Level Set Flow

Tobias Holck Colding

July 11, 2016

Mean curvature

- Suppose $\Sigma \subset \mathbf{R}^{n+1}$ is a hypersurface.
- \mathbf{n} is the unit normal of Σ.
- $H=\operatorname{div}_{\Sigma}(\mathbf{n})$ is the mean curvature.
- Here $\operatorname{div}_{\Sigma}(\mathbf{n})=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \mathbf{n}, e_{i}\right\rangle$; where e_{i} is an orthonormal basis for the tangent space of Σ.

Mean curvature

- Suppose $\Sigma \subset \mathbf{R}^{n+1}$ is a hypersurface.
- \mathbf{n} is the unit normal of Σ.
- $H=\operatorname{div}_{\Sigma}(\mathbf{n})$ is the mean curvature.
- Here $\operatorname{div}_{\Sigma}(\mathbf{n})=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \mathbf{n}, e_{i}\right\rangle$; where e_{i} is an orthonormal basis for the tangent space of Σ.

Mean curvature

- Suppose $\Sigma \subset \mathbf{R}^{n+1}$ is a hypersurface.
- \mathbf{n} is the unit normal of Σ.
- $H=\operatorname{div}_{\Sigma}(\mathbf{n})$ is the mean curvature.
- Here $\operatorname{div}_{\Sigma}(\mathbf{n})=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \mathbf{n}, e_{i}\right\rangle ;$ where e_{i} is an orthonormal basis for the tangent space of Σ.

Mean curvature

- Suppose $\Sigma \subset \mathbf{R}^{n+1}$ is a hypersurface.
- \boldsymbol{n} is the unit normal of Σ.
- $H=\operatorname{div}_{\Sigma}(\mathbf{n})$ is the mean curvature.
- Here $\operatorname{div}_{\Sigma}(\mathbf{n})=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \mathbf{n}, e_{i}\right\rangle ;$ where e_{i} is an orthonormal basis for the tangent space of Σ.

Level set

- If $\Sigma=u^{-1}(s)$ and s is a regular value.

Level set

- If $\Sigma=u^{-1}(s)$ and s is a regular value.
- Then $\mathbf{n}=\frac{\nabla u}{|\nabla u|}$ and $H=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$.

Mean curvature flow

A one-parameter family of smooth hypersurfaces $M_{t} \subset \mathbf{R}^{n+1}$ flows by the MCF if

$$
x_{t}=-H \mathbf{n},
$$

where H and \mathbf{n} are the mean curvature and unit normal, respectively, of M_{t} at the point x.

Two key properties

- H is the gradient of area, so MCF is the negative gradient flow for volume (Vol M_{t} decreases most efficiently).
- Avoidance property: If M_{0} and N_{0} are disjoint, then M_{t} and N_{t} remain disjoint.

Two key properties

- H is the gradient of area, so MCF is the negative gradient flow for volume (Vol M_{t} decreases most efficiently).
- Avoidance property: If M_{0} and N_{0} are disjoint, then M_{t} and N_{t} remain disjoint.

Avoidance

Curve shortening flow

- When $n=1$ and the hypersurface is a curve, the flow is the curve shortening flow.
- A (round) circle shrinks through (round) circles to a point in finite time.
- Example of a snake.
- Theorem (Grayson): Any simple closed curve shrinks to a round point in finite time.

Curve shortening flow

- When $n=1$ and the hypersurface is a curve, the flow is the curve shortening flow.
- A (round) circle shrinks through (round) circles to a point in finite time.
- Example of a snake.
- Theorem (Grayson): Any simple closed curve shrinks to a round point in finite time.

Curve shortening flow

- When $n=1$ and the hypersurface is a curve, the flow is the curve shortening flow.
- A (round) circle shrinks through (round) circles to a point in finite time.
- Example of a snake.
- Theorem (Grayson): Any simple closed curve shrinks to a round point in finite time.

