Spinor structures on compact homogeneous manifolds

Dmitri Alekseevsky Institute for Information Transmission Problems RAS

Differential Geometry in the Large Florence, July 11-15, 2016

This talk is based on a joint work with Ioannis Chrysikos

We study spin structures on compact simply-connected homogeneous pseudo-Riemannian manifolds (M = G/H, g) of a compact semisimple Lie group G. We classify flag manifolds F = G/H of a compact simple Lie group which are spin. This yields also the classification of all flag manifolds carrying an invariant metaplectic structure. Then we give a description of spin structures on C-spaces, i.e. homogeneous principal torus bundles over flag manifolds.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- I. Basic facts on spin structures on a pseudo-Riemannian manifold
- II. Basic facts on flag manifolds
- II.1. Invariant complex structures and painted Dynkin diagrams.
- II.2. *T*-roots, isotropy decomposition and invariant metrics.
- II.3. Line bundles and characters.
- II.4. Chern form and Koszul numbers.
- III. Spin structure on flag manifolds
- III.1. Criterion for existence of spin structure on a flag manifold.
- III.2. Classification of spin flag manifolds of classical groups.
- III.3 Classification of spin flag manifolds of exceptional groups.
- IV. Spin structures on C-spaces

Let $V := \mathbb{R}^{p,q}$ (n = p + q) be the pseudo-Euclidean vector space with the pseudo-Euclidean metric $g = \langle , \rangle$ of signature $(p,q) = (-\cdots -, +\cdots +)$. We denote by $SO(V) = SO_{p,q}$ the pseudo-orthogonal group and by $Spin(V) = Spin_{p,q}$ the spinor group. Recall that $Spin(V) = Spin_{p,q}$ is a \mathbb{Z}_2 covering of $SO_{p,q}$. It is defined as the subgroup of the group $Cl(V)^*$ of invertible even elements *a* of the Clifford algebra Cl(V) which normalizes $V \subset Cl(V)$; $aVa^{-1} = V$. The natural representation

$$\operatorname{Spin}(V) \ni a \mapsto \operatorname{Ad}_a, \ \operatorname{Ad}_a v := ava^{-1}$$

is a \mathbb{Z}_2 -covering $\operatorname{Ad}: Spin(V) \to SO(V) = Spin(V)/\{\pm 1\}.$

Let $\pi : SO(M) \to M$ be the SO(V)-principal bundle of orthonormal frames of a pseudo-Roemannian manifold M. A $\operatorname{Spin}_{p,q}$ -structure (shortly *spin structure*) on M is a $\operatorname{Spin}_{p,q}$ -principal bundle $\tilde{\pi} : Q = \operatorname{Spin}(M) \to M$, which is a \mathbb{Z}_2 covering $\Lambda : \operatorname{Spin}(M) \to \operatorname{SO}(M)$ such that the following diagram is commutative:

$$\begin{array}{c} \operatorname{Spin}(M) \times \operatorname{Spin}_{p,q} \longrightarrow \operatorname{Spin}(M) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

Two spin structures (Q_1, Λ_1) and (Q_2, Λ_2) are said *equivalent* if there is an $(\text{Spin}_{p,q}\text{-equivariant})$ isomorphism $\mathcal{U} : Q_1 \to Q_2$ which commutes with the projections on SO(M).

The tangent bundle of an oriented *n*-dimensional pseudo-Riemannian manifold (M, g) admits an orthogonal decomposition $TM = \eta_- \oplus \eta_+$ into timelike subbundle η_- s.t. $g|_{\eta_-} < 0$ and spacelike subbundle η_+ s.t. $g|_{\eta_+} > 0$. Conversely, any decomposition $TM = \eta_- \oplus \eta_+$ is an orthogonal decomposition into timelike and spacelike subbundles for some metric.

 (M^n, g) is time-oriented (resp. space-oriented, oriented) if $w_1(\eta_-) = 0$ (resp. $w_1(\eta_+) = 0$, $w_1(M) = w_1(\eta_-) + w_1(\eta_+) = 0$). Proposition An oriented pseudo-Riemannian manifold (M, g)admits a spin structure if and only is $w_2(\eta_-) + w_2(\eta_+) = 0$ or equivalently, $w_2(M) = w_1(\eta_-) \smile w_1(\eta_+)$, where η_-, η_+ are timelike and spacelike subbundles. If M is timelike or spacelike orientable, then this is equivalent to $w_2(M) = 0$.

Assume that M is a compact manifold with a complex structure J. Then M is oriented and $w_2(M) = c_1(M, J) \pmod{2}$. Moreover, the following result holds

Theorem (Lawson-Michelsohn; Atiyah) Let M^{2n} be a compact complex manifold with complex structure J. Then M admits a spin structure if and only if the first Chern class $c_1(M) \in H^2(M, \mathbb{Z})$ is even, i.e. it is divisible by 2 in $H^2(M, \mathbb{Z})$. Moreover, spin structures are in 1-1 correspondence with isomorphism classes of holomorphic line bundles \mathcal{L} such that $\mathcal{L}^{\otimes 2} = K_M$ where K_M is the canonical line bundle.

伺 ト イヨ ト イヨ ト

A spin structure $\tilde{\pi} : Q \to M$ on a oriented homogeneous pseudo-Riemannian manifold (M = G/L, g) is called *G*-invariant if the natural action of *G* on the bundle SO(M) of oriented orthonormal frames of *M*, can be extended to an action on the $Spin_{p,q}$ -principal bundle $\tilde{\pi} : Q = Spin(M) \to M$. Invariant spin structures on reductive homogeneous spaces can be described in terms of lifts of the isotropy representation into the spin group.

