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Abstract. Given a tangent vector field on a finite dimensional real smooth
manifold, its degree (also known as characteristic or rotation) is, in some sense,

an algebraic count of its zeros and gives useful information for its associated
ordinary differential equation. When, in particular, the ambient manifold is
an open subset U of R

m, a tangent vector field v on U can be identified with
a map ~v : U → R

m, and its degree, when defined, coincides with the Brouwer

degree with respect to zero of the corresponding map ~v.
As well known, the Brouwer degree in R

m is uniquely determined by three
axioms, called Normalization, Additivity and Homotopy Invariance. Here we
shall provide a simple proof that in the context of differentiable manifolds the
degree of a tangent vector field is uniquely determined by suitably adapted
versions of the above three axioms.

1. Introduction

The degree of a tangent vector field on a differentiable manifold is a very well
known tool of nonlinear analysis used, in particular, in the theory of ordinary
differential equations and dynamical systems. This notion is more often known
with the names of rotation or of (Euler) characteristic of a vector field (see e.g.
[2, 3, 6, 7, 8, 10]). Here, we depart from the established tradition by choosing
the name “degree” because of the following consideration: In the case when the
ambient manifold is an open subset U of R

m, there is a natural identification of
a vector field v on U with a map ~v : U → R

m, and the degree deg(v, U) of v on
U , when defined, is just the Brouwer degree degB(~v, U, 0) of ~v on U with respect
to zero. Thus the degree of a vector field can be seen as a generalization to the
context of differentiable manifolds of the notion of Brouwer degree in R

m. As well
known, this extension of degB does not require the orientability of the underlying
manifold, and is therefore different from the classical extension of degB for maps
acting between oriented differentiable manifolds.

A well known result of Amann and Weiss [1] (see also [4]) asserts that the Brouwer
degree in R

m is uniquely determined by three axioms: Normalization, Additivity
and Homotopy Invariance. A similar statement is true (e.g. as a consequence of
a result of Staecker [9]) for the degree of maps between oriented differentiable
manifolds of the same dimension. In this paper, that is strictly related in both
spirit and demonstrative techniques to [5], we shall prove that suitably adapted
versions of the above axioms are sufficient to uniquely determine the degree of a
tangent vector field on a (not necessarily orientable) differentiable manifold. We
will not deal with the problem of existence of such a degree, for which we refer to
[2, 3, 6, 7, 8].

2. Preliminaries

Given two sets X and Y , by a local map with source X and target Y we mean a
triple g = (X,Y,Γ), where Γ, the graph of g, is a subset of X ×Y such that for any
x ∈ X there exists at most one y ∈ Y with (x, y) ∈ Γ. The domain D(g) of g is the
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set of all x ∈ X for which there exists y = g(x) ∈ Y such that (x, y) ∈ Γ; namely,
D(g) = π1(Γ), where π1 denotes the projection of X × Y onto the first factor. The
restriction of a local map g = (X,Y,Γ) to a subset C of X is the triple

g|C =
(

C, Y,Γ ∩ (C × Y )
)

with domain C ∩ D(g).
Incidentally, we point out that sets and local maps (with the obvious composi-

tion) constitute a category. Although the notation g : X → Y would be acceptable
in the context of category theory, it will be reserved for the case when D(g) = X.

Whenever it makes sense (e.g. when source and target spaces are differentiable
manifolds), local maps are tacitly assumed to be continuous.

Throughout the paper all the differentiable manifolds will be assumed to be fi-
nite dimensional, smooth, real, Hausdorff and second countable. Thus, they can be
embedded in some R

k. Moreover, M and N will always denote arbitrary differen-
tiable manifolds. Given any x ∈M , TxM will denote the tangent space of M at x.
Furthermore TM will be the tangent bundle of M , namely

TM =
{

(x, v) : x ∈M,v ∈ TxM
}

.

The map π : TM → M given by π(x, v) = x will be the bundle projection of TM .
It will be also convenient, given any x ∈ M , to denote by 0x the zero element of
TxM .

Let f : M → N be smooth. Then, it is defined a map Tf : TM → TN that
to each (x, v) ∈ TM associates

(

f(x), dfx(v)
)

∈ TN . Here dfx : TxM → Tf(x)N

denotes the differential of f at x. Notice that if f : M → N is a diffeomorphism,
then so is Tf : TM → TN and one has T (f−1) = (Tf)−1.