Curve shortening flow

- When $n=1$ and the hypersurface is a curve, the flow is the curve shortening flow.
- A (round) circle shrinks through (round) circles to a point in finite time.
- Example of a snake.
- Theorem (Grayson): Any simple closed curve shrinks to a round point in finite time.

The snake

0
0

Level set flow

- Given a closed hypersurface $\Sigma \subset \mathbf{R}^{n+1}$, choose a function $u_{0}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ so that Σ is the level set $\left\{u_{0}=0\right\}$.
- If we simultaneously flow $\left\{u_{0}=s_{1}\right\}$ and $\left\{u_{0}=s_{2}\right\}$ for $s_{1} \neq s_{2}$, then avoidance implies they stay disjoint.
- In the level set flow, we look for $u: \mathbf{R}^{n+1} \times \mathbf{R} \rightarrow \mathbf{R}$ so that each level set $t \rightarrow\{u(\cdot, t)=s\}$ flows by MCF.

Level set flow

- Given a closed hypersurface $\Sigma \subset \mathbf{R}^{n+1}$, choose a function $u_{0}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ so that Σ is the level set $\left\{u_{0}=0\right\}$.
- If we simultaneously flow $\left\{u_{0}=s_{1}\right\}$ and $\left\{u_{0}=s_{2}\right\}$ for $s_{1} \neq s_{2}$, then avoidance implies they stay disjoint.

Level set flow

- Given a closed hypersurface $\Sigma \subset \mathbf{R}^{n+1}$, choose a function $u_{0}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ so that Σ is the level set $\left\{u_{0}=0\right\}$.
- If we simultaneously flow $\left\{u_{0}=s_{1}\right\}$ and $\left\{u_{0}=s_{2}\right\}$ for $s_{1} \neq s_{2}$, then avoidance implies they stay disjoint.
- In the level set flow, we look for $u: \mathbf{R}^{n+1} \times \mathbf{R} \rightarrow \mathbf{R}$ so that each level set $t \rightarrow\{u(\cdot, t)=s\}$ flows by MCF.

Level set flow II

- If $\nabla u \neq 0$ and the level sets of u flow by MCF, then

$$
u_{t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

- This is degenerate parabolic and undefined when $\nabla u=0$. It may not have classical solutions.
- Osher-Sethian studied this numerically.
- Evans-Spruck and Chen-Giga-Goto constructed (continuous) viscosity solutions and showed uniqueness.

Level set flow II

- If $\nabla u \neq 0$ and the level sets of u flow by MCF, then

$$
u_{t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

- This is degenerate parabolic and undefined when $\nabla u=0$. It may not have classical solutions.
- Osher-Sethian studied this numerically.
- Evans-Spruck and Chen-Giga-Goto constructed (continuous) viscosity solutions and showed uniqueness.

Level set flow II

- If $\nabla u \neq 0$ and the level sets of u flow by MCF, then

$$
u_{t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

- This is degenerate parabolic and undefined when $\nabla u=0$. It may not have classical solutions.
- Osher-Sethian studied this numerically.
- Evans-Spruck and Chen-Giga-Goto constructed (continuous) viscosity solutions and showed uniqueness.

Level set flow II

- If $\nabla u \neq 0$ and the level sets of u flow by MCF, then

$$
u_{t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

- This is degenerate parabolic and undefined when $\nabla u=0$. It may not have classical solutions.
- Osher-Sethian studied this numerically.
- Evans-Spruck and Chen-Giga-Goto constructed (continuous) viscosity solutions and showed uniqueness.

Singularities: Examples

Under MCF:

- A round sphere remains round but shrinks and eventually becomes extinct in a point.
- A round cylinder remains round and eventually becomes extinct in a line.
- A (thin) torus of revolution shrinks and eventually it becomes extinct in a circle.

Singularities: Examples

Under MCF:

- A round sphere remains round but shrinks and eventually becomes extinct in a point.
- A round cylinder remains round and eventually becomes extinct in a line.
- A (thin) torus of revolution shrinks and eventually it becomes extinct in a circle.

