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Mean curvature

Suppose ⌃ ⇢ R

n+1 is a hypersurface.

n is the unit normal of ⌃.

H = div⌃(n) is the mean curvature.

Here div⌃(n) =
Pn

i=1hrei n, eii; where ei is an orthonormal
basis for the tangent space of ⌃.
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Level set

If ⌃ = u�1(s) and s is a regular value.

Then n = ru
|ru| and H = div

⇣
ru
|ru|

⌘
.
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Mean curvature flow

A one-parameter family of smooth hypersurfaces Mt ⇢ R

n+1

flows by the MCF if
xt = �H n ,

where H and n are the mean curvature and unit normal,
respectively, of Mt at the point x .
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Two key properties

H is the gradient of area, so MCF is the negative gradient
flow for volume (Vol Mt decreases most efficiently).

Avoidance property: If M0 and N0 are disjoint, then Mt and
Nt remain disjoint.
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Avoidance
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Curve shortening flow

When n = 1 and the hypersurface is a curve, the flow is the
curve shortening flow.

A (round) circle shrinks through (round) circles to a point in
finite time.

Example of a snake.

Theorem (Grayson): Any simple closed curve shrinks to a
round point in finite time.
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The snake
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Level set flow

Given a closed hypersurface ⌃ ⇢ R

n+1, choose a function
u0 : R

n+1 ! R so that ⌃ is the level set {u0 = 0}.

If we simultaneously flow {u0 = s1} and {u0 = s2} for
s1 6= s2, then avoidance implies they stay disjoint.

In the level set flow, we look for u : R

n+1 ⇥ R ! R so that
each level set t ! {u(·, t) = s} flows by MCF.
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Level set flow II

If ru 6= 0 and the level sets of u flow by MCF, then

ut = |ru| div
✓ ru
|ru|

◆
.

This is degenerate parabolic and undefined when ru = 0.
It may not have classical solutions.

Osher-Sethian studied this numerically.

Evans-Spruck and Chen-Giga-Goto constructed
(continuous) viscosity solutions and showed uniqueness.
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Singularities: Examples

Under MCF:

A round sphere remains round but shrinks and eventually
becomes extinct in a point.

A round cylinder remains round and eventually becomes
extinct in a line.

A (thin) torus of revolution shrinks and eventually it
becomes extinct in a circle.
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The marriage ring shrinks to a circle then disappears
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Dumbbell

The dumbbell in R

3.

Under the mean curvature flow the neck first pinches off
and the surface disconnects into two components.

Later each component (bell) shrinks to a round point.

Colding Level set flow



Dumbbell

The dumbbell in R

3.

Under the mean curvature flow the neck first pinches off
and the surface disconnects into two components.

Later each component (bell) shrinks to a round point.

Colding Level set flow



Dumbbell

The dumbbell in R

3.

Under the mean curvature flow the neck first pinches off
and the surface disconnects into two components.

Later each component (bell) shrinks to a round point.

Colding Level set flow



Figure: Grayson’s dumbbell; initial surface and step 1.

Figure: The dumbbell; steps 2 and 3.
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Figure: The dumbbell; steps 4 and 5.

Figure: The dumbbell; steps 6 and 7.
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Singular set S I

Under MCF:

Closed hypersurfaces contract, develop singularities and
eventually become extinct.

The singular set S is the set of points in space and time
where the flow is not smooth.
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Singular set S II

In the first 3 examples (the sphere, the cylinder and the
marriage ring):

S is a point, a line, and a closed curve, respectively.

In each case, the singularities occur only at a single time.

In contrast, the dumbbell has two singular times with one
singular point at the first time and two at the second.
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Mean convex flows

A hypersurface is mean convex if H > 0, i.e., if the sum of
the principal curvatures is positive at every point.

Mean convexity: the hypersurface moves inward under
MCF.

This includes convex hypersurfaces, where every principal
curvature is positive.
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Mean convex MCF

MCF Mt ⇢ R

n+1, M0 closed smooth mean convex.

Mt stays mean convex and moves monotonically inward.

It sweeps out the entire domain ⌦0 inside M0.
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Level set flow for mean convex

When the hypersurfaces are mean convex the equation
can be rewritten as degenerate elliptic.

Write u(x) = {t | x 2 Mt}.

u is the arrival time - the time the hyper-surfaces Mt
arrives at x .

v(x , t) = u(x)� t satisfies the level set flow.
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Level set flow for mean convex II

The arrival time u satisfies �1 = |ru| div( ru
|ru|).

This is degenerate elliptic and undefined when ru = 0.

Ex: u = �1
2 (x2

1 + x2
2 ) is the arrival time for shrinking round

cylinders in R

3.

Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz
solutions.
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Singular set of level set flow for mean convex

The singular set of the flow is the critical set of u.

Namely, (x , u(x)) is singular iff rxu = 0.

Ex: The shrinking cylinders given by u = �1
2 (x2

1 + x2
2 ) are

singular in the line x1 = x2 = 0 where ru = 0.
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Differentiability

CM, 2015:
u is twice differentiable everywhere and smooth away from
the critical set.

u satisfies the equation everywhere in the classical sense.