• • = • • = •

Let (M = G/L, g) be an oriented homogeneous pseudo-Riemannian manifold with a reductive decomposition $\mathfrak{g} = \mathfrak{l} + \mathfrak{m}$. A lift $\widetilde{\vartheta} : L \to Spin(\mathfrak{q})$ of the isotropy representation $\vartheta : L \to SO(\mathfrak{m})$ onto the spinor group $Spin(\mathfrak{m})$ defines a *G*-invariant spin structure

$$Q = G \times_{\widetilde{\vartheta}} Spin(\mathfrak{q}).$$

Conversely, if G is simply-connected then any spin structure on (M = G/L, g) is invariant and is defined by a such lift. A spin structure (if it exists) is unique if M is simply connected.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Let $(V = \mathbb{R}^{2n}, \omega)$ be the symplectic vector space and $\operatorname{Sp}(V) = \operatorname{Sp}_n(\mathbb{R}) := \operatorname{Aut}(V, \omega)$ the symplectic group. The metaplectic group $Mp_n(\mathbb{R})$ is the unique connected (double) cover of $\operatorname{Sp}_n(\mathbb{R})$. For a symplectic manifold (M^{2n}, ω) , we denote by $\operatorname{Sp}(M)$ the $\operatorname{Sp}_n(\mathbb{R})$ -principal bundle of symplectic frames, i.e. frames $e_1, \dots, e_n, f_1, \dots, f_n$ such that $\omega(e_i, e_i) = \omega(f_i, f_i) = 0, \ \omega(e_i, f_i) = \delta_{ii}.$ A metaplectic structure on a symplectic manifold (M^{2n}, ω) is a $Mp_n(\mathbb{R})$ -equivariant lift of the symplectic frame bundle $\operatorname{Sp}(M) \to M$ to a principal $(\operatorname{Mp})_n(\mathbb{R})$ -bundle $\operatorname{Mp}(M) \to M$ (with respect to the double covering $\rho : \mathrm{Mp}_n(\mathbb{R}) \to \mathrm{Sp}_n\mathbb{R})$.

The first Chern class of (M^{2n}, ω) is defined as the first Chern class of (TM, J), where J is a ω -compatible almost complex structure. Since the space of ω -compatible almost complex structures is contractible, $c_1(M, \omega) := c_1(TM, J)$ is independent of J. Theorem(K. Habermann) A symplectic manifold (M^{2n}, ω) admits a metaplectic structure if and only if $w_2(M) = 0$ or equivalently, the first Chern class $c_1(M, \omega)$ is even. In this case, the set of metaplectic structures on (M^{2n}, ω) stands in a bijective correspondence with $H^1(M; \mathbb{Z}_2)$. Invariant metaplectic structures A simply connected compact

Invariant metaplectic structures A simply connected compact homogeneous symplectic manifold $(M = G/H, \omega)$ (flag manifold) admits a metaplectic structure if and only if $w_2(M) = 0$. Such structure is unique and invariant.

A flag manifold is an adjoint orbit $F = G/H = \operatorname{Ad}_G w \subset \mathfrak{g} = T_e G$ of a compact connected semisimple Lie group G. A flag manifold Fadmits invariant complex, symplectic and Kähler structures. Infinitesimal description:

The *B*-orthogonal reductive decomposition of F can be written as

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (Z(\mathfrak{h}) + \mathfrak{h}') + \mathfrak{m}$$

We fix a Cartan subalgebra $\mathfrak{a} = Z(\mathfrak{h}) + \mathfrak{a}' \subset \mathfrak{h}$ and denote by R_H , (resp., $R = R_H \cup R_F$) the root system of $(\mathfrak{h}^{\mathbb{C},\mathfrak{a}^{\mathbb{C}}})$ (resp., $(\mathfrak{g}^{\mathbb{C},\mathfrak{a}^{\mathbb{C}}})$). Recall that roots take real values on the real form $\mathfrak{a}_0 := i\mathfrak{a} = \mathfrak{t} + \mathfrak{a}'_0, \mathfrak{t} := iZ(\mathfrak{h}), \mathfrak{a}'_0 = i\mathfrak{a}'$ of the Cartan subalgebra.

同下 イヨト イヨト

$$\mathfrak{g}^{\mathsf{C}} = \mathfrak{h}^{\mathbb{C}} + \mathfrak{m}^{\mathbb{C}} = (\mathfrak{a}^{\mathsf{C}} + \mathfrak{g}(R_{\mathsf{H}})) + \mathfrak{g}(R_{\mathsf{F}})$$

where for $Q \subset R$, we denote $\mathfrak{g}(Q) = \sum_{\alpha \in Q} \mathfrak{g}_{\alpha}$. Note that $R_H|_{\mathfrak{t}} = 0$ where $\mathfrak{t} := iZ(\mathfrak{h}) \subset \mathfrak{a}_0$ is the real form of the center $Z(\mathfrak{h})$.

The isotropy representation $\vartheta: H \to \operatorname{Aut}(\mathfrak{m})$ in $\mathfrak{m} = T_o F$ is the restriction $\operatorname{Ad}_H|_{\mathfrak{m}}$ of the adjoint representation.

Black and white simple roots and weights and painted Dynkin diagram (PDD)

Let $\Pi_W = \{\beta_1, \dots, \beta_v\}$ be the fundamental system of R_H and $\Pi = \Pi_W \cup \Pi_B$ its extension to the fundamental system of R. Graphically, the decomposition $\Pi = \Pi_W \cup \Pi_B$ is described by painted Dynkin diagram (PDD) where roots from Π_B are painted in black.

