2) S p(1)$	$\mathbb{C P}^{2}, S^{5}$
$G_{2} / S O(4)$	$G_{2} / S U(2) S p(1)$	$\mathbb{C P}^{2}, \mathbb{L}$
$S U(3)$	$S U(3)^{2} / \Delta$	S^{5}, \mathbb{L}

Topological remarks

The Wolf spaces $\mathbb{G r}_{2}\left(\mathbb{C}^{4}\right), \mathbb{H}^{2}, G_{2} / S O(4)$ are all spin with $s>0$. They satisfy $\widehat{A}_{2}=0$ and

$$
8 \chi=4 p_{2}-p_{1}^{2}
$$

The latter is also valid for any 8-manifold whose structure group reduces to $\operatorname{Spin}(7)$, and the Wolf spaces all have such structures, but not holonomy equal to $\operatorname{Spin}(7)$ as this would require $\widehat{A}_{2}=1$.

Nonetheless one can search for closed non-parallel 4-forms on the Wolf spaces [with motivation from Foscolo-Haskins' construction of new nearly-kähler metrics on S^{6} and $S^{3} \times S^{3}$].

Quest for the QK 4-form on \mathbb{V}

The construction of exceptional metrics on vector bundles over 3- and 4-manifolds made use of 'dictionaries' of tautological differential forms. It was natural to use similar techniques to identity the parallel 4 -form Ω over \mathbb{V}, but this took a few years:

Proposition [CM]. The parallel QK 4-form Ω can be expressed $S U(3)$-equivariantly on \mathbb{V} as

$$
\begin{gathered}
\frac{3 \sin ^{2}(r) \cos ^{2}(r)}{r^{2}} \mathbf{b} \mathbf{b} \boldsymbol{\beta}+\frac{\sqrt{3} \sin (2 r)}{r} \mathbf{b} \tilde{\boldsymbol{\beta}}+\frac{\sin ^{2}(r) \cos ^{2}(r)}{r^{2}} \mathbf{a} \tilde{\boldsymbol{\beta}} \boldsymbol{\epsilon}-\frac{-5 \sin (2 r)+\sin (6 r)+4 r \cos (2 r)}{128 \sqrt{3} r^{3}} \boldsymbol{\gamma} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \\
+ \\
+\frac{\sin ^{4}(r)(\cos (2 r)+\cos (4 r)+1)}{2 \sqrt{3} r^{4}} \mathbf{b} \mathbf{b} \mathbf{a} \boldsymbol{\epsilon}+\frac{\sqrt{3}(2 r \cos (2 r)-\sin (2 r))}{8 r^{3}} \mathbf{b} \boldsymbol{\beta} \mathbf{a} \boldsymbol{\epsilon} \\
+\frac{3(2 r \sin (4 r)+\cos (4 r)-1)}{4 r^{4}} \mathbf{a b} \mathbf{a b} \boldsymbol{\beta}+\frac{\sin ^{2}(r)(5 r-6 \sin (2 r)-3 \sin (4 r)+r(13 \cos (2 r)+5 \cos (4 r)+\cos (6 r)))}{96 \sqrt{3} r^{5}} \mathbf{a b} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \\
+\frac{\sin ^{3}(2 r)(\sin (2 r)-2 r \cos (2 r))}{32 r^{6}} \mathbf{a b b} \mathbf{a} \boldsymbol{\epsilon} \boldsymbol{\epsilon}-\frac{\sin ^{3}(2 r) \cos (2 r)}{8 r^{3}} \mathbf{a} \boldsymbol{\gamma} \boldsymbol{a} \gamma
\end{gathered}
$$

and equals $3 \mathbf{b b} \boldsymbol{\beta}+2 \sqrt{3} \mathbf{b} \tilde{\boldsymbol{\beta}}$ when $r=0$.

Letters, syllables and words

The $S U(3)$-invariant differential forms on \mathbb{V} arise from forms defined on the fibre with values in the exterior algebra of the base, everything invariant by $S O(3)$. Syllables arise by contracting letters using the inner product or the volume form on \mathbb{R}^{3}. Examples:

- the syllable aa equals $r=\sum\left(a_{i}\right)^{2}$;
- $\Lambda^{2}\left(T_{x}^{*} \mathbb{L}\right) \cong \mathfrak{s o}(5) \cong \mathbb{R}^{3} \oplus \mathbb{R}^{7}$, and the value of the syllable $\mathbf{a} \boldsymbol{\beta}$ is the pullback of the 2 -form in \mathbb{R}^{3} it represents:

$$
a_{1}\left(-e^{12}+2 e^{34}\right)+a_{2}\left(e^{13}-e^{24}-\sqrt{3} e^{25}\right)+a_{3}\left(e^{14}+\sqrt{3} e^{15}-e^{56}\right)
$$

