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Mean curvature

@ Suppose ¥ c R™' is a hypersurface.
@ n is the unit normal of .

@ H =divs(n) is the mean curvature.

@ Here divs(n) = Y7 ,(Vgn, €;); Where e is an orthonormal
basis for the tangent space of X.
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e If ¥ = u~'(s) and s is a regular value.
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e If ¥ = u~'(s) and s is a regular value.

@ Thenn = ‘V“ and H = div (IVUI>
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Mean curvature flow

A one-parameter family of smooth hypersurfaces M; c R
flows by the MCF if
Xt =—Hn,

where H and n are the mean curvature and unit normal,
respectively, of M; at the point x.
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Two key properties

@ H is the gradient of area, so MCF is the negative gradient
flow for volume (Vol M; decreases most efficiently).
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Two key properties

@ H is the gradient of area, so MCF is the negative gradient
flow for volume (Vol M; decreases most efficiently).

@ Avoidance property: If My and Ny are disjoint, then M; and
N; remain disjoint.
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Avoidance
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Curve shortening flow

@ When n =1 and the hypersurface is a curve, the flow is the
curve shortening flow.
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Curve shortening flow

@ When n =1 and the hypersurface is a curve, the flow is the
curve shortening flow.

@ A (round) circle shrinks through (round) circles to a point in
finite time.
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@ When n =1 and the hypersurface is a curve, the flow is the
curve shortening flow.

@ A (round) circle shrinks through (round) circles to a point in
finite time.

@ Example of a snake.
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Curve shortening flow

@ When n =1 and the hypersurface is a curve, the flow is the
curve shortening flow.

@ A (round) circle shrinks through (round) circles to a point in
finite time.

@ Example of a snake.

@ Theorem (Grayson): Any simple closed curve shrinks to a
round point in finite time.
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The snake
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Level set flow

@ Given a closed hypersurface ¥ ¢ R"*', choose a function
Up : R™' — R so that ¥ is the level set {uy = 0}.
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Level set flow

@ Given a closed hypersurface ¥ c R, choose a function
Up : R™' — R so that ¥ is the level set {uy = 0}.

@ If we simultaneously flow {uy = s1} and {uy = s,} for
Sy # Sp, then avoidance implies they stay disjoint.

Colding Level set flow



Level set flow

@ Given a closed hypersurface ¥ c R, choose a function
Up : R™' — R so that ¥ is the level set {uy = 0}.

@ If we simultaneously flow {uy = s1} and {uy = s,} for
Sy # Sp, then avoidance implies they stay disjoint.

@ In the level set flow, we look for v : R™*' x R — R so that
each level set t — {u(-, t) = s} flows by MCF.
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Level set flow Il

@ If Vu # 0 and the level sets of u flow by MCF, then

. Vu
us = |Vu|div (Vu|> )
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Level set flow Il

@ If Vu # 0 and the level sets of u flow by MCF, then

. Vu
us = |Vu|div (Vu|> )

@ This is degenerate parabolic and undefined when Vu = 0.
It may not have classical solutions.
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Level set flow Il

@ If Vu # 0 and the level sets of u flow by MCF, then

. Vu
us = |Vu|div (Vu|> )

@ This is degenerate parabolic and undefined when Vu = 0.
It may not have classical solutions.

@ Osher-Sethian studied this numerically.
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Level set flow Il

@ If Vu # 0 and the level sets of u flow by MCF, then

. Vu
us = |Vu|div (Vu|> )
@ This is degenerate parabolic and undefined when Vu = 0.
It may not have classical solutions.
@ Osher-Sethian studied this numerically.

@ Evans-Spruck and Chen-Giga-Goto constructed
(continuous) viscosity solutions and showed uniqueness.
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Singularities: Examples

Under MCF:

@ A round sphere remains round but shrinks and eventually
becomes extinct in a point.
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@ A round sphere remains round but shrinks and eventually
becomes extinct in a point.

@ A round cylinder remains round and eventually becomes
extinct in a line.
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Singularities: Examples

Under MCF:

@ A round sphere remains round but shrinks and eventually
becomes extinct in a point.

@ A round cylinder remains round and eventually becomes
extinct in a line.

@ A (thin) torus of revolution shrinks and eventually it
becomes extinct in a circle.
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The marriage ring shrinks to a circle then disappears
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Dumbbell

@ The dumbbell in R3.
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Dumbbell

@ The dumbbell in R3.

@ Under the mean curvature flow the neck first pinches off
and the surface disconnects into two components.
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Dumbbell

@ The dumbbell in R3.