"Black"fundamental weights $\Lambda_1, \cdots, \Lambda_v$ associated to the black simple roots $\beta_1, \cdots \beta_v \in \Pi_B$ are linear forms on \mathfrak{a}_0 which vanish on \mathfrak{a}'_0 . They defined by

$$(\Lambda_i|\beta_j) := rac{2(\Lambda_i,\beta_j)}{(\beta_j,\beta_j)} = \delta_{ij}, \quad (\Lambda_i|\Pi_W) = 0.$$

and span a latice $\mathcal{P}_T \subset \mathfrak{t}^*$ which we call *T*-weight lattice.

i) A PDD determines the flag manifold F = G/H together with an invariant complex structure J. The stability subalgebra is $\mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{z}(\mathfrak{h})$ where \mathfrak{h}' is the subalgebra associated with Π_W and $\mathfrak{z}(\mathfrak{h}) = i\mathfrak{t} = \{h \in \mathfrak{a} : (h, \alpha_i) = 0, \forall \alpha_i \in \Pi_W\}$. A basis of $\mathfrak{t}^* \cong \mathfrak{t}$ is given by Λ_i , $i = 1, \ldots, v$. The complex structure J is defined by its $\pm i$ -eigenspace decomposition $\mathfrak{m}^{\pm} = \mathfrak{g}(\pm([\Pi_B]))$ As a complex manifold, F is identified with the homogeneous space $F = G^{\mathbb{C}}/P$ where P is the parabolic subgroup generated by the subalgebra

$$\mathfrak{p}=\mathfrak{h}^{\mathbb{C}}+\mathfrak{m}^+$$

ii) Invariant complex structures on F = G/H bijectively correspond to extensions of a fixed fundamental system Π_W of the subalgebra $\mathfrak{h}^{\mathbb{C}}$ to a fundamental system $\Pi = \Pi_W \cup \Pi_B$ of $\mathfrak{g}^{\mathbb{C}}$, or equivalently, to parabolic subalgebras \mathfrak{p} of $\mathfrak{g}^{\mathbb{C}}$ with reductive part $\mathfrak{h}^{\mathbb{C}}$.

(母) (王) (王) (王)

T-roots , decomposition of isotropy representation and invariant metrics

A *T*-root is the restriction $\kappa(\alpha) = \alpha|_{\mathfrak{t}}$ of a complementary root $\alpha \in R_F$ to $\mathfrak{t} := iZ(\mathfrak{h})$. We denote by $R_T := \kappa(R_F) \subset \mathfrak{t}^*$ the set of *T*-roots.

T-roots ξ bijectively correspond to irreducible *H*-submodules $\mathfrak{f}(\xi) := \mathfrak{g}(\kappa^{-1}(\xi))$ of $\mathfrak{m}^{\mathbb{C}}$. Note that $\mathfrak{m}(\xi) = (\mathfrak{f}(\xi) + \mathfrak{f}(-\xi)) \cap \mathfrak{g}$ is irreducible submodule of \mathfrak{m} .

$$\mathfrak{m}^{\mathbb{C}} = \sum_{\xi \in R_T} \mathfrak{f}(\xi), \qquad \mathfrak{m} = \sum_{\xi \in R_T^+} \mathfrak{m}(\xi).$$

By Schur lemma, any G-invariant pseudo-Riemannian metric g on a flag manifold F = G/H is given by

$$g_o := \sum_{i=1}^d x_{\xi_i} B_{\xi_i},$$

where $B_{\xi_i} := -B|_{\mathfrak{m}_{\xi_i}} \xi_i \in R_T^+$, and $x_{\xi_i} \neq 0$ are real numbers, for any $i = 1, \ldots, d := \sharp(R_T^+)$.

Dmitri Alekseevsky Institute for Information Transmission Pr Spinor structures on compact homogeneous manifolds

Invariant closed 2-form on a flag manifold

Let (F = G/H, J) be a flag manifold with reductive decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (\mathfrak{h}' + i\mathfrak{t}) + \mathfrak{m}.$

The complex $\Omega(F)^G$ of invariant differential forms is identified with subcomplex

$$\Lambda(\mathfrak{m}^*)^H = \{\omega \in \Lambda(\mathfrak{g}^*)^H, X \lrcorner \omega = 0 \; \forall X \in \mathfrak{h}\} \subset \Lambda(\mathfrak{g}^*)^H$$

of the complex $\Lambda(\mathfrak{g}^*)^H$. Denote by ω^{β} the basis of 1-forms $(\mathfrak{m}^{\mathbb{C}})^*$ dual to the basis $E_{\beta}, \beta \in R_F$ of $\mathfrak{m}^{\mathbb{C}}$.

Propossition There is a natural isomorphism (transgression)

$$\tau:\mathfrak{t}^*\to \Lambda^2_{cl}(\mathfrak{m}^*)^H\cong H^2(\mathfrak{m}^*)^H\simeq H^2(F,\mathbb{R})$$

given by

$$\mathfrak{a}_{0}^{*} \supset t^{*} \ni \xi \mapsto \tau(\xi) \equiv \omega_{\xi} := \frac{i}{2\pi} d\xi = \frac{i}{2\pi} \sum_{\alpha \in R_{F}^{+}} \frac{2(\xi, \alpha)}{(\alpha, \alpha)} \omega^{\alpha} \wedge \omega^{-\alpha}.$$

向下 イヨト イヨト

In particular,
$$au(\mathcal{P}_{\mathcal{T}})\cong H^2(\mathcal{F},\mathbb{Z})$$
 .