- differentiating the a_{i} gives $b_{i}=d a_{i}+$ connection forms, then $\mathbf{b} \mathbf{b} \mathbf{b}=b_{1} \wedge b_{2} \wedge b_{3}$ and $\mathbf{b} \mathbf{b} \boldsymbol{\beta}=\mathfrak{S} b_{i} \wedge b_{j} \wedge \beta_{k} ;$
- words like $\mathbf{b b} \boldsymbol{\beta}$ and $\mathbf{b b b} \mathbf{a} \boldsymbol{\epsilon}$ of degree 4 can be formed by wedging 1 or 2 syllables together.

More invariant 4-forms

A generic $S U(3)$-invariant 4-form on \mathbb{V} is

$$
\begin{gathered}
k_{1} \mathbf{b} \mathbf{b} \boldsymbol{\beta}+k_{2} \mathbf{b} \tilde{\boldsymbol{\beta}}+k_{3} \mathbf{a b} \tilde{\boldsymbol{\beta}}+k_{4} \mathbf{b} \gamma \boldsymbol{\epsilon}+k_{5} \mathbf{a} \tilde{\boldsymbol{\beta}} \boldsymbol{\epsilon}+k_{6} \gamma \boldsymbol{\epsilon} \boldsymbol{\epsilon} \\
+k_{7} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{a} \boldsymbol{\epsilon}+k_{8} \mathbf{b} \boldsymbol{\beta} \mathbf{a} \boldsymbol{\epsilon}+k_{9} \mathbf{a b} \mathbf{a b} \boldsymbol{\beta}+k_{10} \mathbf{a b} \mathbf{a} \boldsymbol{\gamma} \boldsymbol{\epsilon} \\
+k_{11} \mathbf{a b} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \boldsymbol{\epsilon}+k_{12} \mathbf{a b b} \mathbf{a} \boldsymbol{\epsilon}+k_{13} \mathbf{a b} \boldsymbol{\beta} \mathbf{a} \boldsymbol{\epsilon}+k_{14} \mathbf{a} \gamma \mathbf{a} \gamma .
\end{gathered}
$$

It extends smoothly across \mathbb{L} iff k_{i} are smooth even functions of r. It is closed if and only if

$$
\left\{\begin{array}{l}
k_{1}^{\prime}=r k_{9}, \quad k_{2}^{\prime}=8 r k_{8}, \\
k_{3}=k_{13}=0, \quad k_{5}=\frac{1}{3} k_{1}, \\
2 r k_{12}^{\prime}+12 k_{12}-\frac{1}{r} k_{14}^{\prime}=0, \\
24 \frac{1}{r} k_{6}^{\prime}+\frac{1}{r} k_{8}^{\prime}-72 k_{11}-6 k_{7}=0
\end{array}\right.
$$

Group parameters

In order to express the parallel 4-form relative to the standard basis (e_{i}, b_{j}), we need to express the k_{i} in terms of parameters

$$
e^{i \lambda_{1}}, e^{i \lambda_{2}}, e^{i \lambda_{13}}, e^{i \lambda_{14}},\left(\begin{array}{cc}
\lambda_{8} & \lambda_{9} \\
\lambda_{10} & \lambda_{11}
\end{array}\right), e^{i \lambda_{3}},\left(\begin{array}{cc}
\lambda_{4} & \lambda_{5} \\
\lambda_{6} & \lambda_{7}
\end{array}\right), \lambda_{12}
$$

for the group $U(1)^{4} \rtimes G L(2, \mathbb{R}) \times U(1) \times G L(2, \mathbb{R}) \times \mathbb{R}^{*}$ that commutes with the $U(1)$ stabilizer of each $S U(3)$ orbit. Closure imposes ODE's on the λ_{i} (but not λ_{7}), and we find a solution

$$
\begin{gathered}
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{9}=\lambda_{10}=0, \lambda_{12}=-1, \\
\lambda_{5}=-\cos (2 r), \lambda_{6}=\sqrt{3}, \lambda_{8}=\frac{1}{2}\left(3-2 \cos ^{2} r\right) \cos r, \\
\lambda_{11}=\frac{\cos (2 r) \sqrt{3} \sin r}{2 r}, \lambda_{13}=\frac{\left(1+2 \cos ^{2} r\right) \sin r}{2 r}, \\
\lambda_{14}=\frac{\sqrt{3}}{2}\left(-1+2 \cos ^{2} r\right) \cos r .
\end{gathered}
$$