Singularities: Examples

Under MCF:

- A round sphere remains round but shrinks and eventually becomes extinct in a point.
- A round cylinder remains round and eventually becomes extinct in a line.
- A (thin) torus of revolution shrinks and eventually it becomes extinct in a circle.

The marriage ring shrinks to a circle then disappears

Dumbbell

- The dumbbell in \mathbf{R}^{3}.
- Under the mean curvature flow the neck first pinches off and the surface disconnects into two components.
- Later each component (bell) shrinks to a round point.
- The dumbbell in \mathbf{R}^{3}.
- Under the mean curvature flow the neck first pinches off and the surface disconnects into two components.
- Later each component (bell) shrinks to a round point.
- The dumbbell in \mathbf{R}^{3}.
- Under the mean curvature flow the neck first pinches off and the surface disconnects into two components.
- Later each component (bell) shrinks to a round point.

Figure: Grayson's dumbbell; initial surface and step 1.

Figure: The dumbbell; steps 2 and 3.

Figure: The dumbbell; steps 4 and 5.

Figure: The dumbbell; steps 6 and 7.

Singular set \mathcal{S} I

Under MCF:

- Closed hypersurfaces contract, develop singularities and eventually become extinct.
- The singular set \mathcal{S} is the set of points in space and time where the flow is not smooth.

Singular set \mathcal{S} I

Under MCF:

- Closed hypersurfaces contract, develop singularities and eventually become extinct.
- The singular set \mathcal{S} is the set of points in space and time where the flow is not smooth.

Singular set \mathcal{S} II

- In the first 3 examples (the sphere, the cylinder and the marriage ring):
- \mathcal{S} is a point, a line, and a closed curve, respectively.
- In each case, the singularities occur only at a single time.
- In contrast, the dumbbell has two singular times with one singular point at the first time and two at the second.

Singular set \mathcal{S} II

- In the first 3 examples (the sphere, the cylinder and the marriage ring):
- \mathcal{S} is a point, a line, and a closed curve, respectively.
- In each case, the singularities occur only at a single time.
- In contrast, the dumbbell has two singular times with one singular point at the first time and two at the second.

Singular set \mathcal{S} II

- In the first 3 examples (the sphere, the cylinder and the marriage ring):
- \mathcal{S} is a point, a line, and a closed curve, respectively.
- In each case, the singularities occur only at a single time.
- In contrast, the dumbbell has two singular times with one sinqular point at the first time and two at the second.
- In the first 3 examples (the sphere, the cylinder and the marriage ring):
- \mathcal{S} is a point, a line, and a closed curve, respectively.
- In each case, the singularities occur only at a single time.
- In contrast, the dumbbell has two singular times with one singular point at the first time and two at the second.

Mean convex flows

- A hypersurface is mean convex if $H>0$, i.e., if the sum of the principal curvatures is positive at every point.
- Mean convexity: the hypersurface moves inward under MCF.
- This includes convex hypersurfaces, where every principal curvature is positive.

Mean convex flows

- A hypersurface is mean convex if $H>0$, i.e., if the sum of the principal curvatures is positive at every point.
- Mean convexity: the hypersurface moves inward under MCF.
- This includes convex hypersurfaces, where every principal curvature is positive.

Mean convex flows

- A hypersurface is mean convex if $H>0$, i.e., if the sum of the principal curvatures is positive at every point.
- Mean convexity: the hypersurface moves inward under MCF.
- This includes convex hypersurfaces, where every principal curvature is positive.

Mean convex MCF

- MCF $M_{t} \subset \mathbf{R}^{n+1}, M_{0}$ closed smooth mean convex.
- M_{t} stays mean convex and moves monotonically inward.
- It sweeps out the entire domain Ω_{0} inside M_{0}.