Dmitri Alekseevsky Institute for Information Transmission Pr Spinor structures on compact homogeneous manifolds

Correspondence between T -weights $\lambda \in \mathcal{P}_T$, characters $\chi \in \operatorname{Hom}(H, T^1)$ and holomorphic line bundles

A *T*-weight $\lambda \in \mathcal{P}_T$ defines a character $\chi_{\lambda} \in \chi(\mathcal{H}) = \operatorname{Hom}(\mathcal{H}, \mathcal{T}^1) = \operatorname{Hom}(\mathcal{Z}(\mathcal{H}), \mathcal{T}^1)$

$$\chi_{\lambda}: H \to T^1, \exp(2\pi i X) \mapsto e^{2\pi i \lambda(X)}, X \in \mathfrak{t}.$$

It admits a holomorphic extension to the holomorphic character $\chi_{\lambda}^{\mathbb{C}} \in \chi(P) = \operatorname{Hom}(P, \mathbb{C}^*)$ of the parabolic subgroup $P = H^{\mathbb{C}} \cdot N^+ \subset G^{\mathbb{C}}$. This defines an isomorphism $\mathcal{P}_T \simeq \chi(H) \simeq \chi(P)$ of the vector group of *T*-weights \mathcal{P}_T , the group of real characters $\chi(H)$ of *H* and the group $\chi(P)$ of holomorphic characters of *P*. Denote by \mathcal{L}_{λ} the holomorphic line bundle on $F = G/H = G^{\mathbb{C}}/P$ associated with the holomorphic character $\chi^{\mathbb{C}_{\lambda}}$. Then the Chern class $c_1(\mathcal{L}_{\lambda}) = [\omega_{\lambda}]$.

We set $\sigma_G := \frac{1}{2} \sum_{\alpha \in R^+} \alpha$, $\sigma_H := \frac{1}{2} \sum_{\alpha \in R_H^+} \alpha$. Recall that σ_G is the sum of fundamental weights.

Definition The Koszul 1-form associated with an invariant complex structure J on flag manifold F = G/H is define by

$$\sigma^{J} = 2(\sigma_{G} - \sigma_{H}) = \sum_{\alpha \in R_{F}^{+}} \alpha$$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

The Koszul form is a linear combination of black fundamental weights with positive integers coefficients, given by:

$$\sigma^J = \sum_{j=1}^{\nu} k_j \Lambda_j = \sum_{j=1}^{\nu} (2+b_j) \Lambda_j \in \mathcal{P}_{\mathcal{T}}, \text{ where } b_j = -\frac{4(\sigma_H, \beta_j)}{(\beta_j, \beta_j)} \ge 0.$$

The integers $k_j \in \mathbb{Z}_+$ are called Koszul numbers and the vector $\vec{k} := (k_1, \ldots, k_v) \in \mathbb{Z}_+^v$ is called Koszul vector.

• • = • • = •

The first Chern class $c_1(J) \in H^2(F; \mathbb{Z})$ of the invariant complex structure J in F, is represented by the closed invariant 2-form $\gamma_J := \omega_{\sigma^J}$, (Chern form). A flag manifold F = G/H admits a (G-invariant) spin (or metaplectic) structure, if and only is the first Chern class $c_1(J)$ of an invariant complex structure J on F is even, that is all Koszul numbers are even. In this case, such spin (or metablectic) structure is unique.

Corollary The divisibility by two of the Koszul numbers on a flag manifold $F = G/H = G^{\mathbb{C}}/P$ does not depend on the complex structure.

Flag manifolds of classical groups:

$$\begin{aligned} A(\vec{n}) &= SU_{n+1}/U_1^{n_0} \times S(U_{n_1} \times \cdots \times U_{n_s}), \quad \vec{n} = (n_0, n_1, \cdots, n_s), \\ B(\vec{n}) &= SO_{2n+1}/U_1^{n_0} \times U_{n_1} \times \cdots \times U_{n_s} \times SO_{2r+1}, \quad n = \sum n_j + r, \\ C(\vec{n}) &= Sp_n/U_1^{n_0} \times U_{n_1} \times \cdots \times U_{n_s} \times Sp_r, \quad n = \sum n_j + r, \\ D(\vec{n}) &= SO_{2n}/U_1^{n_0} \times U_{n_1} \times \cdots \times U_{n_s} \times SO_{2r}, \quad n = \sum n_j + r, \end{aligned}$$

where $\vec{n} = (n_0, n_1, \cdots, n_s, r)$ for the group B_n, C_n, D_n .

We chose the standard complex structure on a flag manifold $G(\vec{n})$ for one of the groups $G = A_n, B_n, C_n, D_n$ as complex structure associated the following standard painted Dynkin diagram:

For a flag manifold (F = G/H, J) of a classical group, the Koszul number k_j associated with the black simple root $\beta_j \in \Pi_B$ equals to $2 + b_j$, where b_j is the number of white roots connected with the black root by a string of white roots with the following exceptions: (a) For B_n , each long white root of the last white string which corresponds to the simple factor SO_{2r+1} is counted with multiplicity two, and the last short white root is counted with multiplicity one. If the last simple root is painted black, i.e. $\beta_{s_n} = \alpha_n$, then the coefficient b_{n_s} is twice the number of white roots which are connected with this root. (b) For C_n , each root of the last white string which corresponds to the factor Sp_r is counted with multiplicity two.

