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Background

• Birkhoff, (1917) Every (S2,g) admits a closed geodesic.

• Franks (1992), Bangert (1993), Hingston (1993) Every (S2,g) has an
infinite number of closed geodesics.

• Lusternick–Fet, (1951) Every closed (Mn,g) admits a closed geodesic.

• Gromoll-Meyer, (1969) Consider (Mn,g) closed and simply connected. If
the betti numbers of the free loop space are unbounded then (Mn,g)
admits an infinite number of closed geodesics.

• The topological condition is very mild: fails for manifolds with the homotopy
type of a CROSS (Sullivan–Vigué-Poirrier).

• Rademacher, (1989) Assume closed Mn and simply connected. For
”almost every“ metric (Mn,g) admits an infinite number of closed
geodesics.
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Yau’s conjecture

Just like geodesics are critical points for the length functional, Minimal
surfaces are critical points for the volume functional.

Yau’s Conjecture ’82
Every compact 3-dimensional manifold admits an infinite number of immersed
minimal surfaces.

• Simon–Smith, (1982) Every (S3,g) admits a smooth embedded minimal
sphere.

• Pitts (1981), Schoen–Simon, (1982) Every compact manifold (Mn+1,g)
admits an embedded minimal hypersurface smooth outside a set of
codimension 7.

• Khan–Markovic, (2012) Closed hyperbolic 3-manifolds admit an infinite
number of minimal immersed surfaces for any metric.
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Almgren Pitts Min-max Theory
• (Mn+1,g) closed compact Riemannian n-manifold, 2 ≤ n ≤ 6.
• Zn(M;Z2) = {integral mod 2 currents T with ∂T = 0}

= “{all compact hypersurfaces in M}”.

Minimal surfaces are critical points for the functional Σ 7→ vol(Σ).
How can we find them?

Topology of Zn(M;Z2) forces volume functional to have critical points.

(Almgren, 60’s) Zn(M;Z2) is weakly homotopic to RP∞. Thus for all k ∈ N
there is a non-trivial map Φk : RPk → Zn(M;Z2) .

• [Φk ] = {all Ψ homotopic to Φk};
• The k-width is

ωk (M) := inf
{Φ∈[Φk ]}

sup
x∈RPk

vol(Φ(x)).

Compare with

λk (M) = inf
{(k+1) plane P⊂W 1,2}

sup
f∈P−{0}

∫
M |∇f |2∫

M f 2 .
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Almgren Pitts Min-max theory

Theorem (Pitts, ’81, Schoen–Simon, ’82) For all k ∈ N there is an embedded
minimal hypersurface Σk (with multiplicities) so that

ωk (M) = inf
{Φ∈[Φk ]}

sup
x∈RPk

vol(Φ(x)) = vol(Σk ).

Key Issue: It is possible that Σk is a multiple of some Σi . Are {Σ1,Σ2, . . .}
genuinely different?

Theorem (Marques–N., ’13) Assume (M,g) has positive Ricci curvature.
Then M admits an infinite number of distinct embedded minimal
hypersurfaces.

To handle the general case, need more information on the minimal surfaces
Σk ...
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Index estimates

index(Σ) = number of independent deformations that
decrease the area of Σ.

Theorem (Marques–N., ’15) For every k ∈ N, one can find a minimal
embedded hypersurface Σk with

• ωk (M) = vol(Σk ) = inf{Φ∈[Φk ]} supx∈RPk vol(Φ(x));
• index of support of Σk ≤ k .

Sketch of proof when k = 1:

• Suppose Φ : [0,2]→ Zn(M;Z2) with maxt vol(Φ(t)) = vol(Φ(1)) and
Σ = Φ(1) minimal with index 2.

• Near Σ, there is a disc of deformations whose volume is a parabola.
• Find Ψ homotopic to Φ with maxt vol(Ψ(t)) < vol(Φ(1)).
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Index estimates
A metric (M,g) is bumpy if every minimal surface is a non-degenerate critical
point. Brian White showed that almost every metric is bumpy.

Theorem (Marques–N., ’15) Assume M has no embedded one-sided
hypersurfaces and that the metric is bumpy. There is a minimal embedded
hypersurface Σ1 such that

• ω1(M) = vol(Σ1);

• index of Σ1 = 1;
• unstable components of Σ1 have multiplicity one.

Rmk: Σ1 can be j(index 0) + (index 1) but neither j(index 1) nor (index 0).

Basic approach to rule out multiplicity: Suppose there is Φ : [0,2]→ Zn(M)
with maxt vol(Φ(t)) = vol(Φ(1)) and for |t − 1| < ε, Φ(t) = 2St where

• S1 is minimal surface with index one;
• vol(St ) < vol(S1) if t 6= 1.

