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THE FIXED POINT INDEX OF THE POINCARÉ

TRANSLATION OPERATOR ON DIFFERENTIABLE

MANIFOLDS

MASSIMO FURI, MARIA PATRIZIA PERA, AND MARCO SPADINI

1. Introduction

The fixed point index of the Poincaré translation operator associated to an or-
dinary differential equation is a very useful tool for establishing the existence of
periodic solutions.

In this chapter we focus on ODEs on differentiable manifolds embedded in Eu-
clidean spaces. Our purpose is twofold: on the one hand we aim to provide a short
and accessible introduction to some topological tools (such as the Topological De-
gree, the Degree of a tangent vector field and the Fixed Point Index) that are useful
in Nonlinear Analysis; on the other hand we offer a unifying approach to several
results about the fixed point index of the Poincaré translation operator that were
previously scattered among a number of publications.

Our main concern will be a formula for the computation of the fixed point index
of the flow operator induced on a manifold by a first order autonomous ordinary
differential equation. Other formulas for the fixed point index of the translation op-
erator associated with non-autonomous equations will be deduced as consequences.
We emphasize that other results, unrelated to our approach, but still involving
the fixed point index of the Poincaré translation operator have been successfully
exploited, for instance, by Srzednicki (see e.g. [Srz2, Srz3]).

The chapter is organized as follows. In Section 2 we recall first some elements of
calculus on finite dimensional manifolds. Then, in this context, we introduce the
notions of Fixed Point Index of a map and of Degree of a tangent vector field. In
particular, we show a simple axiomatic approach to the fixed point index theory
for maps on a manifold based on just three axioms (see Theorem 2.23 below). In
the same section we discuss some basics regarding first order differential equations
on differentiable manifolds.

In Section 3, we consider the flow on a manifold M induced by an autonomous
differential equation of the form

ẋ = g(x),

where g is a vector field tangent to M . Then, in the spirit of an earlier result by
Krasnosel’skii [Kra], we provide a relation, valid for sufficiently short times, between
the degree of a tangent vector field and the fixed point index of its associated flow.
From this result, we deduce a formula (see Theorem 3.8 below) for the computation,
in terms of the degree of g, of the fixed point index of the flow operator associated
with the above equation. This formula is valid whenever the fixed point index of
the flow is well defined (and not merely for “sufficiently short” times). The idea
behind the proof stems, besides the quoted result by Krasnosel’skii, from more
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recent results by Capietto-Mawhin-Zanolin ([Maw, CaMaZa]). Later, in the same
section, we consider non-autonomous equations and derive some other formulas
for the fixed point index of the (Poincaré) T -translation operator (T > 0 given)
associated with the equations

ẋ = λf(t, x), ẋ = g(x) + λf(t, x),

for λ > 0 sufficiently small, where g and f are tangent vector fields on M , and f is
T -periodic. Similar results can be deduced for an equation of the form

ẋ = a(t)h(x) + λf(t, x).

where h is a tangent vector field on M , and a : R → R is a T -periodic function
with nonzero average. However, as far as we know, there is no general result in
the literature encompassing all the different situations reflected by the above three
equations.

Section 4, finally, collects a number of simple consequences of the formulas ob-
tained in the previous section. Particular emphasis is given to results describing
the structure of pairs (λ, p), where p is an initial point of a T -periodic solution to
the equations considered in Section 3. As an illustrative application, we prove a
continuation result for the T -periodic solutions of the equation ẋ = f(t, x) when f
is a T -periodic tangent vector field.

It should be remarked that the selection of applications collected in this chapter
is very restrictive and made with the sole purpose of highlighting the role of the fixed
point index of the translation operator. In fact, in order to remain within reasonable
space limits, the most general situations are not sought for, and many interesting
applications have been omitted. Among these, we mention multiplicity results for
T -periodic solutions, guiding-functions-like and continuation-like existence results.
Moreover, since a second order equation on a manifold can be seen as a particular
first order equation on the tangent bundle (see e.g. [Fur]), a number of results could
also be deduced for second order ODEs.

2. Notation and Preliminaries

2.1. Tangent cones and tangent spaces to subsets of R
k. In this subsection

we introduce the notions of tangent cones and tangent spaces to arbitrary subsets of
R

k. We also recall the concept of Cr map, r ∈ N∪{∞}, between arbitrary subsets of
Euclidean spaces and discuss the notion of Fréchet derivative in this context. These
concepts, which are well-known for maps defined on open sets, need an extended
definition in the general case (see e.g. [Mil]). Roughly speaking, the extension of
the notion of Cr map is obtained by forcing down the hereditary property of Cr

maps on open sets, i.e., by requiring that the restriction of a Cr map to any subset
of its domain is still a Cr map. The following definition also preserves the local
property of Cr maps, i.e., any map which is locally Cr is Cr.

Definition 2.1. A map f : X → Y , from a subset of R
k into a subset of R

s, is said
to be Cr, r ∈ N∪ {∞}, if for any p ∈ X there exists a Cr map g : U → R

s, defined
on an open neighborhood of p, such that f(x) = g(x) for all x ∈ U ∩X .

In other words, f : X → Y is Cr if it can be locally extended as a map into
R

s (and not merely into Y ) to a Cr map defined on an open subset of R
k. To

understand why one must seek the extension of f as a map into R
s, observe that
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the identity i : [0, 1] → [0, 1] is not the restriction of any C1 function g : U → [0, 1]
defined on an open neighborhood U of [0, 1].

Remark 2.2. Using the well-known fact that any family of open subsets of R
k

admits a subordinate smooth partition of unity, it is easy to show that any Cr map
on X ⊆ R

k is actually the restriction of a Cr map defined on an open neighborhood
of X .

As a straightforward consequence of the definition one gets that, given X ⊆ R
k,

the identity i : X → X is a smooth map. Moreover, we observe that the composition
of Cr maps between arbitrary Euclidean sets is again a Cr map, since the same is
true for maps defined on open sets. Thus, one can view Euclidean sets as objects
of a category, whose morphisms are Cr maps.

Definition 2.3. A Cr map f : X → Y , from a subset X of R
k into a subset Y of

R
s, is said to be a Cr-diffeomorphism if it is bijective and f−1 is Cr. In this case

X and Y are said to be Cr-diffeomorphic.

A straightforward consequence of the definition of diffeomorphism (and of the
hereditary property of Cr maps) is that the restriction of a Cr-diffeomorphism is
again a Cr-diffeomorphism onto its image.

Remark 2.4. An example of a Cr-diffeomorphism is given by the graph map
associated with a Cr map f : X → R

s defined on an arbitrary subset of R
k. In fact,

let

Gf =
{
(x, y) ∈ R

k × R
s : x ∈ X, y = f(x)

}

denote the graph of f . The map f̂ : X → Gf , defined by f̂(x) =
(
x, f(x)

)
, is

clearly Cr and bijective. Observe now that f̂−1 is just the restriction to Gf of the
projection (x, y) 7→ x of R

k × R
s onto the first factor, which is a linear map (and,

consequently, smooth). This proves that the graph of a Cr map is Cr-diffeomorphic
to its domain.

We are ready to give the definitions of tangent vector, tangent cone, and tangent
space to an arbitrary subset X ⊆ R

k at a point p ∈ X .
In the sequel | · | denotes the canonical Euclidean norm on R

k.

Definition 2.5. Let X be a subset of R
k and take p ∈ X . A unit vector v ∈

Sk−1 = {x ∈ R
k : |x| = 1} is said to be tangent to X at p if there exists a sequence

{pn} in X \ {p} such that pn → p and (pn − p)/|pn − p| → v.
If p is isolated in X , then the tangent cone of X at p, CpX , is just the trivial

subspace {0} of R
k. If p is an accumulation point of X , then CpX is the cone

generated by the set of tangent unit vectors, i.e.,

CpX =
{
λv : λ ≥ 0, v ∈ Sk−1 is tangent to X at p}.

The tangent space of X at p, TpX , is the vector subspace of R
k spanned by CpX .

It is fairly easy to check that the above definition of tangent cone is equivalent
to the classical one introduced by Bouligand in [Bou] (see also [Sev, p. 149], for a
precursor of this notion).

Observe that, because of the compactness of the unit sphere Sk−1, if p is an
accumulation point of X , there exists at least one unit vector tangent to X at p.
Moreover, the notion of tangent cone is local; that is, if two sets X and Y coincide
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in a neighborhood of a common point p, they have the same tangent cone. Another
important property is the translation invariance: CpX = Cx+p(x+X), ∀x ∈ R

k.
The following result is useful for the computation of the tangent cone to a set

defined by inequalities. The easy proof, based on the Inverse Function Theorem, is
left to the reader.

Theorem 2.6. Let f : U → R
s be a C1 map defined on an open subset of R

k. Let
Y ⊆ R

s and p ∈ f−1(Y ). Assume that p is a regular point of f ; i.e., the derivative
f ′(p) : R

k → R
s of f at p is surjective. Then

Cp

(
f−1(Y )

)
=

{
v ∈ R

k : f ′(p)v ∈ Cf(p)Y
}

= f ′(p)−1(Cf(p)Y ).

Given a C1 map f : X → Y and a point p ∈ X , we shall define a linear operator
f ′(p) from TpX into Tf(p)Y , called the derivative of f at p, which maps the tangent
cone of X at p into the tangent cone of Y at f(p). This derivative will turn out to
satisfy the usual functorial properties of the Fréchet derivative. To achieve this, we
need the following three lemmas. The first one extends the well-known fact that
the Fréchet derivative can be computed as a directional derivative. Its elementary
proof is left to the reader.

