Min-max approach to Yau's conjecture

André Neves

Imperial College London

• Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Franks (1992), Bangert (1993), Hingston (1993) Every (S², g) has an infinite number of closed geodesics.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Franks (1992), Bangert (1993), Hingston (1993) Every (S², g) has an infinite number of closed geodesics.
- Lusternick–Fet, (1951) Every closed (*Mⁿ*, *g*) admits a closed geodesic.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Franks (1992), Bangert (1993), Hingston (1993) Every (S², g) has an infinite number of closed geodesics.
- Lusternick–Fet, (1951) Every closed (*Mⁿ*, *g*) admits a closed geodesic.
- Gromoll-Meyer, (1969) Consider (*Mⁿ*, *g*) closed and simply connected. If the betti numbers of the free loop space are unbounded then (*Mⁿ*, *g*) admits an infinite number of closed geodesics.
 - The topological condition is very mild: fails for manifolds with the homotopy type of a CROSS (Sullivan–Vigué-Poirrier).

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Franks (1992), Bangert (1993), Hingston (1993) Every (S², g) has an infinite number of closed geodesics.
- Lusternick–Fet, (1951) Every closed (*Mⁿ*, *g*) admits a closed geodesic.
- Gromoll-Meyer, (1969) Consider (*Mⁿ*, *g*) closed and simply connected. If the betti numbers of the free loop space are unbounded then (*Mⁿ*, *g*) admits an infinite number of closed geodesics.
 - The topological condition is very mild: fails for manifolds with the homotopy type of a CROSS (Sullivan–Vigué-Poirrier).
- Rademacher, (1989) Assume closed Mⁿ and simply connected. For "almost every" metric (Mⁿ, g) admits an infinite number of closed geodesics.

Yau's conjecture

Just like geodesics are critical points for the length functional, Minimal surfaces are critical points for the volume functional.

Yau's Conjecture '82

Every compact 3-*dimensional manifold admits an infinite number of immersed minimal surfaces.*

Yau's conjecture

Just like geodesics are critical points for the length functional, Minimal surfaces are critical points for the volume functional.

Yau's Conjecture '82

Every compact 3-dimensional manifold admits an infinite number of immersed minimal surfaces.

- Simon–Smith, (1982) Every (S³, g) admits a smooth embedded minimal sphere.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.
- Khan–Markovic, (2012) Closed hyperbolic 3-manifolds admit an infinite number of minimal immersed surfaces for any metric.

- (M^{n+1}, g) closed compact Riemannian *n*-manifold, $2 \le n \le 6$.
- $\mathcal{Z}_n(M; \mathbb{Z}_2) = \{ \text{integral mod 2 currents } T \text{ with } \partial T = 0 \}$ = "{all compact hypersurfaces in M}".

Minimal surfaces are critical points for the functional $\Sigma \mapsto vol(\Sigma)$. How can we find them?

- (M^{n+1}, g) closed compact Riemannian *n*-manifold, $2 \le n \le 6$.
- $\mathcal{Z}_n(M; \mathbb{Z}_2) = \{ \text{integral mod } 2 \text{ currents } T \text{ with } \partial T = 0 \}$

= "{all compact hypersurfaces in M}".

Minimal surfaces are critical points for the functional $\Sigma \mapsto vol(\Sigma)$. How can we find them?

Topology of $\mathcal{Z}_n(M; \mathbb{Z}_2)$ forces volume functional to have critical points.

- (M^{n+1}, g) closed compact Riemannian *n*-manifold, $2 \le n \le 6$.
- $\mathcal{Z}_n(M; \mathbb{Z}_2) = \{ \text{integral mod } 2 \text{ currents } T \text{ with } \partial T = 0 \}$

= "{all compact hypersurfaces in M}".

Minimal surfaces are critical points for the functional $\Sigma \mapsto vol(\Sigma)$. How can we find them?

Topology of $\mathcal{Z}_n(M; \mathbb{Z}_2)$ forces volume functional to have critical points.