Linear deformation

Problem. To preserve the stabilizer by solving

$$
\Omega+t \phi=g(t) \Omega, \quad g(t) \in G L(8, \mathbb{R})
$$

$N B$. If $A \in \mathfrak{g l}(8, \mathbb{R})$ satisfies $A \cdot(A \cdot \Omega)=0$ then $\phi=A \cdot \Omega$ works.
Surprisingly, this can be applied in the $S U(3)$-equivariant case with $A=e_{56}$ to obtain a new triple with $\widetilde{\omega}_{2}=\omega_{2}-\lambda e^{58}, \widetilde{\omega}_{3}=\omega_{3}+\lambda e^{57}$. It is the interpretation of what happens if $\lambda_{7} \neq 0$.

Theorem. The closed 4-form

$$
\widetilde{\Omega}=\Omega+f(r)(\mathbf{a a} \mathbf{b} \gamma \boldsymbol{\epsilon}+3 \mathbf{a b} \mathbf{a} \gamma \boldsymbol{\epsilon})
$$

defines a metric on $G_{2} / S O(4)$ with an $S p(2) S p(1)$-structure that is not QK, for any smooth non-zero function $f:[0, \pi / 4] \rightarrow \mathbb{R}$ vanishing on neighbourhoods of the endpoints.

Other geometrical structures

Theorem [Gauduchon-Moroianu-Semmelmann]. Apart from the Grassmannians $\mathbb{G r}_{2}\left(\mathbb{C}^{n}\right)$, the Wolf spaces (including $E_{8} / E_{7} S p(1)$) do not admit almost-complex structures even stably.
$N B . \mathbb{V} \backslash \mathbb{L}$ does admit an $S U(3)$-invariant almost Hermitian structure of generic type defined by ω_{1}.

Proposition. There does not exist an $S U(3)$-invariant $\operatorname{Spin}(7)$ structure on \mathbb{V} : only $\operatorname{Sp}(2) \operatorname{Sp}(1)$ is possible.

Work is in progress to:

- solve the ODE's on the λ_{i} parameters to find other harmonic structures on $G_{2} / S O(4)$
- establish the existence or otherwise of harmonic $\operatorname{Sp}(2) \operatorname{Sp}(1)$ structures on $\mathbb{H} \mathbb{P}^{2}$ and $\mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)$.

The fourth 8-manifold SU(3)

The compact 8-manifold underlying $S U(3)$ admits a host of geometrical structures, including:

- a left-invariant hypercomplex structure [Joyce]
- an invariant $\operatorname{Sp}(2) S p(1)$ metric that is 'ideal' [Macía]
- a $P S U(3)$ structure defined by the stable 3-form

$$
\gamma(x, y, z)=\langle[x, y], z\rangle \text { on } T_{x} S U(3) \cong \mathfrak{s u}(3)
$$

which is harmonic: $d \gamma=0=d{ }_{\gamma} \gamma$ [obvious].
Harmonic PSU(3) metrics have been found on nilmanifolds [Witt]. Do there exist new simply-connected examples?

Consimilarity in SU(3)

The cohomogeneity-one action of $S U(3)$ on itself is twisted conjugation:

$$
X \mapsto P X \bar{P}^{-1}=P X P^{\top}, \quad X, P \in S U(3)
$$

The stabilizer of the identity is $S O(3)$ and its orbit is

$$
\left\{P P^{\top}: P \in S U(3)\right\}=\{X \in S U(3): X \bar{X}=I\}
$$

In fact, $f: X \mapsto X \bar{X}$ maps $S U(3)$ 'con-Ad' equivariantly onto the hypersurface

$$
\mathscr{H}=\{P \in S U(3): \operatorname{tr} P \in \mathbb{R}\}
$$

which can be identified with the Thom space of the VB $\Lambda_{-}^{2} T^{*} \mathbb{C P}^{2}$.

Back to G_{2} holonomy

The action of $S U(3)$ on $\mathbb{H} \mathbb{P}^{2}$ commutues with S^{1}, so there's a residual quotient to be performed:

S^{5} is the zero set of a QK moment map, and $\mathbb{C P}^{2}=\mathbb{H} \mathbb{P}^{2} / / / S^{1}$. The 7-dimensional quotent can be identified with $S^{7} \backslash \mathbb{C P}^{2}$ [Atiyah-Witten, Miyaoka] as well as $\mathscr{H} \backslash \mathrm{pt} \subset S U(3)$.

Problem: Clarify the relationship of these S^{1} quotients and between metrics in 7 and 8 dimensions with reduced holonomy.