(c) For D_n , the last white chain which defines the root system of $D_r = SO_{2r}$ is considered as a chain of length 2(r - 1). If r = 0 and one of the last right roots is white and other is black, then the Koszul number k_{n_e} associated to this black end root β_{n_e} , is $2(n_s - 1)$.

The Koszul vector $\vec{k} := (k_1, \cdots, k_v) \in \mathbb{Z}_+^v$ associated to the standard complex structure J_0 on a flag manifold $G(\vec{n})$ of classical type

$$\begin{array}{lll} A(\vec{n}): & \vec{k} = & (2, \cdots, 2, 1+n_1, n_1+n_2, \cdots, n_{s-1}+n_s), \\ B(\vec{n}): & \vec{k} = & (2, \cdots, 2, 1+n_1, n_1+n_2, \cdots, n_{s-1}+n_s, n_s+2r), \\ C(\vec{n}): & \vec{k} = & (2, \cdots, 2, 1+n_1, n_1+n_2, \cdots, n_{s-1}+n_s, n_s+2r+1), \\ D(\vec{n}): & \vec{k} = & (2, \cdots, 2, 1+n_1, n_1+n_2, \cdots, n_{s-1}+n_s, n_s+2r-1). \end{array}$$

If r = 0, then the last Koszul number (over the end black root) is $2n_s$ for B(\vec{n}), $n_s + 1$ for C(\vec{n}) and $2(n_s - 1)$ for D(\vec{n}).

(a) The flag manifold $A(\vec{n})$ is spin if and only if $n_0 > 0$ and all the numbers n_1, \ldots, n_s are odd or $n_0 = 0$, and the numbers n_1, \ldots, n_s have the same parity.

(b) The flag manifold $B(\vec{n})$ is spin if and only if either $n_0 > 0$ and r = 0, and all the numbers n_1, \ldots, n_s are odd or $n_0 = 0$ and r > 0 and all the numbers n_1, \ldots, n_s are even. Finally, or $n_0 = r = 0$, and all the numbers n_1, \ldots, n_s have the same parity.

(c) The flag manifold $C(\vec{n})$ is spin if $n_0 \ge 0$ and all the numbers n_1, \ldots, n_s are odd.

(d) The flag manifold $D(\vec{n})$ is spin if $n_0 > 0$ and all the numbers n_1, \ldots, n_s are odd, or $n_0 = 0$ and r > 0, and all the numbers n_1, \ldots, n_s are odd or $n_0 = r = 0$ and the numbers n_1, \ldots, n_s have the same parity.

G	F = G/H	$b_2(F)$	d	σ^J
G ₂	$G_2(0) = G_2 / T^2$	2	6	$2(\Lambda_1 + \Lambda_2)$
	$G_2(1)=G_2/U_2'$	1	3	5Λ ₂
	$G_2(2)=G_2/U_2^s$	1	2	3Λ ₁
F ₄	$F_4(0)=F_4/\mathrm{T}^4$	4	24	$2(\Lambda_1 + \Lambda_2 + \Lambda_3 + \Lambda_4)$
	$F_4(1)=F_4/A_1' imes\mathrm{T}^3$	3	16	$3\Lambda_2 + 2(\Lambda_3 + \Lambda_4)$
	$F_4(4) = F_4 / A_1^s imes \mathrm{T}^3$	3	13	$2(\Lambda_1 + \Lambda_2) + \Lambda_3$
	$F_4(1,2)=F_4/A_2^\prime{ imes}\mathrm{T}^2$	2	9	$6\Lambda_3 + 2\Lambda_4$
	$F_4(1,4)=F_4/A_1{ imes}A_1{ imes}\mathrm{T^2}$	2	8	$3\Lambda_2 + 3\Lambda_3$
	$F_4(2,3)=F_4/B_2 imes \mathrm{T}^2$	2	6	$5\Lambda_1 + 6\Lambda_4$
	$F_4(3,4) = F_4 / A_2^s \times \mathrm{T}^2$	2	6	$2\Lambda_1 + 4\Lambda_2$
	$F_4(1,2,4) = F_4 / A_2^\prime imes A_1^s imes \mathrm{T}$	1	4	$7\Lambda_3$
	$F_4(1,3,4) = F_4 / A_2^s imes A_1^\prime imes \mathrm{T}$	1	3	5Λ ₂
	$F_4(1,2,3)=F_4/B_3{ imes}\mathrm{T}$	1	2	$11\Lambda_4$
	$F_4(2,3,4) = F_4 / C_3 imes { m T}$	1	2	8Λ ₁