(Almgren, 60's) $\mathcal{Z}_n(M; \mathbb{Z}_2)$ is weakly homotopic to \mathbb{RP}^{∞} . Thus for all $k \in \mathbb{N}$ there is a non-trivial map $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_n(M; \mathbb{Z}_2)$.

- (M^{n+1}, g) closed compact Riemannian *n*-manifold, $2 \le n \le 6$.
- $\mathcal{Z}_n(M; \mathbb{Z}_2) = \{ \text{integral mod } 2 \text{ currents } T \text{ with } \partial T = 0 \}$

= "{all compact hypersurfaces in M}".

Minimal surfaces are critical points for the functional $\Sigma \mapsto vol(\Sigma)$. How can we find them?

Topology of $\mathcal{Z}_n(M; \mathbb{Z}_2)$ forces volume functional to have critical points.

(Almgren, 60's) $\mathcal{Z}_n(M; \mathbb{Z}_2)$ is weakly homotopic to \mathbb{RP}^{∞} . Thus for all $k \in \mathbb{N}$ there is a non-trivial map $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_n(M; \mathbb{Z}_2)$.

- $[\Phi_k] = \{ all \ \Psi \text{ homotopic to } \Phi_k \};$
- The k-width is

$$\omega_k(M) := \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x)).$$

Compare with

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

Theorem (Pitts, '81, Schoen–Simon, '82) For all $k \in \mathbb{N}$ there is an embedded minimal hypersurface Σ_k (with multiplicities) so that

$$\omega_k(M) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x)) = vol(\Sigma_k).$$

Key Issue: It is possible that Σ_k is a multiple of some Σ_i . Are $\{\Sigma_1, \Sigma_2, \ldots\}$ genuinely different?

Theorem (Pitts, '81, Schoen–Simon, '82) For all $k \in \mathbb{N}$ there is an embedded minimal hypersurface Σ_k (with multiplicities) so that

$$\omega_k(M) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x)) = vol(\Sigma_k).$$

Key Issue: It is possible that Σ_k is a multiple of some Σ_i . Are $\{\Sigma_1, \Sigma_2, \ldots\}$ genuinely different?

Theorem (Marques–N., '13) Assume (M, g) has positive Ricci curvature. Then M admits an infinite number of distinct embedded minimal hypersurfaces.

To handle the general case, need more information on the minimal surfaces Σ_k ...

index(Σ) = number of independent deformations that decrease the area of Σ .

index(Σ) = number of independent deformations that decrease the area of Σ .

Theorem (Marques–N., '15) For every $k \in \mathbb{N}$, one can find a minimal embedded hypersurface Σ_k with

- $\omega_k(M) = vol(\Sigma_k) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x));$
- index of support of $\Sigma_k \leq k$.

index(Σ) = number of independent deformations that decrease the area of Σ .

Theorem (Marques–N., '15) For every $k \in \mathbb{N}$, one can find a minimal embedded hypersurface Σ_k with

- $\omega_k(M) = vol(\Sigma_k) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x));$
- index of support of $\Sigma_k \leq k$.

Sketch of proof when k = 1:

• Suppose $\Phi : [0,2] \to \mathcal{Z}_n(M; \mathbb{Z}_2)$ with $\max_t vol(\Phi(t)) = vol(\Phi(1))$ and $\Sigma = \Phi(1)$ minimal with index 2.

index(Σ) = number of independent deformations that decrease the area of Σ .

Theorem (Marques–N., '15) For every $k \in \mathbb{N}$, one can find a minimal embedded hypersurface Σ_k with

- $\omega_k(M) = vol(\Sigma_k) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x));$
- index of support of $\Sigma_k \leq k$.

Sketch of proof when k = 1:

- Suppose $\Phi : [0,2] \to \mathcal{Z}_n(M; \mathbb{Z}_2)$ with $\max_t vol(\Phi(t)) = vol(\Phi(1))$ and $\Sigma = \Phi(1)$ minimal with index 2.
- Near Σ, there is a disc of deformations whose volume is a parabola.

index($\Sigma)=$ number of independent deformations that decrease the area of $\Sigma.$

Theorem (Marques–N., '15) For every $k \in \mathbb{N}$, one can find a minimal embedded hypersurface Σ_k with

- $\omega_k(M) = vol(\Sigma_k) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x));$
- index of support of $\Sigma_k \leq k$.