@ Under the mean curvature flow the neck first pinches off
and the surface disconnects into two components.

@ Later each component (bell) shrinks to a round point.
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Figure: The dumbbell; steps 2 and 3.
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Figure: The dumbbell; steps 4 and 5.

Figure: The dumbbell; steps 6 and 7.
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Singular set S |

Under MCF:

@ Closed hypersurfaces contract, develop singularities and
eventually become extinct.
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Singular set S |

Under MCF:

@ Closed hypersurfaces contract, develop singularities and
eventually become extinct.

@ The singular set S is the set of points in space and time
where the flow is not smooth.
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Singular set S 1l

@ In the first 3 examples (the sphere, the cylinder and the
marriage ring):
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Singular set S 1l

@ In the first 3 examples (the sphere, the cylinder and the
marriage ring):

@ Sis apoint, a line, and a closed curve, respectively.
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Singular set S 1l

@ In the first 3 examples (the sphere, the cylinder and the
marriage ring):

@ Sis apoint, a line, and a closed curve, respectively.

@ In each case, the singularities occur only at a single time.
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Singular set S 1l

@ In the first 3 examples (the sphere, the cylinder and the
marriage ring):

@ Sis apoint, a line, and a closed curve, respectively.
@ In each case, the singularities occur only at a single time.

@ In contrast, the dumbbell has two singular times with one
singular point at the first time and two at the second.
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Mean convex flows

@ A hypersurface is mean convex if H > 0, i.e., if the sum of
the principal curvatures is positive at every point.
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Mean convex flows

@ A hypersurface is mean convex if H > 0, i.e., if the sum of
the principal curvatures is positive at every point.

@ Mean convexity: the hypersurface moves inward under
MCF.
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Mean convex flows

@ A hypersurface is mean convex if H > 0, i.e., if the sum of
the principal curvatures is positive at every point.

@ Mean convexity: the hypersurface moves inward under
MCF.

@ This includes convex hypersurfaces, where every principal
curvature is positive.
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Mean convex MCF

@ MCF M; c R™', M, closed smooth mean convex.
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Mean convex MCF

@ MCF M; c R™', M, closed smooth mean convex.

@ M; stays mean convex and moves monotonically inward.
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Mean convex MCF

@ MCF M; c R™', M, closed smooth mean convex.
@ M; stays mean convex and moves monotonically inward.

@ It sweeps out the entire domain g inside M.
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Level set flow for mean convex

@ When the hypersurfaces are mean convex the equation
can be rewritten as degenerate elliptic.
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Level set flow for mean convex

@ When the hypersurfaces are mean convex the equation
can be rewritten as degenerate elliptic.

@ Write u(x) = {t| x € M;}.
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Level set flow for mean convex

@ When the hypersurfaces are mean convex the equation
can be rewritten as degenerate elliptic.

@ Write u(x) = {t| x € M;}.

@ u is the arrival time - the time the hyper-surfaces M;
arrives at x.
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Level set flow for mean convex

@ When the hypersurfaces are mean convex the equation
can be rewritten as degenerate elliptic.

@ Write u(x) = {t| x € M;}.

@ u is the arrival time - the time the hyper-surfaces M;
arrives at x.

@ v(x,t) = u(x) — t satisfies the level set flow.
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Level set flow for mean convex Il

o The arrival time u satisfies —1 = [Vul div(gg)-
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Level set flow for mean convex Il

o The arrival time u satisfies —1 = [Vul div(gg)-

@ This is degenerate elliptic and undefined when Vu = 0.
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Level set flow for mean convex Il

o The arrival time u satisfies —1 = [Vul div(gg)-

@ This is degenerate elliptic and undefined when Vu = 0.

@ Ex: u= —3 (x2 + x2) is the arrival time for shrinking round
cylinders in R®.
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Level set flow for mean convex Il

o The arrival time u satisfies —1 = [Vul div(gg)-

@ This is degenerate elliptic and undefined when Vu = 0.

@ Ex: u= —3 (x2 + x2) is the arrival time for shrinking round
cylinders in R®.

@ Evans-Spruck (cf. Chen-Giga-Goto) constructed Lipschitz
solutions.
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Singular set of level set flow for mean convex

@ The singular set of the flow is the critical set of v.
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Singular set of level set flow for mean convex

@ The singular set of the flow is the critical set of v.

@ Namely, (x, u(x)) is singular iff Vyu = 0.
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Singular set of level set flow for mean convex

@ The singular set of the flow is the critical set of v.