Mean convex MCF

- MCF $M_{t} \subset \mathbf{R}^{n+1}, M_{0}$ closed smooth mean convex.
- M_{t} stays mean convex and moves monotonically inward.
- It sweeps out the entire domain Ω_{0} inside M_{0}.

Mean convex MCF

- MCF $M_{t} \subset \mathbf{R}^{n+1}, M_{0}$ closed smooth mean convex.
- M_{t} stays mean convex and moves monotonically inward.
- It sweeps out the entire domain Ω_{0} inside M_{0}.

Level set flow for mean convex

- When the hypersurfaces are mean convex the equation can be rewritten as degenerate elliptic.
- Write $u(x)=\left\{t \mid x \in M_{t}\right\}$.
- u is the arrival time - the time the hyper-surfaces M_{t} arrives at x.
- $v(x, t)=u(x)-t$ satisfies the level set flow.

Level set flow for mean convex

- When the hypersurfaces are mean convex the equation can be rewritten as degenerate elliptic.
- Write $u(x)=\left\{t \mid x \in M_{t}\right\}$.
- u is the arrival time - the time the hyper-surfaces M_{t} arrives at x.
- $v(x, t)=u(x)-t$ satisfies the level set flow.

Level set flow for mean convex

- When the hypersurfaces are mean convex the equation can be rewritten as degenerate elliptic.
- Write $u(x)=\left\{t \mid x \in M_{t}\right\}$.
- u is the arrival time - the time the hyper-surfaces M_{t} arrives at x.
- $v(x, t)=u(x)-t$ satisfies the level set flow.

Level set flow for mean convex

- When the hypersurfaces are mean convex the equation can be rewritten as degenerate elliptic.
- Write $u(x)=\left\{t \mid x \in M_{t}\right\}$.
- u is the arrival time - the time the hyper-surfaces M_{t} arrives at x.
- $v(x, t)=u(x)-t$ satisfies the level set flow.

Level set flow for mean convex II

- The arrival time u satisfies $-1=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{\nabla u}\right)$.
- This is degenerate elliptic and undefined when $\nabla u=0$.
- Ex: $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ is the arrival time for shrinking round cylinders in \mathbf{R}^{3}
- Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz solutions.

Level set flow for mean convex II

- The arrival time u satisfies $-1=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{\nabla u}\right)$.
- This is degenerate elliptic and undefined when $\nabla u=0$.
- Ex: $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ is the arrival time for shrinking round cylinders in \mathbf{R}^{3}.
- Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz solutions.

Level set flow for mean convex II

- The arrival time u satisfies $-1=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{\nabla u}\right)$.
- This is degenerate elliptic and undefined when $\nabla u=0$.
- Ex: $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ is the arrival time for shrinking round cylinders in \mathbf{R}^{3}.
- Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz solutions.

Level set flow for mean convex II

- The arrival time u satisfies $-1=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{\nabla u}\right)$.
- This is degenerate elliptic and undefined when $\nabla u=0$.
- Ex: $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ is the arrival time for shrinking round cylinders in \mathbf{R}^{3}.
- Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz solutions.

Singular set of level set flow for mean convex

- The singular set of the flow is the critical set of u.
- Namely, $(x, u(x))$ is singular iff $\nabla_{x} u=0$.
- Ex: The shrinking cylinders given by $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ are singular in the line $x_{1}=x_{2}=0$ where $\nabla u=0$.

Singular set of level set flow for mean convex

- The singular set of the flow is the critical set of u.
- Namely, $(x, u(x))$ is singular iff $\nabla_{x} u=0$.

Singular set of level set flow for mean convex

- The singular set of the flow is the critical set of u.
- Namely, $(x, u(x))$ is singular iff $\nabla_{x} u=0$.
- Ex: The shrinking cylinders given by $u=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ are singular in the line $x_{1}=x_{2}=0$ where $\nabla u=0$.