Sketch of proof when k = 1:

- Suppose $\Phi : [0,2] \to \mathcal{Z}_n(M; \mathbb{Z}_2)$ with $\max_t vol(\Phi(t)) = vol(\Phi(1))$ and $\Sigma = \Phi(1)$ minimal with index 2.
- Near Σ, there is a disc of deformations whose volume is a parabola.
- Find Ψ homotopic to Φ with max_t vol($\Psi(t)$) < vol($\Phi(1)$).

A metric (M, g) is bumpy if every minimal surface is a non-degenerate critical point. Brian White showed that almost every metric is bumpy.

A metric (M, g) is bumpy if every minimal surface is a non-degenerate critical point. Brian White showed that almost every metric is bumpy.

Theorem (Marques–N., '15) Assume M has no embedded one-sided hypersurfaces and that the metric is bumpy. There is a minimal embedded hypersurface Σ_1 such that

- $\omega_1(M) = vol(\Sigma_1);$
- index of Σ₁ = 1;
- unstable components of Σ_1 have multiplicity one.

Rmk: Σ_1 can be *j*(index 0) + (index 1) but neither *j*(index 1) nor (index 0).

A metric (M, g) is bumpy if every minimal surface is a non-degenerate critical point. Brian White showed that almost every metric is bumpy.

Theorem (Marques–N., '15) Assume M has no embedded one-sided hypersurfaces and that the metric is bumpy. There is a minimal embedded hypersurface Σ_1 such that

- $\omega_1(M) = vol(\Sigma_1);$
- index of Σ₁ = 1;
- unstable components of Σ_1 have multiplicity one.

Rmk: Σ_1 can be *j*(index 0) + (index 1) but neither *j*(index 1) nor (index 0).

Basic approach to rule out multiplicity: Suppose there is $\Phi : [0, 2] \to \mathcal{Z}_n(M)$ with max_t vol($\Phi(t)$) = vol($\Phi(1)$) and for $|t - 1| < \varepsilon$, $\Phi(t) = 2S_t$ where

- S₁ is minimal surface with index one;
- $vol(S_t) < vol(S_1)$ if $t \neq 1$.

A metric (M, g) is bumpy if every minimal surface is a non-degenerate critical point. Brian White showed that almost every metric is bumpy.

Theorem (Marques–N., '15) Assume M has no embedded one-sided hypersurfaces and that the metric is bumpy. There is a minimal embedded hypersurface Σ_1 such that

- $\omega_1(M) = vol(\Sigma_1);$
- index of $\Sigma_1 = 1$;
- unstable components of Σ_1 have multiplicity one.

Rmk: Σ_1 can be *j*(index 0) + (index 1) but neither *j*(index 1) nor (index 0).

Basic approach to rule out multiplicity: Suppose there is $\Phi : [0, 2] \to \mathcal{Z}_n(M)$ with max_t vol($\Phi(t)$) = vol($\Phi(1)$) and for $|t - 1| < \varepsilon$, $\Phi(t) = 2S_t$ where

- S₁ is minimal surface with index one;
- $vol(S_t) < vol(S_1)$ if $t \neq 1$.

There is path $\{L_t\}$ connecting $2S_{1-\varepsilon}$ to $S_{1-\varepsilon} + S_{1+\varepsilon}$ and then to $2S_{1+\varepsilon}$ so that

 $\operatorname{vol}(L_t) < 2\operatorname{vol}(S_1) = \operatorname{vol}(\Phi(1)) \text{ for all } |t-1| \leq \varepsilon.$

Multiplicity one Conjecture

Conjecture (Marques–N, '15) For bumpy metrics $(M^{n+1}, g), 2 \le n \le 6$, unstable components in min-max hypersurfaces obtained with multi-parameters have multiplicity one.

- The previous theorem confirms the conjecture for one parameter.
- When $M = S^2$, Nicolau Aiex found examples where multiplicity occurs.