By a local tangent vector field on M we mean a local map v having M as source
and TM as target, with the property that the composition π ◦ v is the identity on
D(v). Therefore, given a local tangent vector field v, for all x ∈ D(v) there exists
~v(x) ∈ TxM such that v(x) =

(

x,~v(x)
)

.
Let V andW be differentiable manifolds and let ψ : V →W be a diffeomorphism.

Recall that two tangent vector fields v : V → TV and w : W → TW correspond
under ψ if the following diagram commutes:

TV
Tψ

−−−−→ TW

v

x





x





w

V
ψ

−−−−→ W

Let V be an open subset of M and suppose that v is a local tangent vector
field on M with V ⊆ D(v). We say that v is identity-like on V if there exists a
diffeomorphism ψ of V onto R

m such that v|V and the identity in R
m correspond

under ψ. Notice that any diffeomorphism ψ from an open subset V of M onto R
m

induces an identity-like vector field on V .
Let v be a local tangent vector field on M and let p ∈ M be a zero of v; that

is, ~v(p) = 0p. Consider a diffeomorphism ϕ of a neighborhood U ⊆ M of p onto
R
m and let w : R

m → TR
m be the tangent vector field on R

m that corresponds
to v under ϕ. Since TR

m = R
m × R

m, then the map ~w associated to w sends
R
m into itself. Assuming that v is smooth about p, the function ~w is Fréchet

differentiable at q = ϕ(p). Denote by D~w(q) : R
m → R

m its Fréchet derivative and
let v′(p) : TpM → TpM be the endomorphism of TpM which makes the following



AXIOMS FOR THE DEGREE OF A TANGENT VECTOR FIELD. . . 3

diagram commutative:

(2.1)

TpM
v′(p)

−−−−→ TpM

dϕp





y





y

dϕp

R
m D~w(q)

−−−−→ R
m

Using the fact that p is a zero of v, it is not difficult to prove that v′(p) does not
depend on the choice of ϕ. This endomorphism of TpM is called the linearization
of v at p. Observe that when M = R

m, the linearization v′(p) of a tangent vector
field v at a zero p is just the Fréchet derivative D~v(p) at p of the map ~v associated
to v.

The following fact will play an important rôle in the proof of our main result.

Remark 2.1. Let v, w, p and q be as above. Then, the commutativity of diagram
(2.1) implies

det v′(p) = detD~w(q).

3. Degree of a tangent vector field

Given an open subset U of M and a local tangent vector field v on M , the pair
(v, U) is said to be admissible on U if U ⊆ D(v) and the set

Z(v, U) :=
{

x ∈ U : ~v(x) = 0x
}

of the zeros of v in U is compact. In particular, (v, U) is admissible if the closure
U of U is a compact subset of D(v) and ~v is nonzero on the boundary ∂U of U .

Given an open subset U of M and a (continuous) local map H with source
M × [0, 1] and target TM , we say that H is a homotopy of tangent vector fields on
U if U × [0, 1] ⊆ D(H), and if H(·, λ) is a local tangent vector field for all λ ∈ [0, 1].
If, in addition, the set

{

(x, λ) ∈ U × [0, 1] : ~H(x, λ) = 0x
}

is compact, the homotopy H is said to be admissible. Thus, if U is compact and
U×[0, 1] ⊆ D(H), a sufficient condition forH to be admissible on U is the following:

~H(x, λ) 6= 0x, ∀ (x, λ) ∈ ∂U × [0, 1],

which, by abuse of terminology, will be referred to as “H is nonzero on ∂U”.

We shall show that there exists at most one function that to any admissible
pair (v, U) assigns a real number deg(v, U), called the degree (or characteristic
or rotation) of the tangent vector field v on U , which satisfies the following three
properties that will be regarded as axioms. Moreover, this function (assuming its
existence) must be integer valued.

Normalization. Let v be identity-like on an open subset U of M . Then,

deg(v, U) = 1.

Additivity. Given an admissible pair (v, U), if U1 and U2 are two disjoint open
subsets of U such that Z(v, U) ⊆ U1 ∪ U2, then

deg(v, U) = deg(v|U1
, U1) + deg(v|U2

, U2).

Homotopy Invariance. If H is an admissible homotopy on U , then

deg
(

H(·, 0), U
)

= deg
(

H(·, 1), U
)

.