Differentiability

CM, 2015:

- u is twice differentiable everywhere and smooth away from the critical set.
- u satisfies the equation everywhere in the classical sense.
- At each critical point the hessian is symmetric and has only two eigenvalues 0 and $-\frac{1}{k} ;-\frac{1}{k}$ has multiplicity $k+1$.

Here $k \in\{1, \ldots, n\}$ is the dimension of the spherical factor.

Differentiability

CM, 2015:

- u is twice differentiable everywhere and smooth away from the critical set.
- u satisfies the equation everywhere in the classical sense.
- At each critical point the hessian is symmetric and has only two eigenvalues 0 and $-\frac{1}{k} ;-\frac{1}{k}$ has multiplicity $k+1$. Here $k \in\{1, \ldots, n\}$ is the dimension of the spherical factor.

Differentiability

CM, 2015:

- u is twice differentiable everywhere and smooth away from the critical set.
- u satisfies the equation everywhere in the classical sense.
- At each critical point the hessian is symmetric and has only two eigenvalues 0 and $-\frac{1}{k} ;-\frac{1}{k}$ has multiplicity $k+1$.

Here $k \in\{1, \ldots, n\}$ is the dimension of the spherical factor.

Differentiability

CM, 2015:

- u is twice differentiable everywhere and smooth away from the critical set.
- u satisfies the equation everywhere in the classical sense.
- At each critical point the hessian is symmetric and has only two eigenvalues 0 and $-\frac{1}{k} ;-\frac{1}{k}$ has multiplicity $k+1$.

Here $k \in\{1, \ldots, n\}$ is the dimension of the spherical factor.

Regularity of solutions

- Huisken (90): u is C^{2} for convex M_{0}.
- Ex (Ilmanen, 92): Rotationally symmetric mean convex M_{0} where u is not C^{2}.
- Serfaty and R. Kohn (06): u is C^{3} in \mathbf{R}^{2}
- Ex (Sesum, 08): convex M_{0} where u is not C^{3}.
- Huisken (90): u is C^{2} for convex M_{0}.
- Ex (Ilmanen, 92): Rotationally symmetric mean convex M_{0} where u is not C^{2}.
- Serfaty and R. Kohn (06): u is C^{3} in \mathbf{R}^{2}.
- Ex (Sesum, 08): convex M_{0} where u is not C^{3}.
- Huisken (90): u is C^{2} for convex M_{0}.
- Ex (Ilmanen, 92): Rotationally symmetric mean convex M_{0} where u is not C^{2}.
- Serfaty and R. Kohn (06): u is C^{3} in \mathbf{R}^{2}.
- Ex (Sesum, 08): convex M_{0} where u is not C^{3}.

Regularity of solutions

- Huisken (90): u is C^{2} for convex M_{0}.
- Ex (Ilmanen, 92): Rotationally symmetric mean convex M_{0} where u is not C^{2}.
- Serfaty and R. Kohn (06): u is C^{3} in \mathbf{R}^{2}.
- Ex (Sesum, 08): convex M_{0} where u is not C^{3}.

In \mathbf{R}^{3} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is either:
(1) A single point with a spherical singularity.
(2) A simple closed C^{1} curve of cylindrical singularities.

Ex's: Sphere, marriage ring, dumbbell.

In \mathbf{R}^{3} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is either:
(1) A single point with a spherical singularity.
(2) A simple closed C^{1} curve of cylindrical singularities.

Ex's: Sphere, marriage ring, dumbbell.

In \mathbf{R}^{3} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is either:
(1) A single point with a spherical singularity.
(2) A simple closed C^{1} curve of cylindrical singularities.

Ex's: Sphere, marriage ring, dumbbell.

In \mathbf{R}^{3} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is either:
(1) A single point with a spherical singularity.
(2) A simple closed C^{1} curve of cylindrical singularities.

Ex's: Sphere, marriage ring, dumbbell.

In \mathbf{R}^{3} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is either:
(1) A single point with a spherical singularity.
(2) A simple closed C^{1} curve of cylindrical singularities.