Multiplicity one Conjecture

Conjecture (Marques–N, '15) For bumpy metrics $(M^{n+1}, g), 2 \le n \le 6$, unstable components in min-max hypersurfaces obtained with multi-parameters have multiplicity one.

- The previous theorem confirms the conjecture for one parameter.
- When $M = S^2$, Nicolau Aiex found examples where multiplicity occurs.

Theorem (Marques–N) Assuming the multiplicity one Conjecture, for every $k \in \mathbb{N}$ there is an embedded minimal hypersurface Σ_k such that

- index of $\Sigma_k = k$ and unstable components have multiplicity one;
- $\omega_k(M) = vol(\Sigma_k).$

Corollary The minimal hypersurfaces $\{\Sigma_k\}_{k\in\mathbb{N}}$ are all distinct and so a stronger version of Yau's conjecture holds.

For $k \in \mathbb{N}$, $\omega_k(M) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x))$.

The sequence $\{\omega_k(M)\}_{k\in\mathbb{N}}$ is a non-linear spectrum of (M, g). Recall

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

For $k \in \mathbb{N}$, $\omega_k(M) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x))$.

The sequence $\{\omega_k(M)\}_{k\in\mathbb{N}}$ is a non-linear spectrum of (M, g). Recall

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

Theorem (Gromov, 80's, Guth, '07) $\omega_k(M)$ grows like $k^{1/(n+1)}$ as k tends to infinity.

For $k \in \mathbb{N}$, $\omega_k(M) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x))$.

The sequence $\{\omega_k(M)\}_{k \in \mathbb{N}}$ is a non-linear spectrum of (M, g). Recall

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

Theorem (Gromov, 80's, Guth, '07) $\omega_k(M)$ grows like $k^{1/(n+1)}$ as k tends to infinity.

Weyl Law states that

$$\lim_{k\to\infty}\frac{\lambda_k(M)}{k^{\frac{2}{n+1}}}=\frac{4\pi^2}{(\omega_{n+1}\mathrm{vol}\,M)^{\frac{2}{n+1}}}$$

Conjecture (Gromov): $\{\omega_k(M)\}_{k\in\mathbb{N}}$ also satisfies a Weyl Law.

Weyl Law (Liokumovich–Marques–N, '16) Weyl Law holds meaning that there is $\alpha(n)$ such that for all compact (M^{n+1}, g) (with possible $\partial M \neq 0$)

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n+1}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n}{n+1}}.$$

Weyl Law (Liokumovich–Marques–N, '16) Weyl Law holds meaning that there is $\alpha(n)$ such that for all compact (M^{n+1}, g) (with possible $\partial M \neq 0$)

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n+1}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n}{n+1}}.$$

Can we estimate $\alpha(n)$?

- $P_d = \text{span} \{ \text{spherical harmonics on } S^3 \text{ with degree} \le d \}$ and $\mathbb{RP}^k = (P_d \{0\})/\{f \sim cf\}$, where *k* grows like d^3 ,
- $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_2(S_3), \quad \Phi_k([f]) = \partial \{f < 0\}.$ From Crofton formula we know that

 $\sup_{[f]\in\mathbb{RP}^k}\textit{vol}(\Phi_k([f]))\leq 4\pi d$

and we estimate $\alpha(2) \leq (48/\pi)^{1/3}$. Is this sharp?

Weyl Law – Approach when $M^{n+1} \subset \mathbb{R}^{n+1}$

Assume $\operatorname{vol}(M) = 1$. With *C* the unit cube, find $\{C_i\}_{i=1}^N$ disjoint cubes in *M* so that $\operatorname{vol}(M \setminus \bigcup_{i=1}^N C_i)$ is very small.

Weyl Law – Approach when $M^{n+1} \subset \mathbb{R}^{n+1}$

Assume $\operatorname{vol}(M) = 1$. With *C* the unit cube, find $\{C_i\}_{i=1}^N$ disjoint cubes in *M* so that $\operatorname{vol}(M \setminus \bigcup_{i=1}^N C_i)$ is very small.