• • = • • = •

Flag manifolds of group E_6

F = G/H	$b_2(F)$	d	σ^{J}
$E_6(0) = E_6 / T^6$	6	36	$2(\Lambda_1 + \cdots + \Lambda_6)$
$E_6(1)=E_6/A_1{ imes}\mathrm{T}^5$	5	25	$3\Lambda_2 + 2(\Lambda_3 + \cdots + \Lambda_6)$
$E_6(3,5) = E_6 / A_1^2 \times T^4$	4	17	$2\Lambda_1 + 3\Lambda_2 + 4\Lambda_4 + 3\Lambda_6$
$E_6(4,5) = E_6 / A_2 imes \mathrm{T}^4$	4	15	$2(\Lambda_1 + \Lambda_2 + 2\Lambda_3 + \Lambda_6)$
$E_6(1,3,5) = E_6 / A_1^3 \times T^3$	3		$4(\Lambda_2 + \Lambda_4) + 3\Lambda_6$
$E_6(2,4,5) = E_6 /A_2 imes A_1 imes \mathrm{T}^3$	3	10	$3\Lambda_1 + 5\Lambda_3 + 2\Lambda_6$
$E_6(3,4,5) = E_6 /A_3 imes T^3$	3	8	$2\Lambda_1 + 5(\Lambda_2 + \Lambda_6)$
$E_6(2,3,4,5) = E_6 / A_4 \times T^2$	2	4	$6\Lambda_1 + 8\Lambda_6$
$E_6(1,3,4,5) = E_6 / A_3 imes A_1 imes \mathrm{T}^2$	2	5	$6\Lambda_2 + 5\Lambda_6$
${\sf E}_6(1,2,4,5)={\sf E}_6/{\sf A}_2^2{ imes}{ m T}^2$	2	6	$6\Lambda_3 + 2\Lambda_6$
$E_6(2,4,5,6) = E_6 / A_2 \times A_1^2 \times \mathrm{T}^2$	2	6	$3\Lambda_1 + 6\Lambda_3$
${\sf E}_6(2,3,4,6)={\sf E}_6/{\sf D}_4{ imes}{ m T}^2$	2	3	$8(\Lambda_1 + \Lambda_5)$
$E_6(1, 2, 4, 5, 6) = E_6 / A_2^2 \times A_1 \times T$	1	3	7Λ ₃
$E_6(1, 2, 3, 4, 5) = E_6 / A_5 \times T$	1	2	$11\Lambda_6$
$E_6(1, 3, 4, 5, 6) = E_6 / A_1^2 \times T$	1	2	9Λ ₂
$E_6(2,3,4,5,6) = E_6 / D_5 imes T$	1	1	$12\Lambda_1$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Flag manifolds of group E_7

F = G/H	b ₂	d	σ^{J}
$E_7(0) = E_7 / T^7$	7	63	$2(\Lambda_1 + \cdots + \Lambda_7)$
$E_7(1) = E_7 / A_1 \times \mathrm{T}^6$	6	46	$3\Lambda_2 + 2(\Lambda_3 + \cdots + \Lambda_7)$
$E_7(4,6) = E_7 / A_1^2 imes T^5$	5	33	$2(\Lambda_1+\Lambda_2)+3(\Lambda_3+\Lambda_7)+4\Lambda_5$
$E_7(5,6) = E_7 / A_2 {\times} \mathrm{T}^5$	5	30	$2(\Lambda_1 + \cdots + \Lambda_4 + \Lambda_7)$
${\sf E}_7(1,3,5)={\sf E}_7/{\sf A}_1^3{ imes}{ m T}^4$	4	23	$4\Lambda_2+4\Lambda_4+3\Lambda_6+2\Lambda_7$
${\sf E}_7(1,3,7)={\sf E}_7/{\sf A}_1^3{ imes}{ m T}^4$	4	24	$4\Lambda_2+4\Lambda_4+2\Lambda_5+2\Lambda_6$
$E_7(3,5,6)=E_7/A_2 imesA_1 imes\mathrm{T}^4$	4	21	$2\Lambda_1+3\Lambda_2+5\Lambda_4+2\Lambda_7$
${\sf E_7(4,5,6)}={\sf E_7}/{\sf A_3}{ imes}{ m T}^4$	4	18	$2\Lambda_1+2\Lambda_2+5\Lambda_3+5\Lambda_7$
${\sf E}_7(1,2,3,4)={\sf E}_7/{\sf A}_4 imes{ m T}^3$	3	10	$6\Lambda_5 + 2\Lambda_6 + 6\Lambda_7$
$E_7(1,2,3,5) = E_7 / A_3 \times A_1 \times \mathrm{T^3}$	3	12	$6\Lambda_4 + 3\Lambda_6 + 2\Lambda_7$
$E_7(1,2,3,7) = E_7 / A_3 \times A_1 \times \mathrm{T}^3$	3	13	$6\Lambda_4 + 2\Lambda_5 + 2\Lambda_6$
${\sf E_7}(1,2,4,5)={\sf E_7}/{\sf A}_2^2{ imes}{ m T}^3$	3	13	$6\Lambda_3 + 4\Lambda_6 + 4\Lambda_7$
$E_7(1,2,4,6) = E_7 / A_2 \times A_1^2 \times \mathrm{T}^3$	3	14	$5\Lambda_3 + 4\Lambda_5 + 3\Lambda_7$
$E_7(1,3,5,7) = E_7/(A_1)^4 \times \mathrm{T}^3$	3	16	$4\Lambda_2+5\Lambda_4+3\Lambda_6$
${\sf E}_7(3,4,5,7)={\sf E}_7/{\sf D}_4{ imes}{ m T}^3$	3	9	$2\Lambda_1+8\Lambda_2+8\Lambda_6$