Ex's: Sphere, marriage ring, dumbbell.

In \mathbf{R}^{3} with M_{0} mean convex, II:

Equivalently: u is C^{2} iff u has exactly one critical value T and
the critical set is either:
(1) A single point where Hess_{u} is $-\frac{1}{2}$ times the identity.
(2) A simple closed C^{1} curve where Hess ${ }_{u}$ has eigenvalues 0 and -1 with multiplicities 1 and 2, respectively.

In case (2), the kernel of Hess_{u} is tangent to the curve.

In \mathbf{R}^{3} with M_{0} mean convex, II:

Equivalently: u is C^{2} iff u has exactly one critical value T and the critical set is either:
(0) A single point where Hess ${ }_{u}$ is $-\frac{1}{2}$ times the identity.

O A simple closed C^{+}curve where Hessu has eigenvalues 0 and -1 with multiplicities 1 and 2 , respectively.

In case (2), the kernel of Hess_{u} is tangent to the curve.

In \mathbf{R}^{3} with M_{0} mean convex, II:

Equivalently: u is C^{2} iff u has exactly one critical value T and the critical set is either:
(1) A single point where Hess_{u} is $-\frac{1}{2}$ times the identity.
(3) A simple closed C^{1} curve where Hess_{u} has eigenvalues 0 and -1 with multiplicities 1 and 2 , respectively.

In case (2), the kernel of Hess_{u} is tangent to the curve.

In \mathbf{R}^{3} with M_{0} mean convex, II:

Equivalently: u is C^{2} iff u has exactly one critical value T and the critical set is either:
(1) A single point where Hess_{u} is $-\frac{1}{2}$ times the identity.
(2) A simple closed C^{1} curve where Hess_{u} has eigenvalues 0 and -1 with multiplicities 1 and 2 , respectively.

In case (2), the kernel of Hess_{u} is tangent to the curve.

In \mathbf{R}^{3} with M_{0} mean convex, II:

Equivalently: u is C^{2} iff u has exactly one critical value T and the critical set is either:
(1) A single point where Hess_{u} is $-\frac{1}{2}$ times the identity.
(2) A simple closed C^{1} curve where Hess_{u} has eigenvalues 0 and -1 with multiplicities 1 and 2 , respectively.

In case (2), the kernel of Hess_{u} is tangent to the curve.

In \mathbf{R}^{n+1} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is an embedded closed C^{1} k-dimensional submanifold of cylindrical singularities.

In \mathbf{R}^{n+1} with M_{0} mean convex:

CM, 2016: u is C^{2} iff:

- There is exactly one singular time T.
- The singular set \mathcal{S} is an embedded closed C^{1} k-dimensional submanifold of cylindrical singularities.

Low dimensions when u is not C^{2}

- \mathcal{S} is contained in a finite union of compact C^{1} curves plus a countable set of points.
- In particular, $\mathcal{H}_{1}(\mathcal{S})<\infty$ (this is sharp: marriage ring).

Low dimensions when u is not C^{2}

- \mathcal{S} is contained in a finite union of compact C^{1} curves plus a countable set of points.
- In particular, $\mathcal{H}_{1}(\mathcal{S})<\infty$ (this is sharp: marriage ring).
$\ln \mathbf{R}^{4}\left(\right.$ or $\left.\mathbf{R}^{3}\right)$:
- The flow is completely smooth at almost every time.
- Any connected subset of \mathcal{S} lies in a time-slice.

Low dimensions when u is not $C^{2} \|$

$\ln \mathbf{R}^{4}\left(\right.$ or $\left.\mathbf{R}^{3}\right)$:

- The flow is completely smooth at almost every time.
- Any connected subset of \mathcal{S} lies in a time-slice.

Low dimensions when u is not $C^{2} \|$

$\ln \mathbf{R}^{4}\left(\right.$ or $\left.\mathbf{R}^{3}\right)$:

- The flow is completely smooth at almost every time.
- Any connected subset of \mathcal{S} lies in a time-slice.