Lemma 2.7. Let f : U → R
s be defined on an open subset of R

k and differentiable
at p ∈ U . If v ∈ Sk−1 is a unit vector, then

f ′(p)v = lim
n→∞

f(pn) − f(p)

|pn − p|
,

where {pn} is any sequence in U \ {p} such that pn → p and (pn − p)/|pn − p| → v.

Lemma 2.8. Let f : U → R
s be defined on an open subset of R

k and differentiable
at p ∈ U . If f maps a subset X of U containing p into a subset Y of R

s, then
f ′(p) maps CpX into Cf(p)Y . Consequently, because of the linearity of f ′(p), it
also maps TpX into Tf(p)Y .

Proof. It is sufficient to show that if v ∈ Sk−1 is tangent to X at p, then f ′(p)v is
tangent to Y at f(p). For this, let {pn} be a sequence in X \ {p} such that pn → p
and (pn−p)/|pn−p| → v. By Lemma 2.7, we have (f(pn)−f(p))/|pn−p| → f ′(p)v.
If f ′(p)v = 0 there is nothing to prove since 0 ∈ Cf(p)Y by the definition of tangent
cone. On the other hand, if f ′(p)v 6= 0, we have f(pn) 6= f(p), for n large enough.
Thus, for such n’s, we can write

f(pn) − f(p)

|f(pn) − f(p)|
=

|pn − p|

|f(pn) − f(p)|

f(pn) − f(p)

|pn − p|
.

Therefore,

lim
n→∞

f(pn) − f(p)

|f(pn) − f(p)|
=

f ′(p)v

|f ′(p)v|
.

And this shows that f ′(p)v = λw, where λ > 0 and w ∈ Sk−1 is tangent to Y at
f(p). �

Lemma 2.9. Let f, g : U → R
s be defined on an open subset of R

k and differentiable
at p ∈ U . Assume that f and g coincide on some subset of X containing p. Then
f ′(p) and g′(p) coincide on CpX and, consequently, on TpX.
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Proof. Let ϕ : U → R
s be defined by ϕ(x) = f(x) − g(x); so that ϕ maps X into

the trivial subspace Y = {0} of R
s. Thus, by Lemma 2.8, we obtain

ϕ′(p)v = f ′(p)v − g′(p)v = 0, ∀v ∈ CpX,

and the assertion is proven. �

Lemma 2.9 ensures that if f : X → R
s is a C1 map on a subset X of R

s and p
is a point in X , then the restriction to TpX of the derivative at p of any C1 local
extension of f to a neighborhood of p does not depend on the chosen extension. In
other words, all the C1 extensions of f to an open neighborhood of p have the same
directional derivative along the vectors of the subspace TpX . Moreover, Lemma 2.8
implies that if g is such an extension and f maps X into Y , then g′(p) maps TpX
into Tf(p)Y . These two facts justify the following definition.

Definition 2.10. Let f : X → Y be a C1 map from a subset X of R
k into a subset

Y of R
s. The derivative of f at p, f ′(p) : TpX → Tf(p)Y , is the restriction to TpX

of the derivative at p of any C1 extension of f to a neighborhood of p in R
k.

We point out that this extended derivative inherits the two functorial properties
of the classical derivative (the easy proof of this fact is left to the reader). As a
consequence of this and Lemma 2.8 one gets the following result.

Theorem 2.11. Let f : X ⊆ R
k → Y ⊆ R

s be a C1-diffeomorphism. Then for any
p ∈ X, f ′(p) : TpX → Tf(p)Y is an isomorphism mapping CpX onto Cf(p)Y .

Proof. To simplify the notation, put q = f(p). By the definition of diffeomorphism
we have f−1 ◦ f = iX and f ◦ f−1 = iY , where iX and iY denote the identity
on X and Y , respectively. Therefore, by the functorial properties of the extended
derivative, the two compositions (f−1)′(q)f ′(p) and f ′(p)(f−1)′(q) coincide, respec-
tively, with the identity on TpX and TqY . This means that f ′(p) is invertible and
f ′(p)−1 = (f−1)′(q). The fact that CpX and CqY correspond to each other under
f ′(p) is a direct consequence of Lemma 2.8. �

Let X be a subset of R
k. We say that a point p ∈ X is singular for X if

TpX 6= CpX . In other words, since TpX is the space spanned by CpX , saying
that p is a non-singular point for X means that CpX is a vector space. The set of
singular points of X will be denoted by δX .

For example, if X is an n-simplex in R
k, δX is just the union of all the (n− 1)-

faces of X , δδX , denoted by δ2X , is the union of all the (n− 2)-faces of X , and so
on.

Observe also that if X is an open subset of R
k, then δX = ∅.

The following straightforward consequence of Theorem 2.11 shows that the con-
cept of singular point is invariant under diffeomorphisms.

Theorem 2.12. If f : X → Y is a Cr-diffeomorphism, then it maps δX onto δY .
Consequently, for any n ∈ N, δnX and δnY are Cr-diffeomorphic.

2.2. Differentiable manifolds in Euclidean spaces. A subset M of R
k is called

a (boundaryless) m-dimensional (differentiable) manifold of class Cr , r ∈ N∪{∞},
if it is locally Cr-diffeomorphic to R

m; meaning that any point p of M admits a
neighborhood (in M) which is Cr-diffeomorphic to an open subset of R

m. A Cr-
diffeomorphism ϕ : W → V ⊆M from an open subsetW of R

m onto an open subset
V of M is called a parametrization (of class Cr of V ). The inverse ϕ−1 : V → W
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of ϕ is called a chart or a coordinate system on V , and its component functions,
x1, x2, . . . , xm, are the coordinate functions of ϕ−1 on V .

As a straightforward consequence of the definition of differentiable manifold and
Theorem 2.12, any point p of an m-dimensional C1-manifold M is non-singular (i.e.,
CpM = TpM). Moreover, dimTpM = m. In fact, since this property is true for
open subsets of R

m, according to Theorem 2.11, it holds true for m-dimensional
C1-manifolds. Incidentally, observe that Theorem 2.11 provides a practical method
for computing TpM . That is, if ϕ : W → V is a any C1-parametrization of a
neighborhood V of p in M , then TpM = Imϕ′(w), where ϕ(w) = p.

The following direct consequence of the Implicit Function Theorem can be used
to produce a large variety of examples of differentiable manifolds. It gives also a
useful tool to compute the tangent space at any given point of a manifold. We
recall first that if f : U → R

s is a C1 map on an open subset U of R
k, an element

p ∈ U is said to be a regular point of f if the derivative f ′(p) of f at p is surjective.
Non-regular points are called critical (points). The critical values of f are those
points of the target space R

s which lie in the image f(C) of the set C of critical
points. Any y ∈ R

s which is not in f(C) is a regular value. Therefore, in particular,
any element of R

s which is not in the image of f is a regular value. Notice that,
in this terminology, the words “point” and “value” refer to the source and target
spaces, respectively.

Theorem 2.13 (Regularity of the level set). Let f : U → R
s be a Cr map of an

open subset of R
k into R

s. If 0 ∈ R
s is a regular value for f , then f−1(0) is a

Cr-manifold of dimension k − s. Moreover, given p ∈ f−1(0), we have

Tp

(
f−1(0)

)
= Ker f ′(p).

Proof. Choose a point p ∈ f−1(0) and split R
k into the direct sum Kerf ′(p) ⊕

(Ker f ′(p))⊥. Since, by assumption, f ′(p) : R
k → R

s is onto, the restriction of f ′(p)
to (Ker f ′(p))⊥ is an isomorphism. Observe that this restriction is just the (second)
partial derivative, ∂2f(p), of f at p with respect to the given decomposition. It
follows, by the Implicit Function Theorem, that in a neighborhood of p, f−1(0)
is the graph of a Cr map ϕ : W → Ker f ′(p)⊥ defined on an open subset W of
Kerf ′(p). Remark 2.4 implies that in this neighborhood f−1(0) is Cr-diffeomorphic
to W . Thus f−1(0) is a Cr-manifold whose dimension is dim Ker f ′(p) = k − s.

To prove that Tp(f
−1(0)) = Ker f ′(p) observe first that Tp(f

−1(0)) ⊆ Ker f ′(p).
In fact, f maps f−1(0) into {0} and, consequently, f ′(p) maps Tp(f

−1(0)) into
T0({0}) = {0}. The equality follows by computing the dimensions of the two
spaces. �

Theorem 2.13 can be partially inverted, in the sense that any Cr differentiable
manifold in R

k can be locally regarded as a regular level set (i.e., as the inverse
image of a regular value of a Cr map on an open subset of R

k). In fact, the following
theorem holds.

Theorem 2.14. Let M be an m-dimensional manifold of class Cr in R
k. Then,

given p ∈ M , there exists a map f : U → R
k−m, Cr on a neighborhood U of p in

R
k, which defines M ∩ U as a regular level set.

Proof. Let ϕ : W → R
k be a Cr-parametrization ofM around p and let w = ϕ−1(p).