・ロン ・四と ・ヨン ・ヨン

F = G/H	b_2	d	σ^J
${\sf E_7}(1,2,3,4,5)={\sf E_7}/{\sf A_5}{ imes}{ m T}^2$	2	5	$7\Lambda_6 + 10\Lambda_7$
${\sf E_7}(1,2,3,4,7)={\sf E_7}/{\sf A_5}{ imes}{ m T}^2$	2	6	$10\Lambda_5 + 2\Lambda_6$
$E_7(1,2,3,4,6) = E_7 / A_4 imes A_1 imes \mathrm{T}^2$	2	6	$7\Lambda_5 + 6\Lambda_7$
$E_7(1,2,3,5,6) = E_7 / A_3 \times A_2 \times \mathrm{T^2}$	2	7	$7\Lambda_4 + 2\Lambda_7$
$E_7(1,2,3,5,7) = E_7 / A_3 \times A_1^2 \times \mathrm{T}^2$	2	8	$7\Lambda_4 + 3\Lambda_6$
$E_7(1,3,4,5,7) = E_7 / D_4 \times A_1 \times \mathrm{T^2}$	2	6	$9\Lambda_2 + 4\Lambda_6$
${\sf E_7}(1,2,5,6,7)={\sf E_7}/{\sf A_2}{ imes}{\sf A_1^2}{ imes}{ m T^2}$	2	8	$4\Lambda_3 + 5\Lambda_4$
${\sf E}_7(1,3,5,6,7)={\sf E}_7/{\sf A}_2{ imes}({\sf A}_1)^3{ imes}{ m T}^2$	2	9	$4\Lambda_2 + 6\Lambda_4$
${\sf E_7}(3,4,5,6,7)={\sf E_7}/{\sf D_5}{ imes}{ m T^2}$	2	4	$2\Lambda_1 + 12\Lambda_2$
$E_7(1, 2, 3, 4, 5, 6) = E_7 / A_6 imes T$	1	2	14A ₇
${\sf E_7(2,3,4,5,6,7)}={\sf E_7}/{\sf E_6}{ imes}{ m T}$	1	1	18A ₁
${\sf E_7}(1,3,4,5,6,7)={\sf E_7}/{\sf D_5}{ imes}{\sf A_1}{ imes}{ m T}$	1	2	13A ₂
${\sf E_7}(1,2,4,5,6,7)={\sf E_7}/{\sf A_4}{ imes}{\sf A_2}{ imes}{ m T}$	1	3	10A ₃
$E_7(1,2,3,5,6,7) = E_7 / A_3 \times A_2 \times A_1 \times \mathrm{T}$	1	4	8Λ ₄
$E_7(1,2,3,4,6,7) = E_7 / A_5 \times A_1 \times \mathrm{T}$	1	2	12A ₅
$E_7(1,2,3,4,5,7) = E_7 / D_6 imes { m T}$	1	2	$17\Lambda_6$

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Flag manifolds of group E_8

F = G/H	<i>b</i> ₂	d	σ^{J}
$E_8(0) = E_8 / T^8$	8	120	$2(\Lambda_1 + \cdots + \Lambda_8)$
$E_8(1) = E_8 / A_1 imes \mathrm{T}^7$	7	91	$3\Lambda_2 + 2(\Lambda_3 + \cdots + \Lambda_8)$
$E_8(1,2) = E_8 / A_2 \times T^6$	6	63	$4\Lambda_3 + 2(\Lambda_4 + \cdots + \Lambda_8)$
$E_8(1,3) = E_8 / A_1 imes A_1 imes T^6$	6	68	$4\Lambda_2 + 3\Lambda_4 + 2(\Lambda_5 + \cdots + \Lambda_8)$
$E_8(1,2,3) = E_8 / A_3 \times T^5$	5	41	$5\Lambda_4 + 2(\Lambda_5 + \cdots + \Lambda_8)$
$E_8(1,2,4) = E_8 /A_2 imes A_1 imes \mathrm{T}^5$	5	46	$5\Lambda_3 + 3\Lambda_5 + 2\Lambda_6 + 2\Lambda_7 + 2\Lambda_8$
$E_8(1,3,5) = E_8 /(A_1)^3 imes \mathrm{T}^5$	5	50	$4\Lambda_2 + 4\Lambda_4 + 3\Lambda_6 + 2\Lambda_7 + 3\Lambda_8$
$E_8(1,2,3,4) = E_8 / A_4 \times T^4$	4	25	$6\Lambda_5 + 2(\Lambda_6 + \Lambda_7 + \Lambda_8)$
$E_8(1,2,3,5) = E_8 / A_3 \times A_1 \times T^4$	4	29	$6\Lambda_4 + 3\Lambda_6 + 2\Lambda_7 + 3\Lambda_8$
$E_8(1,2,4,5) = E_8 / A_2 \times A_2 \times T^4$	4	30	$6\Lambda_3 + 4\Lambda_6 + 2\Lambda_7 + 4\Lambda_8$
$E_8(1,2,4,6) = E_8 / A_2 \times A_1^2 \times T^4$	4	33	$5\Lambda_3 + 4\Lambda_5 + 3\Lambda_7 + 2\Lambda_8$
$ E_8(1,3,5,7) = E_8 / (A_1)^4 \times T^4$	4	36	$2(\Lambda_2 + \Lambda_4 + \Lambda_6) + 3\Lambda_8$
${\sf E}_8(4,5,6,8)={\sf E}_8/{\sf D}_4{\times}{\rm T}^4$	4	24	$2(\Lambda_1 + \Lambda_2) + 8(\Lambda_3 + \Lambda_7)$