For now on we shall assume the existence of a function deg defined on the family
of all admissible pairs and satisfying the above three properties, that we shall regard
as axioms.
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Remark 3.1. The pair (v, ∅) is admissible. This includes the case when D(v) is
the empty set (D(v) = ∅ is coherent with the notion of local tangent vector field).
A simple application of the Additivity Property shows that deg(v|∅, ∅) = 0 and
deg(v, ∅) = 0.

As a consequence of the Additivity Property and Remark 3.1, one easily gets the
following (often neglected) property, which shows that the degree of an admissible
pair (v, U) does not depend on the behavior of v outside U . To prove it, take
U1 = U and U2 = ∅ in the Additivity Property.

Localization. If (v, U) is admissible, then deg(v, U) = deg(v|U , U).

A further important property of the degree of a tangent vector field is the fol-
lowing.

Excision. Given an admissible pair (v, U) and an open subset U1 of U containing

Z(v, U), one has deg(v, U) = deg(v, U1).

To prove this property observe that by Additivity, Remark 3.1, and Localization,
one gets

deg(v, U) = deg(v|U1
, U1) + deg(v|∅, ∅) = deg(v, U1).

As a consequence, we finally obtain the following property.

Solution. If deg(v, U) 6= 0, then Z(v, U) 6= ∅.

To obtain it, observe that if Z(v, U) = ∅, taking U1 = ∅, we get

deg(v, U) = deg(v, ∅) = 0.

4. The degree for linear vector fields

By L(Rm) we shall mean the normed space of linear endomorphisms of R
m, and

by GL(Rm) we shall distinguish the group of invertible ones. In this section we shall
consider linear vector fields on R

m. Namely, vector fields L : R
m → TR

m with the

property that ~L ∈ L(Rm). Notice that (L,Rm), with L a linear vector field, is an

admissible pair if and only if ~L ∈ GL(Rm).

The following consequence of the axioms asserts that the degree of an admissible

pair (L,Rm), with ~L ∈ GL(Rm), is either 1 or −1.

Lemma 4.1. Let ~L be a nonsingular linear operator in R
m. Then

deg(L,Rm) = sign det ~L.

Proof. It is well known (see e.g. [11]) that GL(Rm) has exactly two connected
components. Equivalently, the following two subsets of L(Rm) are connected:

GL+(Rm) = {A ∈ L(Rm) : detA > 0},

GL−(Rm) = {A ∈ L(Rm) : detA < 0}.

Since the connected sets GL+(Rm) and GL−(Rm) are open in L(Rm), they are
actually path connected. Consequently, given a linear tangent vector field L on R

m

with ~L ∈ GL(Rm), the Homotopy Invariance implies that deg(L,Rm) depends only

on the component of GL(Rm) containing ~L. Therefore, if ~L ∈ GL+(Rm), one has

deg(L,Rm) = deg(I,Rm), where ~I is the identity on R
m. Thus, by Normalization,

we get

(4.1) deg(L,Rm) = 1.
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It remains to prove that deg(L,Rm) = −1 when ~L ∈ GL−(Rm). For this purpose
consider the vector field f : R

m → TR
m determined by

~f(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, |ξm| − 1).

Notice that deg(f,Rm) is well defined, as ~f−1(0) is compact. Observe also that
deg(f,Rm) is zero, because f is admissibly homotopic in R

m to the never-vanishing
vector field g : R

m → TR
m given by ~g(ξ1, . . . , ξm) = (ξ1, . . . , |ξm| + 1).

Let U− and U+ denote, respectively, the open half-spaces of the points in R
m

with negative and positive last coordinate. Consider the two solutions

x− = (0, . . . , 0,−1) and x+ = (0, . . . , 0, 1)

of the equation ~f(x) = 0 and observe that x− ∈ U−, x+ ∈ U+.
By the Additivity Property (and taking into account the Localization) we get

(4.2) 0 = deg(f,Rm) = deg(f, U−) + deg(f, U+).

Now, observe that f in U+ coincides with the vector field f+ : R
m → TR

m deter-
mined by

~f+(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, ξm − 1),

that is admissibly homotopic (in R
m) to the tangent vector field I : R

m → TR
m,

given by I(x) = (x, x). Therefore, because of the properties of Localization, Exci-
sion, Homotopy Invariance and Normalization, one has

deg(f, U+) = deg(f+, U+) = deg(f+,R
m) = deg(I,Rm) = 1,

which, by (4.2), implies

(4.3) deg(f, U−) = −1.

Notice that f in U− coincides with the vector field f− : R
m → TR

m defined by

~f−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm − 1),

which is admissibly homotopic (in R
m) to the linear vector field L− defined by

~L− ∈ GL−(Rm) with

~L−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm).