Consider any linear map L : R
k−m → R

k such that ImL ⊕ TpM = R
k (this is
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clearly possible since dimTpM = m), and define g : W × R
k−m → R

k by setting
g(x, y) = ϕ(x) + Ly. The derivative of g at (w, 0) ∈W × R

k−m is given by

g′(w, 0)(h, k) = ϕ′(w)h+ Lk,

which is surjective (therefore an isomorphism), since Imϕ′(0) = TpM . By the
Inverse Function Theorem, g is a Cr-diffeomorphism of a neighborhood of (w, 0)
in W × R

k−m onto a neighborhood U of p in R
k. Let ψ be the inverse of such a

diffeomorphism and define f : U → R
k−m as the composition π2 ◦ ψ of ψ with the

projection π2 : W × R
k−m → R

k−m of W × R
k−m onto the second factor. We see

that f satisfies the assertion. �

We point out that there are differentiable manifolds in R
k which cannot be

globally defined as regular level sets. One can prove, in fact, that when this happens,
the manifold must be orientable (the definition of orientability and the proof of this
assertion would carry us too far away). As an intuitive example consider a Möbius
strip M embedded in R

3 and assume M = f−1(0), where f : U → R is a C1 map on
an open subset of R

3. If 0 ∈ R were a regular value for f , the gradient of f at any
point p ∈ f−1(0), ∇f(p), would be nonzero. Therefore, the map ν : M → R

3, given
by ν(p) = ∇f(p)/|∇f(p)|, would be a continuous normal unit vector field on M ,
and this is well-known to be impossible on the Möbius strip (a one-sided surface).

Now we want to define an “embedded” notion of tangent bundle TM associated
with a Cr manifold M in R

k. We will prove that if r ≥ 2, TM is a Cr−1 differ-
entiable manifold in R

k × R
k. In order to do this, we shall define the concept of

tangent bundle for any subset of R
k, and prove that when two sets X and Y are

Cr-diffeomorphic, the corresponding tangent bundles are Cr−1-diffeomorphic.

Definition 2.15. Given X ⊆ R
k, the subset

TX =
{
(x, y) ∈ R

k × R
k : x ∈ X, y ∈ TxX

}

of R
k×R

k is called the tangent bundle of X . The canonical projection π : TX → X
is the restriction to TX of the projection of R

k × R
k onto the first factor (thus, π

is always a smooth map).

Definition 2.16. Let f : X → Y be a Cr map from a subset X of R
k into a subset

Y of R
s and assume 1 ≤ r ≤ ∞. The tangent map of f , Tf : TX → TY , is given

by
Tf(x, y) =

(
f(x), f ′(x)y

)
.

As pointed out in Remark 2.2, one may regard a Cr map f : X → Y as the
restriction of a Cr map g : U → R

s defined on an open neighborhood U of X .
Consequently, if r ≥ 1, Tg : TU → TR

s, given by (x, y) 7→
(
g(x), g′(x)y

)
, is a Cr−1

map from the open neighborhood TU = U × R
k of TX into TR

s = R
s × R

s. This
proves that Tf , which is just the restriction to TX of Tg, is a Cr−1 map.

Clearly, if f : X → Y and g : Y → Z are Cr maps, one has T (g ◦ f) = Tg ◦ Tf .
Moreover, if i : X → X is the identity on X , then T i : TX → TX is the identity
on TX . Therefore, one may regard T as a covariant functor from the category
of Euclidean sets with Cr maps into the category of Euclidean sets with Cr−1

maps. This implies that if f : X → Y is a Cr-diffeomorphism with r ≥ 2, then
Tf : TX → TY is a Cr−1-diffeomorphism. Therefore, if M is a Cr manifold of
dimension m, since it is locally Cr-diffeomorphic to the open subsets of R

m, its
tangent bundle TM is a Cr−1 manifold of dimension 2m. Moreover, if ϕ : W →
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V ⊆M is a parametrization of an open set V in M , Tϕ : W ×R
m → TV ⊆ TM is

a parametrization of the open set TV = π−1(V ) of TM .

Definition 2.17. Let X be a subset of R
k. A tangent vector field on X is a

continuous map g : X → R
k with the property that g(x) ∈ TxX for all x ∈ X . The

tangent vector field g on X is said to be inward if g(x) ∈ CxX for all x ∈ X .

Usually, in differential geometry, a tangent vector field on a differentiable mani-
fold M is defined as a section of the tangent bundle TM . That is, a map w : M →
TM with the property that the composition π ◦ w : M → M of w with the bundle
projection π is the identity on M . However, in our “embedded” situation (i.e., M
in R

k) this “abstract” definition turns out to be redundant. In fact, observe that,
for M embedded in R

k, a map w : M → R
k × R

k is a section of TM if and only if
for all x ∈ M one has w(x) =

(
x, g(x)

)
, with g(x) ∈ TxM . Therefore, forgetting x

in the pair (x, g(x)), one may accept the simpler definition given above.
An important example of a tangent vector field to a differentiable manifold M ⊆

R
k is the gradient of a C1 function f : M → R. This is defined by assigning to any

point x ∈M the unique vector ∇f(x) ∈ TxM such that

〈∇f(x), v〉 = f ′(x)v, ∀v ∈ TxM,

where 〈·, ·〉 denotes the (canonical) inner product on R
k.

We now recall a classical theorem that will be essential for our definition of fixed
point index. For its proof see e.g. [Hir, Chapter 4, §5].

Theorem 2.18 (tubular neighborhoods). Let M ⊆ R
k be a smooth manifold. Then

there exists a neighborhood W of M such that any point x ∈ W possesses a unique
closest point r(x) in M . Moreover, the map r : W → M is a smooth submersion
(i.e., it has surjective derivative at any point).

Note that the map r in the above theorem is a retraction, i.e. it has the property
that r(x) = x for all x ∈ M . Thus any manifold in R

k is a retract of one of its
neighborhoods.

2.3. The Brouwer degree and the fixed point index. For the sake of simplic-
ity, from now on “differentiable manifold” or, briefly, “manifold” will mean “smooth
manifold” embedded in some Euclidean space. Moreover, any map between mani-
folds is assumed to be (at least) continuous.

Before introducing the fixed point index on manifolds, we need to discuss briefly
a slightly extended notion of Brouwer degree in Euclidean spaces. For more details
about degree, the reader is referred to [Llo, Mil, Nir].

Let V be an open subset of R
k. A pair (g, V ) is admissible (for the Brouwer

degree) if g is an R
k-valued (continuous) map whose domain D(g) contains V and

such that g−1(0) ∩ V is compact. In particular this holds if (g, V ) is strongly
admissible; that is, if V is bounded, g is defined at least on the closure V of V ,
and g(x) 6= 0 for all x in the boundary ∂V of V . On the set of admissible pairs
there is defined an integer-valued function degB , called Brouwer degree, satisfying
the following three fundamental properties.

Normalization. For the identity I on R
k one has degB(I,Rk) = 1.

Additivity. Given an admissible pair (g, V ), if V1 and V2 are two disjoint open
subsets of V such that g−1(0) ∩ V ⊆ V1 ∪ V2, then

degB(g, V ) = degB(g|V1
, V1) + degB(g|V2

, V2).
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Homotopy invariance. If V ⊆ R
k is an open subset of R

k, and h : V ×[0, 1] → R
k

is an admissible homotopy, i.e. h−1(0) is compact, then

degB

(
h(·, 0), V

)
= degB

(
h(·, 1), V

)
.

As a consequence of a well known result of Amann and Weiss (see [AmWa]), the
function degB is uniquely determined by the above properties. This is because these
properties imply the Amann-Weiss axioms, which are stated for strongly admissible
pairs. Thus, henceforth, the three fundamental properties will be still referred to
as Amann-Weiss axioms (for admissible pairs).

Below, we list some other important properties of the Brouwer degree, which can
be easily derived from the Amann-Weiss axioms.

Excision. Given an admissible pair (g, V ) and an open subset V1 of V containing
g−1(0) ∩ V , one has degB(g, V ) = degB(g|V1

, V1).

By excision, taking V1 = V , we get the following property which shows that the
degree is independent of the behavior of g outside V .

Localization. If (g, V ) is admissible, then degB(g, V ) = degB(g|V , V ).

Solution. If (g, V ) is admissible and degB(g, V ) 6= 0, then g−1(0)∩V in nonempty.

Boundary dependence. If (g1, V ) and (g2, V ) are strongly admissible and g1|∂V =
g2|∂V , then degB(g1, V ) = degB(g2, V ).

Remark 2.19. If (g, V ) is admissible, g is C1 on V and 0 is a regular value for g
in V , then g−1(0) ∩ V is a finite set. It can be shown (see e.g. [Llo]) that in this
case

degB(g, V ) =
∑

x∈g−1(0)∩V

sign det g′(x).

We now present the fixed point index in the context of differentiable manifolds.
LetM ⊆ R

k be a manifold, U an open subset ofM , and f anM -valued (continuous)
map whose domain D(f) ⊆ M contains U . The fixed point index of f in U ,
ind(f, U), is a well defined integer whenever the set fix(f, U) of fixed points of f
in U is compact. When this holds, the pair (f, U) is said to be admissible (for the
fixed point index on M). Loosely speaking, ind(f, U) is an algebraic count of the
elements of fix(f, U). The following is the precise definition.

Definition 2.20. Let M , U and f be as above. If the pair (f, U) is admissible,
the fixed point index of f in U is the integer

(2.1) ind(f, U) = degB

(
I − f ◦ r, r−1(U)

)
,

where I is the identity in R
k and r : W → M is any retraction defined on an open

neighborhood of M .

In the above definition, the existence of a retraction r is ensured by Theorem
2.18. Moreover, one can prove that degB

(
I − f ◦ r, r−1(U)

)
does not depend on

the choice of r (see e.g. [DuGr, Gra, Nus]). Thus, ind(f, U) is well defined.
Note that, in particular, when M = R

k, the fixed point index of a map f : U →
R

k coincides with the Brouwer degree of I − f in U . Namely,

(2.2) ind(f, U) = degB(I − f, U).
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The fixed point index has a number of useful properties. Below we list some of
the most important ones. For proofs and more details we refer to [Ama, DuGr,
Gra, Nus].