米部ト 米国ト 米国ト

F = G/H	<i>b</i> ₂	d	σ^{J}
$E_8(1, 2, 3, 4, 5) = E_8 / A_5 \times T^3$	3	14	$7\Lambda_6 + 2\Lambda_7 + 7\Lambda_8$
$E_8(1,2,3,4,6) = E_8 / A_4 \times A_1 \times \mathrm{T^3}$	3	17	$7\Lambda_5 + 3\Lambda_7 + 2\Lambda_8$
$E_8(1,2,3,5,6) = E_8 / A_3 \times A_2 \times \mathrm{T^3}$	3	18	$7\Lambda_4 + 4\Lambda_7 + 4\Lambda_8$
$E_8(1,2,3,5,7) = E_8 / A_3 \times A_1 \times A_1 \times \mathrm{T}^3$	3	20	$6\Lambda_4 + 2\Lambda_6 + 3\Lambda_8$
$E_8(1,2,4,5,7) = E_8 / A_2 {\times} A_2 {\times} A_1 {\times} \mathrm{T}^3$	3	21	$6\Lambda_3+5\Lambda_6+4\Lambda_8$
${\sf E}_8(1,2,4,6,8)={\sf E}_8/{\sf A}_2{ imes}({\sf A}_1)^3{ imes}{ m T}^3$	3	23	$5\Lambda_3 + 5\Lambda_5 + 3\Lambda_7$
$E_8(1,4,5,6,8) = E_8 / D_4 \times A_1 \times \mathrm{T^3}$	3	16	$3\Lambda_2 + 8\Lambda_3 + 8\Lambda_7$
${\sf E_8}(4,5,6,7,8)={\sf E_8}/{\sf D_5}{ imes}{ m T^3}$	3	13	$2(\Lambda_1 + \Lambda_2 + \Lambda_3)$
${\sf E}_8(1,2,3,4,5,6)={\sf E}_8/{\sf A}_6{ imes}{ m T}^2$	2	7	$8\Lambda_7 + 12\Lambda_8$
$E_8(1,2,3,4,5,7) = E_8 / A_5 \times A_1 \times \mathrm{T^2}$	2	9	$8\Lambda_6+7\Lambda_8$
$E_8(1,2,3,4,6,7)=E_8/A_4\timesA_2\times\mathrm{T}^2$	2	10	$8\Lambda_5 + 2\Lambda_8$
${\sf E}_8(1,2,3,5,6,7)={\sf E}_8/{\sf A}_3{\times}{\sf A}_3{\times}{\rm T}^2$	2	10	$8\Lambda_4 + 5\Lambda_8$
$E_8(1,2,3,4,6,8) = E_8 / A_4 \times A_1 \times A_1 \times T^2$	2	11	$8\Lambda_5 + 3\Lambda_7$

Dmitri Alekseevsky Institute for Information Transmission Pr Spinor structures on compact homogeneous manifolds

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

${\sf E}_8(1,2,4,5,6,8)={\sf E}_8/{\sf D}_4 imes{\sf A}_2{ imes}{ m T}^2$	2	9	$10\Lambda_3 + 8\Lambda_7$
$E_8(1,4,5,6,7,8) = E_8 / D_5 \times A_1 \times \mathrm{T}^2$	2	8	$3\Lambda_2 + 12\Lambda_3$
$E_8(2,3,4,5,6,8) = E_8 / D_6 {\times} \mathrm{T^2}$	2	6	$12\Lambda_1+17\Lambda_7$
$E_8(1,2,3,6,7,8) = E_8 / A_3 \times A_2 \times A_1 \times \mathrm{T}^2$	2	12	$5\Lambda_4+5\Lambda_5$
$E_8(1,2,4,6,7,8) = E_8 / A_2 \times A_2 \times A_1 \times A_1 \times \mathrm{T}^2$	2	14	$5\Lambda_3+6\Lambda_5$
$E_8(3,4,5,6,7,8) = E_8 / E_6 {\times} \mathrm{T^2}$	2	6	$2\Lambda_1 + 18\Lambda_2$
$E_8(1, 2, 3, 4, 5, 6, 7) = E_8 / A_7 imes T$	1	3	17Λ ₈
${\sf E_8(2,3,4,5,6,7,8)}={\sf E_8}/{\sf E_7}{ imes}{ m T}$	1	2	29A ₁
$E_8(1,3,4,5,6,7,8) = E_8 / E_6 \times A_1 \times \mathrm{T}$	1	3	19A ₂
${\sf E}_8(1,2,4,5,6,7,8)={\sf E}_8/{\sf D}_5 imes{\sf A}_2{ imes}{ m T}$	1	4	$14\Lambda_3$
${\sf E}_8(1,2,3,5,6,7,8)={\sf E}_8/{\sf A}_4 imes{\sf A}_3 imes{ m T}$	1	5	$11\Lambda_4$
$E_8(1,2,3,4,6,7,8) = E_8 / A_4 \times A_2 \times A_1 \times \mathrm{T}$	1	6	9Λ ₅
$E_8(1,2,3,4,5,7,8) = E_8 / A_6 \times A_1 \times \mathrm{T}$	1	4	$13\Lambda_6$
$E_8(1,2,3,4,5,6,8)=E_8/D_7{\times}\mathrm{T}$	1	2	23A ₇

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Let $F = G/H = G/H' \cdot T^k$ be a flag manifold with reductive decomposition $\mathfrak{g} = (\mathfrak{h}' + i\mathfrak{t}) + \mathfrak{m}$ and $T^k = T_0^\ell \times T_1^{2m}$ a direct product decomposition. Then $\pi : M = G/L = G/H' \cdot T^\ell \to F = G/H$ is a principal T_1^{2m} -bundle. The manifold M = G/L with reductive decomposition

$$\mathfrak{g} = \mathfrak{l} + \mathfrak{p} = (\mathfrak{h}' + i\mathfrak{t}_0) + (i\mathfrak{t}_1 + \mathfrak{m})$$

is called a C-space. An invariant complex structure J_F defined by $J_{\mathfrak{m}}$ is extended to an invariant complex structure J_M defined by $J_{\mathfrak{p}} = J_{i\mathfrak{t}_1} \oplus J_{\mathfrak{m}}$. The Chern form $\gamma_{J_M} = \pi^* \gamma_{J_F}$. Theorem The C-space M = G/L is spin if \mathfrak{t}_1^* contains all black fundamental weights from Π_B with odd Koszul numbers.