Thus, by Homotopy Invariance, Excision, Localization and formula (4.3)

deg(L−,R
m) = deg(f−,R

m) = deg(f−, U−) = deg(f, U−) = −1.

Hence, GL−(Rm) being path connected, we finally get deg(L,Rm) = −1 for all

linear tangent vector fields L on R
m such that ~L ∈ GL−(Rm), and the proof is

complete. �

We conclude this section with a consequence as well as an extension of Lemma
4.1. The Euclidean norm of an element x ∈ R

m will be denoted by |x|.

Lemma 4.2. Let v be a local vector field on R
m and let U ⊆ D(v) be open and such

that the equation ~v(x) = 0 has a unique solution x0 ∈ U . If ~v is smooth about x0

and the linearization v′(x0) of v at x0 is invertible, then deg(v, U) = sign det v′(x0).

Proof. Since ~v is Fréchet differentiable at x0 and D~v(x0) = v′(x0), we have

~v(x) = v′(x0)(x− x0) + |x− x0|ǫ(x− x0), ∀x ∈ U,

where ǫ(h) is defined for h ∈ −x0 + U , is continuous, and such that ǫ(0) = 0.
Consider the vector field g : R

m → TR
m determined by ~g(x) = v′(x0)(x− x0), and

let H be the homotopy on U , joining g with v, defined by

~H(x, λ) = v′(x0)(x− x0) + λ|x− x0|ǫ(x− x0).
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For all x in U we have

| ~H(x, λ)| ≥
(

m− |ǫ(x− x0)|
)

|x− x0|,

where m = inf{|v′(x0)y| : |y| = 1} is positive, v′(x0) being invertible. This shows

that there exists a neighborhood V of x0 such that
(

V × [0, 1]
)

∩ ~H−1(0) coincides
with the compact set {x0} × [0, 1]. Thus, by Excision and Homotopy Invariance,

(4.4) deg(v, U) = deg(v, V ) = deg(g, V ).

Let L : R
m → TR

m be the linear tangent vector field given by ξ 7→
(

ξ, v′(x0)ξ
)

.
Clearly, L is admissibly homotopic to g in R

m. By Excision, Homotopy Invariance
and Lemma 4.1, we get

(4.5) deg(g, V ) = deg(g,Rm) = deg(L,Rm) = sign det ~L.

The assertion now follows from (4.4), (4.5) and the fact that ~L coincides with
v′(x0). �

5. The uniqueness result

Given a local tangent vector field v on M , a zero p of v is called nondegenerate if
v is smooth about p and its linearization v′(p) at p is an automorphism of TpM . It
is known that this is equivalent to the assumption that v is transversal at p to the
zero section M0 =

{

(x, 0x) ∈ TM : x ∈M
}

of TM (for the theory of transversality
see e.g. [6, 7]). We recall that a nondegenerate zero is, in particular, an isolated
zero.

Let v be a local tangent vector field on M . A pair (v, U) will be called nondegen-
erate if U is a relatively compact open subset of M , v is smooth on a neighborhood
of the closure U of U , is nonzero on ∂U , and all its zeros in U are nondegenerate.
Note that, in this case, (v, U) is an admissible pair and Z(v, U) is a discrete set,
therefore finite, being closed in the compact set U .

The following result, which is an easy consequence of transversality theory, shows
that the computation of the degree of any admissible pair can be reduced to that
of a nondegenerate pair.

Lemma 5.1. Let v be a local tangent vector field on M and let (v, U) be admissible.
Let V be a relatively compact open subset of M containing Z(v, U) and such that
V ⊆ U . Then, there exists a local tangent vector field w on M which is admissibly
homotopic to v in V and such that (w, V ) is a nondegenerate pair. Consequently,
deg(v, U) = deg(w, V ).

Proof. Without loss of generality we can assume M ⊆ R
k. Let

δ = min
x∈∂V

∣

∣~v(x)
∣

∣ > 0.

From the Transversality Theorem (see e.g. [6, 7]) it follows that one can find a
smooth tangent vector field w : U → TU ⊆ TM that is transversal to the zero
section M0 of TM and such that

max
x∈∂V

∣

∣~v(x) − ~w(x)
∣

∣ < δ.