Normalization. Let f : M →M be constant. Then ind(f,M) = 1.

Additivity. Given an admissible pair (f, U), if U1 and U2 are two disjoint open
subsets of U such that fix(f, U) ⊆ U1 ∪ U2, then

ind(f, U) = ind(f |U1
, U1) + ind(f |U2

, U2).

Homotopy invariance. A map h : U × [0, 1] → M with the property that the set
{(x, λ) ∈ U × [0, 1] : x = h(x, λ)} is compact is called an admissible homotopy. In
this case,

ind
(
h(·, 0), U

)
= ind

(
h(·, 1), U

)
.

Commutativity. Let U1 and U2 be open subsets of two manifolds M1 and M2,
respectively. Given f1 : U1 → M2 and f2 : U2 → M1, if one of the pairs

(
f2 ◦

f1, f
−1
1 (U2)

)
or

(
f1 ◦ f2, f

−1
2 (U1)

)
is admissible, then so is the other and

ind
(
f2 ◦ f1, f

−1
1 (U2)

)
= ind

(
f1 ◦ f2, f

−1
2 (U1)

)
.

Solution. If ind(f, U) 6= 0, then the fixed point equation f(x) = x has a solution
in U .

Multiplicativity. Let U1 and U2 be open subsets of two manifolds M1 and M2,
respectively. Assume that

(
f1, U1

)
and

(
f2, U2

)
are admissible. Consider the map

f1 × f2 : U1 × U2 → M1 ×M2 given by (x1, x2) 7→
(
f1(x1), f2(x2)

)
. Then the pair(

f1 × f2, U1 × U2

)
is admissible and

ind
(
f1 × f2, U1 × U2

)
= ind(f1, U1) · ind(f2, U2).

Remark 2.21. Given any M -valued map f defined on a subset D(f) of M , the
pair (f, ∅) is admissible. This includes the case when D(f) is the empty set (it is
coherent with the notion of a map as a triple (A,B,R) where A is the domain, B is
the codomain and R ⊆ A×B is such that there exists exactly one (a, b) ∈ R for any
a ∈ A). A simple application of the additivity property shows that ind(f |∅, ∅) = 0
and ind(f, ∅) = 0.

As a consequence of the additivity property and of Remark 2.21 one easily gets
the following often-neglected property, which shows that the index of an admissible
pair (f, U) does not depend on the behavior of f outside U .

Localization. If (f, U) is admissible, then ind(f, U) = ind(f |U , U).

Another consequence of the additivity is the following important property.

Excision. Given an admissible pair (f, U) and an open subset U1 of U containing
fix(f, U), one has ind(f, U) = ind(f, U1).

A stronger form of the homotopy property is often useful (see e.g. [Ama, Nus]).

Generalized homotopy invariance. Let M be a manifold and let W ⊆M×[0, 1]
be open. Suppose h : W →M is such that the set

{
(x, λ) ∈W × [0, 1] : x = h(x, λ)

}

is compact. For any λ ∈ [0, 1], put Wλ = {x ∈ M : (x, λ) ∈ W} and hλ = h(·, λ).
Then ind

(
hλ,Wλ

)
is well defined and independent of λ ∈ [0, 1].
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In the case when M is a compact manifold, it is well known that ind(f,M)
coincides with the Lefschetz number Λ(f) of f . This is often called the strong

normalization property of the fixed point index. A discussion of the Lefschetz
number, that would require homology theory, is beyond the scope of this chapter;
the interested reader is referred to, e.g,, [DuGr, Spn].

It is well known that some of the above properties can be used as axioms for a
fixed point index theory. For instance, it can be deduced from [Bro] that the first
four determine uniquely the fixed point index. Actually the result of [Bro] is more
general: it holds in the framework of metric ANRs. In this more general setting,
other uniqueness results based on a stronger version of the normalization property
are available for the (more restrictive) class of compact maps (see e.g. [DuGr, §16,
Theorem 5.1]). Below, using the uniqueness result for the Brouwer degree given
in [AmWa] we shall prove that the properties of normalization, additivity and
homotopy invariance are sufficient to determine uniquely the fixed point index on
manifolds.

An admissible pair for the index (f, U) will be called regular if f is smooth
on U and any fixed point of f in U is nondegenerate; that is, 1 does not belong
to the spectrum of the endomorphism f ′(x) : TxM → TxM for any x ∈ fix(f, U).
Note that, in this case, fix(f, U) is necessarily a discrete set, therefore finite, being
compact.

The following remark shows that the computation of the fixed point index of an
admissible pair can always be reduced to that of a regular pair.

Remark 2.22. Let (f, U) be admissible (for the index) and let U1 be a relatively
compact neighborhood of fix(f, U) such that U 1 ⊆ U . By excision, ind(f, U1)
coincides with ind(f, U). It can be shown, via standard transversality arguments,
that f is admissibly homotopic on U1 to some smooth approximation ϕ of it such
that (ϕ,U1) is regular.

The following proposition shows that the properties of normalization, additivity
and homotopy invariance enforce a formula for the computation of the fixed point
index that is valid for any regular pair (f, U). Thus, by Remark 2.22 and by the
homotopy invariance property, we see that there exists a unique integer-valued func-
tion on the set of admissible pairs that satisfies the normalization, additivity and
homotopy invariance properties. In other words, the fixed point index is uniquely
determined by these three properties.

Theorem 2.23 (Uniqueness of the fixed point index). Let M ⊆ R
k be an m-

dimensional manifold and let “ind” be an integer-valued function on the set of
admissible pairs satisfying the properties of normalization, additivity and homotopy
invariance. Then, given any regular pair (f, U), one has

ind(f, U) =
∑

x∈fix(f,U)

sign
(

det
(
Ix − f ′(x)

))
,

where Ix denotes the identity of TxM .

Proof. Let W be an open subset of M which is diffeomorphic to the whole space
R

m and let ψ : W → R
m be any diffeomorphism (onto R

m). Denote by U the set
of all pairs (f, U) which are admissible for the fixed point index in M and such
that U ⊆ W , f(U) ⊆ W . These pairs may be regarded as admissible for the fixed
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point index in W , and the restriction of the index function to U still satisfies the
properties of normalization, additivity and homotopy invariance. We claim that for
any (f, U) ∈ U one necessarily has

(2.3) ind(f, U) = degB

(
I − ψ ◦ f ◦ ψ−1, ψ(U)

)
,

where I is the identity in R
m. To show this, denote by V the set of pairs (g, V ) which

are admissible for the degree in R
m and consider the one-to-one correspondence

ω : U → V defined by

ω(f, U) =
(
I − ψ ◦ f ◦ ψ−1, ψ(U)

)
.

We need to prove that ind = degB ◦ω. Observe that

ω−1(g, V ) =
(
ψ−1 ◦ (I − g) ◦ ψ, ψ−1(V )

)
,

and if two pairs (f, U) ∈ U and (g, V ) ∈ V correspond under ω, then the sets
fix(f, U) and g−1(0) ∩ U correspond under ψ. It is also evident that the function
d : V → Z defined by the composition d = ind ◦ω−1 satisfies the Amann-Weiss
axioms. Thus, degB and d coincide on V , and this implies ind = degB ◦ω, as
claimed.

Assume now that (f, U) is a regular pair for the fixed point index in M . Let
fix(f, U) = {x1, . . . , xn} and let W1, . . . ,Wn be n pairwise disjoint open subsets
of U such that xi ∈ Wi, for i = 1, . . . , n. Since M is locally diffeomorphic to
the whole space R

m, we may assume that each Wi is diffeomorphic to R
m under a

diffeomorphism ψi. For any i, let Ui be an open subset of Wi such that f(Ui) ⊆Wi.
The additivity property yields

ind(f, U) =

n∑

i=1

ind(f, Ui),

and, by the previous argument, we get
n∑

i=1

ind(f, Ui) =

n∑

i=1

degB

(
I − ψi ◦ f ◦ ψ−1

i , ψi(Ui)
)
.

By Remark 2.19 and the chain property of the derivative, for any i one has

degB

(
I − ψi ◦ f ◦ ψ−1

i , ψi(Ui)
)

= sign
(
det

(
Ixi

− f ′(xi)
))
.

Thus

ind(f, U) =
n∑

i=1

sign
(
det

(
Ixi

− f ′(xi)
))
,

and this concludes the proof. �

2.4. The degree of a tangent vector field. Recall that, for the sake of simplicity,
unless otherwise specified, all the manifolds are supposed smooth and all the maps
are assumed continuous.

Let U be an open subset of a manifold M ⊆ R
k and let g be a tangent vector

field defined at least on U . We say that (g, U) is an admissible pair of M (for the
degree of a vector field) if g−1(0)∩U is compact. When context precludes confusion
about the universe M containing U , we will simply say that (g, U) is admissible (or,
equivalently, that g is admissible on U). In this case (see e.g. [GuPo, Hir, Mil, Tro]
and references therein) one can assign to g an integer, deg(g, U), called the degree
(or index, or Euler characteristic, or rotation) of the tangent vector field g on U .
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To avoid any possible confusion, we point out that in the literature there exists a
different extension of the Brouwer degree to the context of differentiable manifolds
(see e.g. [Mil] and references therein), called the Brouwer degree for maps between
manifolds. This second extension, roughly speaking, counts the (algebraic) number
of solutions of an equation of the form h(x) = y, where h : M → N is a map
between oriented manifolds of the same dimension and y ∈ N is such that h−1(y)
is compact. This dichotomy of notions in the context of manifolds arises from the
fact that counting the solutions of an equation of the form h(x) = y cannot be
reduced to the problem of counting the zeros of a vector field, as one can do in R

k

by defining g(x) = h(x) − y. Therefore, from the point of view of global analysis,
the degree of a vector field and the degree of a map are necessarily two separated
notions. The first one, which we are interested in, does not require any orientability
and is particularly important for differential equations, since a tangent vector field
on a manifold can be regarded as an autonomous differential equation.