@ Namely, (x, u(x)) is singular iff Vyu = 0.

@ Ex: The shrinking cylinders given by u = —% (x2 + x3) are

singular in the line x; = x> = 0 where Vu = 0.
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Differentiability

CM, 2015:
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Differentiability

CM, 2015:

@ u is twice differentiable everywhere and smooth away from
the critical set.
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Differentiability

CM, 2015:
@ u is twice differentiable everywhere and smooth away from
the critical set.

@ u satisfies the equation everywhere in the classical sense.
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Differentiability

CM, 2015:
@ u is twice differentiable everywhere and smooth away from

the critical set.

@ u satisfies the equation everywhere in the classical sense.

@ At each critical point the hessian is symmetric and has only
two eigenvalues 0 and —}; —1 has multiplicity k + 1.

Here k € {1,..., n} is the dimension of the spherical factor.
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Regularity of solutions

@ Huisken (90): uis C? for convex M.
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Regularity of solutions

@ Huisken (90): uis C? for convex M.

@ Ex (llmanen, 92): Rotationally symmetric mean convex
M, where u is not C2.
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Regularity of solutions

@ Huisken (90): uis C? for convex M.

@ Ex (llmanen, 92): Rotationally symmetric mean convex
M, where u is not C2.

@ Serfaty and R. Kohn (06): uis C® in R2.
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Regularity of solutions

@ Huisken (90): uis C? for convex M.

@ Ex (llmanen, 92): Rotationally symmetric mean convex
M, where u is not C2.

@ Serfaty and R. Kohn (06): uis C® in R2.

@ Ex (Sesum, 08): convex M, where u is not C°.
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In R® with M, mean convex:

CM, 2016: u is C? iff:

@ There is exactly one singular time T.
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@ A single point with a spherical singularity.
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In R® with M, mean convex:

CM, 2016: u is C? iff:

@ There is exactly one singular time T.

@ The singular set S is either:

@ A single point with a spherical singularity.

@ A ssimple closed C' curve of cylindrical singularities.
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In R® with M, mean convex:

CM, 2016: u is C? iff:

@ There is exactly one singular time T.

@ The singular set S is either:

@ A single point with a spherical singularity.

@ A ssimple closed C' curve of cylindrical singularities.

Ex’s: Sphere, marriage ring, dumbbell.
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In R® with My, mean convex, II:

Equivalently: uis C? iff u has exactly one critical value T and
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In R® with My, mean convex, II:
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the critical set is either:
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In R® with My, mean convex, II:

Equivalently: uis C? iff u has exactly one critical value T and

the critical set is either:

@ Asingle point where Hess, is —3 times the identity.
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In R® with My, mean convex, II:

Equivalently: uis C? iff u has exactly one critical value T and

the critical set is either:

@ Asingle point where Hess, is —3 times the identity.

@ A simple closed C' curve where Hess, has eigenvalues 0
and —1 with multiplicities 1 and 2, respectively.
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In R® with My, mean convex, II:

Equivalently: uis C? iff u has exactly one critical value T and

the critical set is either:

@ Asingle point where Hess, is —3 times the identity.

@ A simple closed C' curve where Hess, has eigenvalues 0
and —1 with multiplicities 1 and 2, respectively.

In case (2), the kernel of Hess,, is tangent to the curve.
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In R™*! with My mean convex:

CM, 2016: u is C? iff:

@ There is exactly one singular time T.
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In R™*! with My mean convex:

CM, 2016: u is C? iff:

@ There is exactly one singular time T.

@ The singular set S is an embedded closed C'
k-dimensional submanifold of cylindrical singularities.
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Low dimensions when u is not C?

@ S is contained in a finite union of compact C' curves plus a
countable set of points.
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Low dimensions when u is not C?

@ S is contained in a finite union of compact C' curves plus a
countable set of points.

@ In particular, H1(S) < oo (this is sharp: marriage ring).
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Low dimensions when u is not C? Il

In R* (or R3):
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Low dimensions when u is not C? Il

In R* (or R3):

@ The flow is completely smooth at almost every time.
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Low dimensions when u is not C? Il

In R* (or R3):

@ The flow is completely smooth at almost every time.

@ Any connected subset of S lies in a time-slice.

Colding Level set flow



The key for proving regularity of the level set function

@ The geometry of the evolving hypersurface at singularities.
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The key for proving regularity of the level set function

@ The geometry of the evolving hypersurface at singularities.