The key for proving regularity of the level set function

- The geometry of the evolving hypersurface at singularities.
- To do that magnify the hypersurface at a singularity.

The key for proving regularity of the level set function

- The geometry of the evolving hypersurface at singularities.
- To do that magnify the hypersurface at a singularity.

Blow up analysis and tangent flows

- A tangent flow is the limit of a sequence of rescalings at a singularity, where the convergence is on compact subsets.
- A tangent flow to M_{t} at the origin in space-time is the limit of a sequence of rescaled flows $\frac{1}{\delta_{i}} M_{\delta^{2}+t}$ where $\delta_{i} \rightarrow 0$.
- Non-uniqueness: Different sequences δ_{i} could give different tangent flows.

Blow up analysis and tangent flows

- A tangent flow is the limit of a sequence of rescalings at a singularity, where the convergence is on compact subsets.
- A tangent flow to M_{t} at the origin in space-time is the limit of a sequence of rescaled flows $\frac{1}{\delta_{i}} M_{\delta_{i}^{2}}$ where $\delta_{i} \rightarrow 0$.
- Non-uniqueness: Different sequences δ_{i} could give different tangent flows.

Blow up analysis and tangent flows

- A tangent flow is the limit of a sequence of rescalings at a singularity, where the convergence is on compact subsets.
- A tangent flow to M_{t} at the origin in space-time is the limit of a sequence of rescaled flows $\frac{1}{\delta_{i}} M_{\delta_{i}^{2}}$ where $\delta_{i} \rightarrow 0$.
- Non-uniqueness: Different sequences δ_{i} could give different tangent flows.

Snapshots of the flow at 3 times near one singular time. The axis of one cylinder could potentially rotate slowly in time.

Tangent flows = shrinkers

- Monotonicity formula of Huisken + Ilmanen and White:
- Tangent flows are shrinkers, i.e., self-similar solutions of MCF that evolve by rescaling.

Tangent flows = shrinkers

- Monotonicity formula of Huisken + Ilmanen and White:
- Tangent flows are shrinkers, i.e., self-similar solutions of MCF that evolve by rescaling.

Colding
Level set flow

Most important shrinkers

- Generalized round cylinders $\mathcal{C}:=\mathbf{S}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{n}-\mathbf{k}}$.
- Here the $\mathbf{S}^{\mathbf{k}}$ is centered at 0 with radius $\sqrt{2 k}$ and we allow all possible rotations by $S O(n+1)$.

Most important shrinkers

- Generalized round cylinders \mathcal{C} : $=\mathbf{S}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{n - k}}$.
- Here the $\mathbf{S}^{\mathbf{k}}$ is centered at 0 with radius $\sqrt{2 k}$ and we allow all possible rotations by $S O(n+1)$.

Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

- They are the only singularities for mean convex MCF (White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).
- They are the generic singularities in general (CM, 2012).
- In \mathbf{R}^{3} they are the genus zero singularities (Brendle, 2015).

Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

- They are the only singularities for mean convex MCF (White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).
- They are the generic singularities in general (CM, 2012).
- In \mathbf{R}^{3} they are the genus zero singularities (Brendle, 2015).

Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

- They are the only singularities for mean convex MCF (White; Huisken-Sinestrari, Andrews, HasIhofer-Kleiner).
- They are the generic singularities in general (CM, 2012).
- In \mathbf{R}^{3} they are the genus zero singularities (Brendle, 2015).

Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

- They are the only singularities for mean convex MCF (White; Huisken-Sinestrari, Andrews, HasIhofer-Kleiner).
- They are the generic singularities in general (CM, 2012).
- In \mathbf{R}^{3} they are the genus zero singularities (Brendle, 2015).