We give here a brief idea of how this degree can be defined. We need first the
following result (see e.g. [Mil]).

Theorem 2.24. Let g : M → R
k be a C1 tangent vector field on a manifold M ⊆

R
k. If g is zero at some point p ∈ M , then the derivative g′(p) : TpM → R

k maps
TpM into itself. Therefore, g′(p) can be regarded as an endomorphism of TpM and,
consequently, its determinant det(g′(p)) is well defined.

Proof. It suffices to show that g′(p)v ∈ TpM for any v ∈ TpM such that |v| = 1.
Given such a vector v, consider a sequence in M \ {p} such that pn → p and
(pn − p)/|pn − p| → v. By Lemma 2.7 we have

g′(p)v = lim
n→∞

g(pn) − g(p)

|pn − p|
= lim

n→∞

g(pn)

|pn − p|
.

Observe that for all n ∈ N, the vector wn = g(pn)/|pn − p| is tangent to M at
pn. Let us show that this implies that the limit w = g′(p)v of {wn} is in TpM . In
fact, because of Theorem 2.14, we may assume that M (around p) is a regular level
set of a smooth map f : V → R

s defined on some open subset V of R
k. Thus, by

Theorem 2.13, f ′(pn)wn = 0, and passing to the limit we get f ′(p)w = 0, which
means w ∈ TpM , as claimed. �

Let g : M → R
k be a C1 tangent vector field on a manifold M ⊆ R

k. A zero
p ∈ M of g is said to be nondegenerate if g′(p), as a map from TpM into itself, is an
isomorphism. In this case, its index at p, i(g, p), is defined to be 1 or −1 according
to the sign of the determinant det

(
g′(p)

)
.

In the particular case when an admissible pair (g, U) is regular (i.e., g is smooth
with only nondegenerate zeros), its degree, deg(g, U), is defined just summing up
the indices at its zeros. This makes sense, since g−1(0) ∩ U is compact (g being
admissible in U) and discrete. Therefore, the sum is finite. Using transversality
arguments (see e.g. [Hir]) one can show that if two such tangent vector fields can be
joined by a smooth homotopy, then they have the same degree, provided that this
homotopy is admissible (i.e., the set of zeros remains in a compact subset of U).
Moreover, it is clear that given g as above, if V is any open subset of U containing
g−1(0) ∩ U , then deg(g, U) = deg(g, V ).

The above “homotopy invariance property” for regular pairs gives an idea of
how to proceed in the general case. If the pair (g, U) is admissible, consider any
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relatively compact open subset V of U containing g−1(0)∩U and observe that, since
the boundary ∂V of V (in M) is compact, we have min{|g(x)| : x ∈ ∂V } = δ > 0
(recall that M is embedded in R

k). Let (g1, V ) be any regular pair with g defined
(at least) on V such that

max
{
|g(x) − g1(x)| : x ∈ ∂V

}
< δ.

Then deg(g, U) is defined as deg(g1, V ). To see that this definition does not depend
on the approximating map, observe that if (g2, V ) is a different regular pair with
g2 satisfying the same inequality, we get (1− λ)g1(x) + λg2(x) 6= 0 for all λ ∈ [0, 1]
and x ∈ ∂V . Therefore (x, λ) 7→ (1 − λ)g1(x) + λg2(x) is an admissible homotopy
of tangent vector fields on V . This proves that deg(g1, V ) = deg(g2, V ). The fact
that this definition does not depend on the open set V containing g−1(0) is very
easy to check and left to the reader.

The following are the main properties of the degree for admissible tangent vector
fields on open subsets of a manifold.

Solution. If deg(g, U) 6= 0, then g has a zero in U .

Additivity. Let (g, U) be admissible. If U1 and U2 are two disjoint open subsets
of U whose union contains g−1(0) ∩ U , then

deg(g, U) = deg(g|U1
, U1) + deg(g|U2

, U2).

Homotopy invariance. Let h : U × [0, 1] → R
k be an admissible homotopy of

tangent vector fields; that is, h(x, λ) ∈ TxM for all (x, λ) ∈ U × [0, 1] and h−1(0)
is compact. Then deg

(
h(·, λ), U

)
does not depend on λ ∈ [0, 1].

The above definition of degree implies that if two vector fields g1 : M1 → R
k and

g2 : M2 → R
s correspond under a diffeomorphism ψ : M1 → M2 (i.e. ψ′(x)g1(x) =

g2
(
ψ(x)

)
for any x ∈ M1), then, if one is admissible, so is the other, and they

have the same degree (on M1 and M2 respectively). More precisely, the following
property holds.

Topological invariance. Let ψ be a diffeomorphism of a manifold M1 ⊆ R
k onto

a manifold M2 ⊆ R
s. Let (g1, U) be an admissible pair of M1, and assume that

g2 : ψ(U) → R
s corresponds to g1 under ψ, then

(
g2, ψ(U)

)
is an admissible pair of

M2 and

deg(g1, U) = deg
(
g2, ψ(U)

)
.

Note also that, in the particular case when U is an open subset of M = R
m and

g is an admissible vector field on U (i.e. g−1(0) ∩ U is compact), then deg(g, U)
coincides with the Brouwer degree degB(g, U).

Another immediate consequence of the definition of degree is the relation between
the degree of a vector field and that of its opposite. If (g, U) is an admissible pair
of M , then

(2.4) deg(g, U) = (−1)m deg(−g, U),

where m is the dimension of M . More generally, for a given constant α 6= 0, one
has

(2.5) deg(g, U) = (signα)m deg(αg, U)

The additivity property, analogously to what happens for the fixed point index,
implies the following property.
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Excision. Given an admissible pair (g, U) and an open subset U1 of U containing
g−1(0) ∩ U , one has deg(g, U) = deg(g|U1

, U1).

From the excision, taking U1 = U , one gets the next property, which shows that
the degree of an admissible pair (g, U) is not influenced by the behavior of g outside
the open set U .

Localization. If (g, U) is admissible, then so is (g|U , U) and

deg(g, U) = deg(g|U , U).

Given a relatively compact open set U ⊆ M , assume that g1 : M → R
k and

g2 : M → R
k are tangent vector fields such that g1|∂U = g2|∂U . Clearly, (g1, U) is

admissible if and only if so is (g2, U) and the map (x, λ) 7→ λg1(x) + (1−λ)g2(x) is
an admissible homotopy in U . By the homotopy invariance property, one gets the
following property.

Boundary dependence. Assume the open set U ⊆ M is relatively compact and
that (g1, U) or (g2, U) is admissible. If g1|∂U = g2|∂U , then deg(g1, U) = deg(g2, U).

Actually, for a relatively compact open set U ⊆ M , in [Pug] there is given
a formula, valid for “most” tangent vector fields, that relates deg(g, U) to the
topology of U and the behavior of g along ∂U .

It is known that, unless the target manifold is flat, the boundary dependence
property does not hold for the degree of maps between oriented manifolds.

Another consequence of the homotopy invariance property is that the degree of a
tangent vector field g on a compact manifold M ⊆ R

k is independent of g. In fact,
if g1 and g2 are two tangent vector fields on M , then h : M × [0, 1] → R

k, given by

h(x, λ) = (1 − λ)g1(x) + λg2(x),

is an admissible homotopy. This permits the assignment of an integer χ(M), called
the Euler-Poincaré characteristic of M , by setting

(2.6) χ(M) = deg(g,M),

where g : M → R
k is any tangent vector field on M . Thus, if χ(M) 6= 0, then any

tangent vector field on M must vanish at some point. Moreover, the topological
invariance implies that if two compact manifolds M and N are diffeomorphic, then
χ(M) = χ(N).

Actually, there are other equivalent (and better) ways to define the Euler-
Poincaré characteristic of a compact manifold. One of these is via homology
theory, where χ(M) coincides with the Lefschetz number of the identity (see for
example [DuGr, Spn]). The powerful homological method has the advantage of
being applicable to a large class of topological spaces, which includes those of
the same homotopy type as compact polyhedra (such as compact manifolds with
boundary). The celebrated Poincaré-Hopf theorem asserts that the above definition
of the Euler-Poincaré characteristic coincides with the homological one (see e.g.
[DuGr, Hir, Mil]).

Observe that formulas (2.4) and (2.6) imply that if M is an odd dimensional
compact manifold, then χ(M) = 0.
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2.5. First order ordinary differential equations on manifolds. An autonomous
first order differential equation on a manifold M ⊆ R

k (or, more generally, on a
subset of R

k) is determined by a tangent vector field g : M → R
k on M . The first

order (autonomous) differential equation associated with g will be written in the
form

(2.7) ẋ = g(x), x ∈ M.

However, the important fact about a differential equation is not the way this is
written: what counts is the exact definition of what we mean by a solution (and
this implicitly defines the notion of equation). By a solution of (2.7) we mean a
C1 curve x : J → R

k, defined on a (nontrivial) interval J ⊆ R, which satisfies the
conditions x(t) ∈ M and ẋ(t) = g

(
x(t)

)
, identically on J . Thus, even if, according

to Remark 2.2, the map g may be thought of as defined on an open set U containing
M , a solution x : J → R

k of

(2.8) ẋ = g(x), x ∈ U

is a solution of (2.7) if and only if its image lies in M . However, if M is closed in U ,
under the uniqueness assumption of the Cauchy problem for (2.8), one can check
that any solution of (2.8) starting from a point of M must lie entirely in M .