Since M0 is closed in TM , the set Z(w, V ) = w−1(M0) ∩ V is a compact subset
of V . Thus, this inequality shows that (w, V ) is admissible. Moreover, at any zero
x ∈ Z(w,U) = w−1(M0) ∩U the endomorphism w′(x) : TxM → TxM is invertible.
This implies that (w, V ) is nondegenerate.

The conclusion follows by observing that the homotopy H on U of tangent vector
fields given by

~H(x, λ) = λ~v(x) + (1 − λ)~w(x)
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is nonzero on ∂V × [0, 1] and therefore it is admissible on V . The last assertion
follows from Excision and Homotopy Invariance. �

We will now show that the properties of Normalization, Additivity and Homo-
topy Invariance imply a formula for the computation of the degree of a tangent
vector field that is valid for any nondegenerate pair. Therefore, Lemma 5.1 and
the properties of Excision and Homotopy Invariance imply the existence of at most
one real function on the family of admissible pairs that satisfies the axioms for the
degree of a tangent vector field.

Theorem 5.2 (Uniqueness of the degree). Let deg be a real function on the fam-
ily of admissible pairs satisfying the properties of Normalization, Additivity and
Homotopy Invariance. If (v, U) is a nondegenerate pair, then

deg(v, U) =
∑

x∈Z(v,U)

sign det v′(x).

Consequently, there exists at most one function on the family of admissible pairs
satisfying the axioms for the degree of a tangent vector field, and this function,
assuming its existence, must be integer-valued.

Proof. Consider first the case M = R
m. Let (v, U) be a nondegenerate pair in R

m

and, for any x ∈ Z(v, U), let Vx be an isolating neighborhood of x. We may assume
that the neighborhoods Vx’s are pairwise disjoint. The Additivity and Localization
properties together with Lemma 4.2 yield

deg(v, U) =
∑

x∈Z(v,U)

deg(v, Vx) =
∑

x∈Z(v,U)

sign det v′(x).

Now the uniqueness of the degree of a tangent vector field on R
m follows immedi-

ately from Lemma 5.1.
Let us now consider the general case and denote by m the dimension of M . Let

W be any open subset of M which is diffeomorphic to the whole space R
m and

let ψ : W → R
m be any diffeomorphism onto R

m. Denote by U the set of all pairs
(v, U) which are admissible and such that U ⊆W . We claim that for any (v, U) ∈ U
one necessarily has

deg(v, U) = deg
(

Tψ ◦ v ◦ ψ−1, ψ(U)
)

.

To show this, denote by V the set of admissible pairs (w, V ) with V ⊆ R
m and

consider the map α : U → V defined by

α(v, U) =
(

Tψ ◦ v ◦ ψ−1, ψ(U)
)

.

Our claim means that the restriction deg |U of deg to U coincides with deg ◦α.
Observe that α is invertible and

α−1(w, V ) =
(

Tψ−1 ◦ w ◦ ψ,ψ−1(V )
)

,

and if two pairs (v, U) ∈ U and (w, V ) ∈ V correspond under α, then the sets

Z(v, U) and Z(w, V ) correspond under ψ. It is also evident that the function
deg ◦α−1 : V → R satisfies the axioms. Thus, by the first part of the proof, it
coincides with the restriction deg |V , and this implies our as claim.

Let now (v, U) be a given nondegenerate pair in M . Let Z(v, U) = {x1, . . . , xn}
and let W1, . . . ,Wn be n pairwise disjoint open subsets of U such that xj ∈ Wj ,
for j = 1, . . . , n. Since any point of M has a fundamental system of neighborhoods
which are diffeomorphic to the whole space R

m, we may assume that each Wj is
diffeomorphic to R

m under a diffeomorphism ψj . The Additivity Property yields

deg(v, U) =

n
∑

j=1

deg(v,Wj),



8 M. FURI, M.P. PERA, AND M. SPADINI

and, by the above claim, we get
n

∑

j=1

deg(v,Wj) =
n

∑

j=1

deg
(

Tψj ◦ v ◦ ψ
−1
j , ψj(Wj)

)

.

By Lemma 4.2, and Remark 2.1 one has

deg
(

Tψj ◦ v ◦ ψ
−1
j , ψj(Wj)

)

= sign det
(

Tψj ◦ v ◦ ψj
)′

(

ψj(xj)
)

= sign det v′(xj),

for j = 1, . . . , n. Thus

deg(v, U) =

n
∑

j=1

sign det v′(xj).

As in the case when M = R
m, the uniqueness of the degree of a tangent vector

field is now a consequence of Lemma 5.1. �
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