Using Lusternick-Schnirelman we show that

$$\frac{\omega_k(\boldsymbol{M})}{k^{\frac{1}{n+1}}} \geq \sum_{i=1}^{N} \textit{vol}(C_i) \left(\frac{\omega_{k_i}(\boldsymbol{C})}{k_i^{\frac{1}{n+1}}} \right), \quad \text{where } k_i = [k\textit{vol}(C_i)].$$

This implies

$$\liminf_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n+1}}} \geq \left(\sum_{i=1}^N \operatorname{vol}(C_i)\right)\liminf_{k\to\infty}\frac{\omega_k(C)}{k^{\frac{1}{n+1}}} \gtrsim \liminf_{k\to\infty}\frac{\omega_k(C)}{k^{\frac{1}{n+1}}}$$

Weyl Law – Approach when $M^{n+1} \subset \mathbb{R}^{n+1}$

Assume $\operatorname{vol}(M) = 1$. With *C* the unit cube, find $\{C_i\}_{i=1}^N$ disjoint cubes in *M* so that $\operatorname{vol}(M \setminus \bigcup_{i=1}^N C_i)$ is very small.

Using Lusternick-Schnirelman we show that

$$\frac{\omega_k(\boldsymbol{M})}{k^{\frac{1}{n+1}}} \geq \sum_{i=1}^{N} \textit{vol}(C_i) \left(\frac{\omega_{k_i}(\boldsymbol{C})}{k_i^{\frac{1}{n+1}}} \right), \quad \text{where } k_i = [k\textit{vol}(C_i)].$$

This implies

$$\liminf_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n+1}}} \geq \left(\sum_{i=1}^N \operatorname{vol}(C_i)\right)\liminf_{k\to\infty}\frac{\omega_k(C)}{k^{\frac{1}{n+1}}} \gtrsim \liminf_{k\to\infty}\frac{\omega_k(C)}{k^{\frac{1}{n+1}}}$$

Conversely, we can find disjoint regions $\{M_i\}_{i=1}^N$ in *C* so that every M_i is similar to *M* and $\operatorname{vol}(C \setminus \bigcup_{i=1}^N M_i)$ is very small and we show

$$\liminf_{k\to\infty}\frac{\omega_k(\mathcal{C})}{k^{\frac{1}{n+1}}}\geq \liminf_{k\to\infty}\frac{\omega_k(\mathcal{M})}{k^{\frac{1}{n+1}}}.$$

This shows that the liminf of $\frac{\omega_k(M)}{k^{\frac{1}{n+1}}}$ is universal.

This is an exciting moment to variational methods for minimal surfaces and lots of activity by young people.

• X. Zhou studied one parameter min-max for positive Ricci curvature;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;
- Nurser computed the first 9 widths of S^3 and Aix did it for S^2 ;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;
- Nurser computed the first 9 widths of S³ and Aix did it for S²;
- Guaraco did min-max for Allen-Cahn equation;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;
- Nurser computed the first 9 widths of S³ and Aix did it for S²;
- Guaraco did min-max for Allen-Cahn equation;
- Song showed that the least area minimal surface is always embedded;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;
- Nurser computed the first 9 widths of S³ and Aix did it for S²;
- Guaraco did min-max for Allen-Cahn equation;
- Song showed that the least area minimal surface is always embedded;
- Compactness properties of minimal hypersurfaces with bounded index: Sharp, Buzano–Sharp, Carlotto, Chodosh–Ketover–Maximo, Li-Zhou;

- X. Zhou studied one parameter min-max for positive Ricci curvature;
- Montezuma constructed min-max hypersurfaces intersecting a concave set;
- Liokumovich and Glynn-Adey found universal bounds for the k-widths;
- Ketover and Zhou studied min-max for self-shrinkers;
- Ketover studied genus estimates for min-max in the surface case;
- Nurser computed the first 9 widths of S³ and Aix did it for S²;
- Guaraco did min-max for Allen-Cahn equation;
- Song showed that the least area minimal surface is always embedded;
- Compactness properties of minimal hypersurfaces with bounded index: Sharp, Buzano–Sharp, Carlotto, Chodosh–Ketover–Maximo, Li-Zhou;
- Beck–Hanin–Hughes studied min-max families given by nodal sets of eigenfunctions.