If ϕ : M → N is a diffeomorphism between two manifolds and g is a tangent
vector field on M , one gets a tangent vector field h on N by setting h(z) =
ϕ′

(
ϕ−1(z)

)
g
(
ϕ−1(z)

)
. In this way, if x ∈M and z ∈ N correspond under ϕ, the two

vectors h(z) and g(x) correspond under the isomorphism ϕ′(x) : TxM → TzN . For
this reason we say that the two vector fields g and h correspond under ϕ (or they
are ϕ-related). We observe that in this case, as an easy consequence of the chain
rule for the derivative (and the definition of solution of a differential equation),
equation (2.7) is equivalent to

(2.9) ż = h(z), x ∈ N,

in the sense that x : J → M is a solution of (2.7) if and only if the composition
z = ϕ ◦ x is a solution of (2.9). That is, the solutions of (2.7) and (2.9) correspond
under the diffeomorphism ϕ.

A non-autonomous first order differential equation on a manifold M ⊆ R
k is

given by assigning, on an open subset V of R×M , a non-autonomous (continuous)
vector field f : V → R

k such that f(t, x) ∈ TxM for all (t, x) ∈ V . That is, for any
t ∈ R, the map ft : Vt → R

k, given by ft(x) = f(t, x), is a tangent vector field on
the (possibly empty) open subset Vt = {x ∈M : (t, x) ∈ V } of M . In other words,
f(t, x) ∈ TxM for each (t, x) ∈ V .

The first order differential equation associated with f is denoted as follows:

(2.10) ẋ = f(t, x), (t, x) ∈ V.

A solution of (2.10) is a C1 map x : J → M , on an interval J ⊆ R, such that, for
all t ∈ J ,

(
t, x(t)

)
∈ V and ẋ(t) = f

(
t, x(t)

)
.

We point out that (2.10) can be thought of as a special autonomous equation on
the open submanifold V of R ×M ⊆ R

k+1. In fact (2.10) is clearly equivalent to
the system

(2.11)

{
ṫ = 1,
ẋ = f(t, x), (t, x) ∈ V,
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and the vector field (t, x) 7→
(
1, f(t, x)

)
is tangent to V . By “equivalent” we mean

that the solutions (2.10) and (2.11) are in a one-to-one correspondence.
As pointed out before, any differential equation on a manifold M is transformed

into an equivalent one by a diffeomorphism ϕ : M → N . Thus, since manifolds
are locally diffeomorphic to open subsets of Euclidean spaces, the classical results
about local existence and uniqueness for differential equations apply immediately
to this more general context. Therefore, given (t0, x0) ∈ V , the continuity of the
vector field f : V → R

k is sufficient to ensure the existence, on an open interval J ,
of a solution x : J →M of (2.10) satisfying the Cauchy condition x(t0) = x0. If f is
C1 (or, more generally, locally Lipschitz), two solutions satisfying the same Cauchy
condition coincide in their common domain. Moreover, by considering the partial
ordering associated with graph inclusion, one gets that any solution of (2.10) can
be extended to a maximal one (i.e., to a solution which is not the restriction of any
different solution).

As in Euclidean spaces, one con prove that the domain of any maximal solution
x(·) of (2.10) is an open interval (α, β), with −∞ ≤ α < β ≤ +∞. Moreover, given
any t0 ∈ (α, β) and any compact set K in the domain V of f : V → R

k, both the
graphs of the restrictions of x(·) to (α, t0] and to [t0, β) are not contained in K.
This is referred as the Kamke property of the maximal solution (in a manifold). In
particular, if M is a compact manifold and V = R ×M , any maximal solution of
(2.10) is defined on the whole real axis.

As in Euclidean spaces (see e.g. [Cop]), one has the following result regarding
the continuous dependence on data.

Theorem 2.25. Let M ⊆ R
k be a manifold and {fn} a sequence of C1 non-

autonomous tangent vector fields on M defined on an open subset V of R × M .
Assume that fn converges uniformly on compact sets to a C1 tangent vector field
f0. Given (τ, p) ∈ V , denote (when defined) by xn(t, τ, p) the value at t of the
maximal solution of

{
ẋ = fn(t, x),
x(τ) = p.

Let {(τn, pn)} be a sequence in V converging to (τ0, p0) ∈ V and [a, b] a compact
interval contained in the domain of x0(·, τ0, p0). Then, for n sufficiently large,
xn(·, τn, pn) is defined on [a, b] and

xn(t, τn, pn) → x0(t, τ0, p0)

uniformly on [a, b]. In particular, the set of all (t, τ, p) such that x(t, τ, p) is well
defined is an open subset of R×V (obviously containing any (τ, τ, p) with (τ, p) ∈ V ).

For autonomous tangent vector fields, the following consequence of the well-
known Kupka-Smale theorem (see e.g. [Pei]) will be crucial in the sequel.

Proposition 2.26. Let g : M → R
k be a tangent vector field. Then, there exists

a sequence {gn} of C1 tangent vector fields on M , uniformly converging to g on
compact sets and such that, for any n ∈ N, any T > 0 and any compact set C ⊆M ,
the equation ẋ = gn(x) admits finitely many periodic orbits contained in C and with
period in (0, T ].
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3. The fixed point index of the Poincaré translation operator

3.1. The autonomous case. Let g : M → R
k be a given C1 vector field tangent

to M ⊆ R
k. For p ∈ M and t ∈ R, let Φt(p) be the value at t (if defined) of the

maximal solution of (2.7) starting from p at time t = 0. We shall also use the
(more cumbersome) notation Φg

t (p) whenever it will be necessary to emphasize the
dependence on g. The map p 7→ Φt(p), when (and where) defined, is called flow
operator at time t (associated with g). Obviously, if M is compact, Φt(p) is defined
for all (t, p) ∈ R ×M . Moreover, given a relatively compact subset U of M , Φt(p)
is defined for any p ∈ U and |t| small enough. In fact, Theorem 2.25 implies that
the domain of the map (t, p) 7→ Φt(p) is an open subset of R ×M containing the
section {0} ×M .

Remark 3.1. Let ψ be a diffeomorphism from a manifold M ⊆ R
k onto a manifold

N ⊆ R
s, let g : M → R

k be a C1 tangent vector field on M , and let Φt be its
associated flow operator at time t. Then, the composition ψ ◦ Φt ◦ ψ−1 coincides
with the flow operator at time t associated with the tangent vector field ĝ : N → R

s

that corresponds to g under ψ.

Lemma 3.2. Let g : M → R
k be a C1 tangent vector field. For any compact subset

K of M such that g(p) 6= 0 for p ∈ K, there exists a positive constant τ = τ(K)
such that

Φt(p) 6= p, for 0 < |t| ≤ τ and all p ∈ K.

Proof. Assume, by contradiction, that there exist two sequences {tn}n∈N with tn 6=
0 and tn → 0, and {pn}n∈N ⊆ K such that pn = Φtn

(pn).
Without loss of generality we may assume pn → p0 ∈ K. Denote by xn(·) the

solution of the initial value problem
{
ẋ(t) = tng

(
x(t)

)
, t ∈ [0, 1]

x(0) = pn.

Clearly xn(1) = Φtn
(pn). As M ⊆ R

k, the integrals
∫ 1

0 g
(
xn(t)

)
dt make sense.

Hence,

0 = xn(1) − xn(0) = tn

∫ 1

0

g
(
xn(t)

)
dt,

so, as tn 6= 0,

(3.1)

∫ 1

0

g
(
xn(t)

)
dt = 0 for all n ∈ N.

Using Theorem 2.25 and the fact that any xn(·) is defined on the whole interval
[0, 1] one can easily prove that xn(·) converges uniformly to the (constant) solution
x0(t) ≡ p0.

Taking the limit in (3.1), we get 0 =
∫ 1

0
g
(
x0(t)

)
dt = g(p0). This is a contradic-

tion. �

In the “flat case”, i.e. when M is an open subset of R
k, there exists a simple rela-

tion between the degree of a vector field and the fixed point index of the associated
flow operator. Namely, the following result holds.
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Proposition 3.3. Let U be a relatively compact open subset of R
k and let g be a

C1 vector field in R
k defined at least on U and such that g−1(0) ∩ ∂U = ∅. Then,

deg(g, U) = lim
t→0−

deg(I − Φg
t , U),

where I denotes the identity in R
k and Φg

t is the flow operator associated with g.

Proof. From the proof of Lemma 6.1 §2 in [Kra] (or from Corollary 3.4 in [FuPe4])
it follows that

deg(−g, U) = deg(I − Φg
t , U)

when t > 0 is sufficiently small. We see that if Φ−g
t (p) is defined, so is Φg

−t(p) and

Φ−g
t (p) = Φg

−t(p). Thus the assertion follows. �

A similar result holds on manifolds.

Theorem 3.4. Let g : M → R
k be a C1 vector field tangent to a manifold M ⊆ R

k.
Let U be a relatively compact, open subset of M , and assume g−1(0)∩∂U = ∅. Then

deg(g, U) = lim
t→0−

ind(Φg
t , U),

where Φg
t denotes the flow operator associated with g.

Proof. By Lemma 3.2, (Φg
t , U) is admissible for |t| > 0 sufficiently small. By

standard approximation results on manifolds, one can find a smooth approximation
γ of g with the following properties:

1. γ has only nondegenerate zeros;
2. for |t| > 0 small enough, the flow operator Φγ

t associated with γ is admis-
sibly homotopic to Φg

t in U .