At each critical point the hessian is symmetric and has only
two eigenvalues 0 and � 1

k ; � 1
k has multiplicity k + 1.

Here k 2 {1, . . . , n} is the dimension of the spherical factor.
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Regularity of solutions

Huisken (90): u is C2 for convex M0.

Ex (Ilmanen, 92): Rotationally symmetric mean convex

M0 where u is not C2.

Serfaty and R. Kohn (06): u is C3 in R

2.

Ex (Sesum, 08): convex M0 where u is not C3.

Colding Level set flow



Regularity of solutions

Huisken (90): u is C2 for convex M0.

Ex (Ilmanen, 92): Rotationally symmetric mean convex

M0 where u is not C2.

Serfaty and R. Kohn (06): u is C3 in R

2.

Ex (Sesum, 08): convex M0 where u is not C3.

Colding Level set flow



Regularity of solutions

Huisken (90): u is C2 for convex M0.

Ex (Ilmanen, 92): Rotationally symmetric mean convex

M0 where u is not C2.

Serfaty and R. Kohn (06): u is C3 in R

2.

Ex (Sesum, 08): convex M0 where u is not C3.

Colding Level set flow



Regularity of solutions

Huisken (90): u is C2 for convex M0.

Ex (Ilmanen, 92): Rotationally symmetric mean convex

M0 where u is not C2.

Serfaty and R. Kohn (06): u is C3 in R

2.

Ex (Sesum, 08): convex M0 where u is not C3.

Colding Level set flow



In R

3 with M0 mean convex:

CM, 2016: u is C2
iff:

There is exactly one singular time T .

The singular set S is either:

1 A single point with a spherical singularity.

2 A simple closed C1 curve of cylindrical singularities.

Ex’s: Sphere, marriage ring, dumbbell.
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In R

3 with M0 mean convex, II:

Equivalently: u is C2
iff u has exactly one critical value T and

the critical set is either:

1 A single point where Hessu is �1
2 times the identity.

2 A simple closed C1 curve where Hessu has eigenvalues 0
and �1 with multiplicities 1 and 2, respectively.

In case (2), the kernel of Hessu is tangent to the curve.
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In R

n+1 with M0 mean convex:

CM, 2016: u is C2
iff:

There is exactly one singular time T .

The singular set S is an embedded closed C1

k -dimensional submanifold of cylindrical singularities.
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Low dimensions when u is not C2

S is contained in a finite union of compact C1 curves plus a
countable set of points.

In particular, H1(S) < 1 (this is sharp: marriage ring).
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Low dimensions when u is not C2 II

In R

4 (or R

3):

The flow is completely smooth at almost every time.

Any connected subset of S lies in a time-slice.
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The key for proving regularity of the level set function

The geometry of the evolving hypersurface at singularities.

To do that magnify the hypersurface at a singularity.
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Blow up analysis and tangent flows

A tangent flow is the limit of a sequence of rescalings at a
singularity, where the convergence is on compact subsets.

A tangent flow to Mt at the origin in space-time is the limit
of a sequence of rescaled flows 1

�i
M�2

i t where �i ! 0.

Non-uniqueness: Different sequences �i could give
different tangent flows.
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Tangent flows = shrinkers

Monotonicity formula of Huisken + Ilmanen and White:

Tangent flows are shrinkers, i.e., self-similar solutions of
MCF that evolve by rescaling.
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The shrinking cube. Half of the shrinking cube.

A numerical example of Chopp, Exper. Math. 1994.
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Most important shrinkers

Generalized round cylinders C := S

k ⇥ R

n�k.

Here the S

k is centered at 0 with radius
p

2k and we allow
all possible rotations by SO(n + 1).
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Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

They are the only singularities for mean convex MCF
(White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).

They are the generic singularities in general (CM, 2012).

In R

3 they are the genus zero singularities (Brendle, 2015).
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Uniqueness of tangent flows

A singular point is cylindrical if at least one tangent flow is
a multiplicity one round cylinder S

k ⇥ R

n�k.

Theorem: [C-Minicozzi] At each cylindrical singular point
the tangent flow is unique:

That is, any other tangent flow is also a cylinder with the
same R

k factor pointing in the same direction.
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Mean convex flows

Corollary: [CM] Tangent flows of mean convex MCF are
unique.
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Strong rectifiability I

Suppose a MCF in R

n+1 has cylindrical sings (e.g., mean
cvx).

S ⇢ R

n+1 ⇥ R is the space-time singular set.

S is contained in finite union of compact C1 (n � 1)-mflds
plus a set of dim  (n � 2).
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Strong rectifiability II

In particular, S is rectifiable with finite measure.

Even the lower strata of S are contained in countable
unions of C1 mflds (of lower dim).

Remarks: Parabolic Almgren-Federer dimension reducing
(White), Reifenberg property and rectifiability (Simon).
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Parabolic scaling

This theorem is much stronger than one might think:

It uses parabolic distance distP .

Nothing is ever discarded (as it usually is when one talk
about rectifiable) because of uniqueness.
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