There is path {Lt} connecting 2S1−ε to S1−ε + S1+ε and then to 2S1+ε so that

vol(Lt ) < 2vol(S1) = vol(Φ(1)) for all |t − 1| ≤ ε.
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Multiplicity one Conjecture

Conjecture (Marques–N, ’15) For bumpy metrics (Mn+1,g), 2 ≤ n ≤ 6,
unstable components in min-max hypersurfaces obtained with
multi-parameters have multiplicity one.

• The previous theorem confirms the conjecture for one parameter.
• When M = S2, Nicolau Aiex found examples where multiplicity occurs.

Theorem (Marques–N) Assuming the multiplicity one Conjecture, for every
k ∈ N there is an embedded minimal hypersurface Σk such that

• index of Σk = k and unstable components have multiplicity one;
• ωk (M) = vol(Σk ).

CorollaryThe minimal hypersurfaces {Σk}k∈N are all distinct and so a stronger
version of Yau’s conjecture holds.
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Non-linear Spectrum

For k ∈ N, ωk (M) = inf{Φ∈[Φk ]} supx∈RPk vol(Φ(x)).

The sequence {ωk (M)}k∈N is a non-linear spectrum of (M,g). Recall

λk (M) = inf
{(k+1) plane P⊂W 1,2}

sup
f∈P−{0}

∫
M |∇f |2∫

M f 2 .

Theorem (Gromov, 80’s, Guth, ’07) ωk (M) grows like k1/(n+1) as k tends to
infinity.

Weyl Law states that

lim
k→∞

λk (M)

k
2

n+1
=

4π2

(ωn+1vol M)
2

n+1
.

Conjecture (Gromov): {ωk (M)}k∈N also satisfies a Weyl Law.
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Non-linear Spectrum

Weyl Law (Liokumovich–Marques–N, ’16) Weyl Law holds meaning that there
is α(n) such that for all compact (Mn+1,g) (with possible ∂M 6= 0)

lim
k→∞

ωk (M)

k
1

n+1
= α(n)(vol M)

n
n+1 .

Can we estimate α(n)?

• Pd = span {spherical harmonics on S3 with degree ≤ d} and
RPk = (Pd − {0})/{f ∼ cf}, where k grows like d3,

• Φk : RPk → Z2(S3), Φk ([f ]) = ∂{f < 0}. From Crofton formula we know
that

sup
[f ]∈RPk

vol(Φk ([f ])) ≤ 4πd

and we estimate α(2) ≤ (48/π)1/3. Is this sharp?
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Weyl Law – Approach when Mn+1 ⊂ Rn+1

Assume vol(M) = 1. With C the unit cube, find {Ci}N
i=1 disjoint cubes in M so

that vol(M \ ∪N
i=1Ci ) is very small.

Using Lusternick-Schnirelman we show that

ωk (M)

k
1

n+1
≥

N∑
i=1

vol(Ci )

ωki (C)

k
1

n+1
i

 , where ki = [kvol(Ci )].

This implies

lim inf
k→∞

ωk (M)

k
1

n+1
≥

(
N∑

i=1

vol(Ci )

)
lim inf
k→∞

ωk (C)

k
1

n+1
& lim inf

k→∞

ωk (C)

k
1

n+1
.

Conversely, we can find disjoint regions {Mi}N
i=1 in C so that every Mi is

similar to M and vol(C \ ∪N
i=1Mi ) is very small and we show

lim inf
k→∞

ωk (C)

k
1

n+1
≥ lim inf

k→∞

ωk (M)

k
1

n+1
.

This shows that the liminf of ωk (M)

k
1

n+1
is universal.
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k→∞

ωk (C)

k
1

n+1
≥ lim inf

k→∞

ωk (M)

k
1

n+1
.

This shows that the liminf of ωk (M)

k
1

n+1
is universal.
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• Liokumovich and Glynn-Adey found universal bounds for the k-widths;
• Ketover and Zhou studied min-max for self-shrinkers;
• Ketover studied genus estimates for min-max in the surface case;
• Nurser computed the first 9 widths of S3 and Aix did it for S2;
• Guaraco did min-max for Allen-Cahn equation;
• Song showed that the least area minimal surface is always embedded;
• Compactness properties of minimal hypersurfaces with bounded index:

Sharp, Buzano–Sharp, Carlotto, Chodosh–Ketover–Maximo, Li-Zhou;
• Beck–Hanin–Hughes studied min-max families given by nodal sets of

eigenfunctions.
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