By the homotopy invariance property of both the degree and the fixed point
index, it is not restrictive to assume that properties 1 and 2 hold true for g.

Since the zeros of g are nondegenerate, g−1(0) is a finite set, say {p1, . . . , pn}. Let
V1, . . . , Vn be pairwise disjoint open neighborhoods in U of x1, . . . , xn, respectively.

By Lemma 3.2 one can take τ > 0 so small that Φg
t has no fixed points in the

compact set U \
⋃n

i=1 Vi for 0 < |t| ≤ τ . Therefore, by the additivity property
(both of the degree and of the index), it is enough to prove the assertion for the
particular case when g−1(0)∩U consists of just one nondegenerate zero p and U is
contained in an open set W diffeomorphic to R

m.
Let ψ be the diffeomorphism of W onto R

m, and let ĝ be the vector field in
R

m corresponding to g under ψ. By Remark 3.1 and Proposition 3.3, for t 6= 0
sufficiently small, one has

deg
(
ĝ, ψ(U)

)
= ind

(
ψ ◦ Φĝ

t ◦ ψ−1, ψ(U)
)
.

The assertion follows from the topological invariance property of the degree and
from the commutativity property of the fixed point index. �

Remark 3.5. Let U be a relatively compact open subset of M and let Φ: R×M →
M be a dynamical system with no rest points (i.e., points x ∈ M with the property
that Φ(t, x) = x for all t ∈ R) on ∂U . In this case the rest point index

I(Φ, U) = lim
t→0+

ind
(
Φ(t, ·), U

)

introduced in [Srz1] in the more general settings of ENRs is well defined (because
of the homotopy invariance property of the fixed point index). Assume that (2.7)
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induces a dynamical system Φg : R × M → M . Thus, taking into account that
Φ−g

t = Φg
−t, from Theorem 3.4 and formula (2.4) one gets the following relation

between the degree of a vector field and the rest point index of the associated
dynamical system:

I(Φg , U) = (−1)m deg(g, U),

where m is the dimension of M .

Below, following [FuSp1], we shall extend to the manifold setting a formula
proved in [Maw, CaMaZa] for the computation of the fixed point index of the flow
operator associated with autonomous differential equations in Euclidean spaces
(Theorem 3.8 below). A similar formula had been previously proved by Kras-
nosel’skii [Kra], still in the “flat context”, in the (more general) non-autonomous
case under an additional T -irreversibility assumption (see below).

Below, by an orbit we mean the image of a periodic solution of (2.7). Given
T > 0, by AT we denote the union of all τ -periodic orbits with 0 < τ ≤ T . Note
that g−1(0) ⊆ AT for all T > 0.

Lemma 3.6. Given T > 0, let O ⊆ M be a nontrivial isolated orbit of (2.7) in
AT . Then, there exists an open neighborhood W of O such that, for all 0 < τ ≤ T ,
Φτ is defined on W , admissible on W , and ind(Φτ ,W ) = 0.

Proof. Since O is a periodic orbit, Φt is defined on O for all t ∈ R. Thus, O being
compact, ΦT is defined on some relatively compact, open neighborhood W of O.
Observe that, since O is isolated in AT , one can chooseW such that Φτ is fixed point
free on ∂W for all τ ∈ (0, T ]. This implies, by the homotopy invariance property,
that ind(Φτ ,W ) is independent of τ ∈ (0, T ]. Moreover, by the nontriviality of O,
there exists a positive minimal period σ of O. Thus ind(Φσ/2,W ) = 0 since Φσ/2

is fixed point free on W . �

Lemma 3.7. Assume that ΦT is defined on a relatively compact open subset U of
M . Suppose there exist only finitely many orbits with period in (0, T ] which meet
U . Then, given τ, σ ∈ (0, T ] such that Φτ and Φσ are fixed point free on ∂U , we
have

ind(Φτ , U) = ind(Φσ, U).

Proof. If all the orbits with period in (0, T ] that meet U are trivial, then Φτ and
Φσ are admissibly homotopic on U . Otherwise, let O1, . . . , On be all the nontrivial
ones. Lemma 3.6 implies the existence of n open subsets of M , W1, . . . ,Wn, such
that Oi ⊆Wi and

ind(Φτ ,Wi) = ind(Φσ ,Wi) = 0,

for all i = 1 . . . n. We can assume W i ∩W j = ∅ when i 6= j. Define

U1 = U \
n⋃

i=1

W i .

By the additivity and the excision properties,

ind(Φτ , U) = ind(Φτ , U1),

and

ind(Φσ , U) = ind(Φσ , U1).
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Using the homotopy invariance, we can write

ind(Φτ , U1) = ind(Φσ, U1),

and the claim follows. �

Theorem 3.8. Let g : M → R
k be a C1 tangent vector field on a manifold M ⊆ R

k

and let U be a relatively compact open subset of M . Let T > 0 and assume that,
for any p ∈ U , the (maximal) solution of the Cauchy problem

{
ẋ = g(x)
x(0) = p

is defined on [0, T ]. If Φg
T is fixed point free on ∂U , then

ind(Φg
T , U) = deg(−g, U).

Proof. Consider a sequence {gn} of C1 tangent vector fields as in Proposition 2.26.
As usual, for n ∈ N, we will denote by {Φgn

t }t∈R the local flow associated with the
equation ẋ = gn(x). Since the flow is a continuous map of the twofold variable

(t, x) ∈ R ×M , the “attainable set” ÛT = Φ[0,T ](U) is a compact subset of M .

Let B be a relatively compact open set containing ÛT . Let c be the distance

(in R
k) between ÛT and ∂B. One can choose a sufficiently large n̄ such that

‖Φt(x) − Φgn

t (x)‖ ≤ c/2 for all x ∈ U , t ∈ [0, T ] and n > n̄. This implies that, if
n > n̄, any solution of ẋ = gn(x) which meets U is contained in B. By the choice
of the sequence {gn}, B contains only finitely many periodic orbits of ẋ = gn(x)
with period in (0, T ].

Since U is compact and g−1(0)∩∂U = ∅, by Theorem 3.4 there exists ε > 0 such
that

ind(Φg
−ε, U) = deg(g, U).

Since Φ−g
ε = Φg

−ε, one has

(3.2) ind(Φg
ε , U) = deg(−g, U).

Using the continuous dependence on data and the compactness of ∂U we can assume
Φgn

T (x) 6= x and Φgn
ε (x) 6= x for all x ∈ ∂U . Moreover, by the homotopy invariance

property of the index, we get

ind(Φgn

T , U) = ind(Φg
T , U),(3.3)

ind(Φgn
ε , U) = ind(Φg

ε , U),(3.4)

provided that n is large enough. Applying Lemma 3.7, we have

ind(Φgn

T , U) = ind(Φgn
ε , U).

Thus, by (3.2), (3.3) and (3.4), we obtain

ind(Φg
T , U) = ind(Φg

ε , U) = deg(−g, U),

and this completes the proof. �

In spite of the fact that the restriction to ∂U of the flow operator ΦT may be
strongly influenced by the behavior of g outside ∂U , this is not so for its fixed point
index. In fact, in some sense, the fixed point index of the flow depends only on how
points are shot along the boundary of U . More precisely, we have the following
result.
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Corollary 3.9. Let M , g, U and T be as in the Theorem 3.8. Let h : M → R
k be

a C1 tangent vector field and Φh
t its associated flow operator. If g|∂U = h|∂U , then

ind(Φg
T , U) = ind(Φh

T , U),

provided that they are both fixed point free on the boundary of U .

Proof. The assertion follows immediately from Theorem 3.8 and the boundary de-
pendence property of the degree. �

Note also that Theorem 3.8 is not a trivial consequence of the homotopy property
because, in general, the map (p, t) 7→ Φg

t (p) is not an admissible homotopy on U .
For example, consider in M = R

2 the differential equation

(ẋ, ẏ) = (y,−x)

and let U be the unit open disk in R
2. A direct computation shows that ind(Φt, U)

is well defined and equal to 1 for any t 6= 2kπ, and it is not defined for t = 2kπ
(k ∈ Z). Therefore if t is considered in an interval containing one of these values,
the flow does not give an admissible homotopy.

Let g, U and T satisfy the assumptions of Theorem 3.8. Consider the following
differential equation depending on a parameter λ ≥ 0:

(3.5) ẋ = λg(x).

Clearly, if λ > 0, any T -periodic solution of ẋ = g(x) corresponds to a (T/λ)-

periodic one of (3.5). Denote by Φλg
t the flow operator associated with this equation.

Observe that, for λ ∈ [0, 1] and p ∈ U , Φλg
T (p) and Φg

λT (p) are both defined on U
and

(3.6) Φλg
T (p) = Φg

λT (p).

Given λ1, λ2 ∈ (0, 1], assume that Φλ1g
T and Φλ2g

T are fixed point free on ∂U . Then,
by Theorem 3.8, we have

ind(Φg
λ1T , U) = ind(Φg

λ2T , U).

Therefore, by (3.6), we get

(3.7) ind(Φλ1g
T , U) = ind(Φλ2g

T , U),

and this equality holds true no matter whether or not the homotopy

H : U × [λ1, λ2] →M

given by H(x, s) = Φsg
T (x) is admissible.

3.2. The periodic case. Let f : R ×M → R
k be a T -periodic C1 tangent vector

field on M . For p ∈ M , let P f
T (p) be the value at T (if defined) of the maximal

solution of the Cauchy problem

ẋ = f(t, x),(3.8a)

x(0) = p.(3.8b)

By Theorem 2.25, the domain of the map p 7→ P f
T (p) is an open subset of M . This

map is called the (Poincaré) T -translation operator associated with (3.8a). Observe
that for an autonomous equation ẋ = g(x) one has Φg

T = P g
T .
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Let U be a relatively compact open subset of M . Assume that P f
T is defined on

U . One could ask if a formula like (3.7) is still valid replacing the flow with the
Poincaré operator.