@ To do that magnify the hypersurface at a singularity.
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Blow up analysis and tangent flows

@ A tangent flow is the limit of a sequence of rescalings at a
singularity, where the convergence is on compact subsets.
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Blow up analysis and tangent flows

@ A tangent flow is the limit of a sequence of rescalings at a
singularity, where the convergence is on compact subsets.

@ A tangent flow to M; at the origin in space-time is the limit
of a sequence of rescaled flows 51, M;2 , where §; — 0.
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Blow up analysis and tangent flows

@ A tangent flow is the limit of a sequence of rescalings at a
singularity, where the convergence is on compact subsets.

@ A tangent flow to M; at the origin in space-time is the limit
of a sequence of rescaled flows 51, M;2 , where §; — 0.

@ Non-unigueness: Different sequences 4; could give
different tangent flows.
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Snapshots of the flow at 3 times near one singular time. The
axis of one cylinder could potentially rotate slowly in time.
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Tangent flows = shrinkers

@ Monotonicity formula of Huisken + limanen and White:
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Tangent flows = shrinkers

@ Monotonicity formula of Huisken + limanen and White:

@ Tangent flows are shrinkers, i.e., self-similar solutions of
MCF that evolve by rescaling.
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Ao
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The shrinking cube. Half of the shrinking cube.

A numerical example of Chopp, Exper. Math. 1994.
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Most important shrinkers

@ Generalized round cylinders C := S* x R"k,
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Most important shrinkers

@ Generalized round cylinders C := S* x R"k,

@ Here the S¥ is centered at 0 with radius v/2k and we allow
all possible rotations by SO(n+ 1).
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Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

Colding Level set flow



Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

@ They are the only singularities for mean convex MCF
(White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).
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Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

@ They are the only singularities for mean convex MCF
(White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).

@ They are the generic singularities in general (CM, 2012).
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Importance of cylindrical singularities

From now on: Consider flows with cylindrical singularities.

@ They are the only singularities for mean convex MCF
(White; Huisken-Sinestrari, Andrews, Haslhofer-Kleiner).

@ They are the generic singularities in general (CM, 2012).

@ In R® they are the genus zero singularities (Brendle, 2015).
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Uniqueness of tangent flows

@ A singular point is cylindrical if at least one tangent flow is
a multiplicity one round cylinder Sk x Rk,
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Uniqueness of tangent flows

@ A singular point is cylindrical if at least one tangent flow is
a multiplicity one round cylinder Sk x Rk,

@ Theorem: [C-Minicozzi] At each cylindrical singular point
the tangent flow is unique:
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Uniqueness of tangent flows

@ A singular point is cylindrical if at least one tangent flow is
a multiplicity one round cylinder Sk x Rk,

@ Theorem: [C-Minicozzi] At each cylindrical singular point
the tangent flow is unique:

@ That is, any other tangent flow is also a cylinder with the
same RX factor pointing in the same direction.
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Mean convex flows

@ Corollary: [CM] Tangent flows of mean convex MCF are
unique.
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Strong rectifiability |

@ Suppose a MCF in R has cylindrical sings (e.g., mean
CVX).
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Strong rectifiability |

@ Suppose a MCF in R has cylindrical sings (e.g., mean
CVX).

@ S ¢ R™' x Ris the space-time singular set.
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Strong rectifiability |

@ Suppose a MCF in R has cylindrical sings (e.g., mean
CVX).

@ S ¢ R™' x Ris the space-time singular set.

@ S is contained in finite union of compact C' (n — 1)-mflds
plus a set of dim < (n — 2).
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Strong rectifiability Il

@ In particular, S is rectifiable with finite measure.
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Strong rectifiability Il

@ In particular, S is rectifiable with finite measure.

@ Even the lower strata of S are contained in countable
unions of C' mflds (of lower dim).
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Strong rectifiability Il

@ In particular, S is rectifiable with finite measure.

@ Even the lower strata of S are contained in countable
unions of C' mflds (of lower dim).

@ Remarks: Parabolic Aimgren-Federer dimension reducing
(White), Reifenberg property and rectifiability (Simon).
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Parabolic scaling

@ This theorem is much stronger than one might think:
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Parabolic scaling

@ This theorem is much stronger than one might think:

@ It uses parabolic distance distp.
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Parabolic scaling

@ This theorem is much stronger than one might think:
@ It uses parabolic distance distp.

@ Nothing is ever discarded (as it usually is when one talk
about rectifiable) because of uniqueness.
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