Uniqueness of tangent flows

- A singular point is cylindrical if at least one tangent flow is a multiplicity one round cylinder $\mathbf{S}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{n}-\mathbf{k}}$.
- Theorem: [C-Minicozzi] At each cylindrical singular point the tangent flow is unique:
- That is, any other tangent flow is also a cylinder with the same \mathbf{R}^{k} factor pointing in the same direction.

Uniqueness of tangent flows

- A singular point is cylindrical if at least one tangent flow is a multiplicity one round cylinder $\mathbf{S}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{n}-\mathbf{k}}$.
- Theorem: [C-Minicozzi] At each cylindrical singular point the tangent flow is unique:
- That is, any other tangent flow is also a cylinder with the same \mathbf{R}^{k} factor pointing in the same direction.

Uniqueness of tangent flows

- A singular point is cylindrical if at least one tangent flow is a multiplicity one round cylinder $\mathbf{S}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{n}-\mathbf{k}}$.
- Theorem: [C-Minicozzi] At each cylindrical singular point the tangent flow is unique:
- That is, any other tangent flow is also a cylinder with the same \mathbf{R}^{k} factor pointing in the same direction.

Mean convex flows

- Corollary: [CM] Tangent flows of mean convex MCF are unique.

Strong rectifiability I

- Suppose a MCF in \mathbf{R}^{n+1} has cylindrical sings (e.g., mean cvx).
- $\mathcal{S} \subset \mathbf{R}^{n+1} \times \mathbf{R}$ is the space-time singular set.
- \mathcal{S} is contained in finite union of compact $C^{1}(n-1)$-mflds plus a set of $\operatorname{dim} \leq(n-2)$.

Strong rectifiability I

- Suppose a MCF in \mathbf{R}^{n+1} has cylindrical sings (e.g., mean cvx).
- $\mathcal{S} \subset \mathbf{R}^{n+1} \times \mathbf{R}$ is the space-time singular set.
- \mathcal{S} is contained in finite union of compact $C^{1}(n-1)$-mflds plus a set of $\operatorname{dim} \leq(n-2)$.

Strong rectifiability I

- Suppose a MCF in \mathbf{R}^{n+1} has cylindrical sings (e.g., mean cvx).
- $\mathcal{S} \subset \mathbf{R}^{n+1} \times \mathbf{R}$ is the space-time singular set.
- \mathcal{S} is contained in finite union of compact $C^{1}(n-1)$-mflds plus a set of $\operatorname{dim} \leq(n-2)$.

Strong rectifiability II

- In particular, \mathcal{S} is rectifiable with finite measure.
- Even the lower strata of \mathcal{S} are contained in countable unions of C^{1} mflds (of lower dim).
- Remarks: Parabolic Almgren-Federer dimension reducing (White), Reifenberg property and rectifiability (Simon).

Strong rectifiability II

- In particular, \mathcal{S} is rectifiable with finite measure.
- Even the lower strata of \mathcal{S} are contained in countable unions of C^{1} mflds (of lower dim).
- Remarks: Parabolic Almgren-Federer dimension reducing (White), Reifenberg property and rectifiability (Simon).
- In particular, \mathcal{S} is rectifiable with finite measure.
- Even the lower strata of \mathcal{S} are contained in countable unions of C^{1} mflds (of lower dim).
- Remarks: Parabolic Almgren-Federer dimension reducing (White), Reifenberg property and rectifiability (Simon).

Parabolic scaling

- This theorem is much stronger than one might think:
- It uses parabolic distance distp.
- Nothing is ever discarded (as it usually is when one talk about rectifiable) because of uniqueness.

Parabolic scaling

- This theorem is much stronger than one might think:
- It uses parabolic distance dist $_{p}$.
- Nothing is ever discarded (as it usually is when one talk about rectifiable) because of uniqueness.

Parabolic scaling

- This theorem is much stronger than one might think:
- It uses parabolic distance distp.
- Nothing is ever discarded (as it usually is when one talk about rectifiable) because of uniqueness.