Consider the differential equation

(3.9) ẋ = λf(t, x), λ ≥ 0.

Given λ1, λ2 ∈ (0, 1], assume that P λ1f
T and P λ2f

T are fixed point free on ∂U . The
question is whether the following equality holds:

(3.10) ind
(
P λ1f

T , U
)

= ind
(
P λ2f

T , U
)
.

The answer is affirmative in the case when U = M is a compact manifold (this is
an easy consequence of the homotopy invariance property of the fixed point index),
but it is false in general. To see this, let U be the open unit disk in M = R

2, and
consider the following system:

(3.11)

{
ẋ1 = λx2

ẋ2 = −λx1 + λ sin t

This is a differential equation of the form (3.9) with x = (x1, x2) and

f(t, x) = (x2,−x1 + sin t).

For λ = 1, (3.11) does not admit 2π-periodic solution. Thus,

ind(P f
2π, U) = 0.

On the other hand, for λ sufficiently small, from Theorem 3.11 below (see also
[FuPe3]) it follows that

ind(P λf
2π , U) = deg(−w,U) = 1,

where w : U → R
2 is defined by

w(x1, x2) =
1

2π

∫ 2π

0

(x2,−x1 + sin t)dt = (x2,−x1),

contradicting (3.10).

Let f and T be as above. Following Krasnosel’skii (see [Kra]), a point p ∈ M is
said to be of T -irreversibility for equation (3.8a) if the (maximal) solution x(·, p)
of (3.8) is defined on [0, T ] and x(t, p) 6= p for any t ∈ (0, T ]. Using the homotopy
property of the degree, Krasnosel’skii proves a formula for computing the fixed
point index of the operator of translation along trajectories of a non-autonomous
differential equation. His result (reformulated in the framework of differentiable
manifolds) is the following.

Theorem 3.10. Let f : R×M → R
k be a C1 tangent vector field that is T -periodic

in the first variable. Let U be a relatively compact open subset of M . Assume that

P f
T is defined on U . Suppose that all points of ∂U are of T -irreversibility for (3.8a)

and that f(0, x) 6= 0 on ∂U . Then

ind(P f
T , U) = deg

(
− f(0, ·), U

)
.

Theorem 3.8 shows that, at least in the case of autonomous differential equations,
the assumption of T -irreversibility can be removed: the essential fact is the absence

of fixed points for P f
T on ∂U (i.e. the admissibility on U of the Poincaré T -translation

operator). Now, the question is if one can eliminate the T -irreversibility hypothesis
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also for the non-autonomous case. Equation (3.11), with λ = 1, shows that this is
not possible. In fact, let U be the open unit disk in R

2. A direct computation gives

deg
(
− f(0, ·), U

)
= 1 and ind

(
P f

2π, U
)

= 0 (since (3.11) has no 2π-periodic orbits
for λ = 1).

Despite this limitation, it is possible to give a formula for the fixed point index
of the T -translation operator associated with the equation

(3.12) ẋ = λf(t, x), λ ≥ 0,

where f : R×M → R
k is a C1 tangent vector field, T -periodic in the first variable.

Define the average wind vector field

wf (p) =
1

T

∫ T

0

f(t, p)dt,

which is clearly tangent to M .
The following theorem (compare the proof of Theorem 2.1 in [FuPe3]) provides a

formula for the computation of the fixed point index of the T -translation operator

P λf
T associated with equation (3.12) for λ sufficiently small.

Theorem 3.11. Let f : R ×M → R
k be C1 tangent vector field that is T -periodic

in the first variable. Consider a relatively compact open subset U of the manifold
M ⊆ R

k. Assume that (wf , U) is admissible for the degree. Then, there exists

λ0 > 0 such that, for 0 < λ ≤ λ0, P
λf
T is defined on U , fixed point free on ∂U and

ind(P λf
T , U) = deg(−wf , U).

Proof. Consider the equation

(3.13) ẋ = λ
(
µf(t, x) + (1 − µ)wf (x)

)
, λ ≥ 0, µ ∈ [0, 1].

Denote by HT the translation operator that associates to any (λ, p, µ) the value
at time T (if defined) of the solution of (3.13) starting from p at time 0. One can
show that for λ ≥ 0 small enough HT (λ, p, µ) is defined for p ∈ U and µ ∈ [0, 1].

We claim that there exists λ0 > 0 such that HT (λ, p, µ) 6= p for 0 < λ ≤ λ0,
p ∈ ∂U and µ ∈ [0, 1]. Assume this is not the case. Thus there exist sequences
λn → 0, µn ∈ [0, 1] and pn ∈ ∂U such that λn > 0 and

0 = HT (λn, pn, µn) − pn

= λn

∫ T

0

(
µnf

(
t, xn(t)

)
+ (1 − µn)wf

(
xn(t)

))
dt,

where xn denotes the solution of{
ẋ = λn

(
µnf(t, x) + (1 − µn)wf (x)

)
,

x(0) = pn.

Since λn > 0, one has

(3.14) 0 =

∫ T

0

(
µnf

(
t, xn(t)

)
+ (1 − µn)wf

(
xn(t)

))
dt.

Without loss of generality we can assume µn → µ0 ∈ [0, 1] and pn → p0 ∈ ∂U .
Thus, by Theorem 2.25, xn converges uniformly on [0, T ] to a (necessarily constant)
solution x0(t) ≡ p0. Hence, passing to the limit in (3.14), we get

0 =

∫ T

0

(
µ0f(t, p0) + (1 − µ0)wf (p0)

)
dt,
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that implies wf (p0) = 0. This contradicts the assumption.
Thus, there exists λ0 > 0 such that, when 0 < λ ≤ λ0, the map

HT (λ, ·, ·) : U × [0, 1] →M

given by (p, µ) 7→ HT (λ, p, µ) is an admissible homotopy. The homotopy invariance
property of the fixed point index shows that for such λ’s

(3.15) ind(Φ
λwf

T , U) = ind(P λf
T , U).

By Theorem 3.8 and formula (2.5), one has

(3.16) ind(Φ
λwf

T , U) = deg(−λwf , U) = deg(−wf , U).

The assertion follows from equations (3.15) and (3.16). �

The following result is a well known consequence of the homotopy invariance
property of the Lefschetz number (see e.g. [DuGr]) since, when the manifold M is

compact, P f
T is admissibly homotopic to the identity. We give here a different proof

based on Theorem 3.11.

Corollary 3.12. Let M ⊆ R
k be a compact manifold. Consider a C1 tangent

vector field f : R ×M → R
k, T -periodic in the first variable. Then ind(P f

T ,M) is
well defined and

ind(P f
T ,M) = χ(M).

Proof. By Theorem 3.11, taking U = M one can find λ > 0 such that ind(P λf
T ,M) =

deg(−wf ,M). Moreover, the Poincaré-Hopf theorem implies

deg(−wf ,M) = χ(M).

Since M is compact, P λf
T is admissibly homotopic to P f

T . The assertion follows
from the homotopy invariance property of the fixed point index. �

When the manifold M is not compact, Theorem 3.11 allows the computation of

the fixed point index of P f
T only for small values of λ. There is a case, however,

when this limitation is not necessary: that is, when f(t, x) = a(t)h(x).
Namely, consider the equation

(3.17) ẋ = λa(t)h(x), λ ≥ 0,

where a : R → R is a T -periodic continuous function and h : M → R
k is a C1

tangent vector field. Assume that the average

ā =
1

T

∫ T

0

a(t)dt 6= 0.

As in the autonomous case, the fixed point index of the translation operator P λah
T ,

when defined, does not depend on λ. In fact, the following result holds (compare
[Spa3]).

Theorem 3.13. Let h : M → R
k be a C1 tangent vector field, and let a : R → R

be continuous, T -periodic, with

ā =
1

T

∫ T

0

a(t)dt 6= 0.
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Given a relatively compact open subset U of M , assume that P λah
T is defined on U

and fixed point free on ∂U . Then

ind(P λah
T , U) = (sign ā)m deg(−h, U),

where m is the dimension of M .

Proof. Without loss of generality, we may assume λ = 1 and ā = 1. Take any
p ∈ M and consider the Cauchy problems

ẋ = h(x), x(0) = p;(3.18a)

ẋ = a(t)h(x), x(0) = p .(3.18b)

Denote by x : I → M and ξ : J → M the (unique) maximal solutions of (3.18a)
and of (3.18b), respectively. Clearly, if

∫ τ

0
a(s)ds ∈ I for all τ ∈ [0, t], then

ξ(t) = x
( ∫ t

0

a(s)ds
)
.

Hence t ∈ J . Moreover, by a standard maximality argument, one can prove that

t ∈ J implies
∫ t

0 a(s)ds ∈ I . In particular, if T ∈ J , then
∫ T

0 a(s)ds = T ∈ I . When

this happens, one has ξ(T ) = x(T ). In other words, if P ah
T (p) is defined, then so is

P h
T (p), and P h

T (p) = P ah
T (p). Theorem 3.8 implies

ind(P ah
T (p), U) = ind(P h

T (p), U) = deg(−h, U).

This proves the assertion. �

Let us now consider the parametrized equation

(3.19) ẋ = g(x) + λf(t, x), λ ≥ 0,

where f : R ×M → R
k and g : M → R

k are C1 tangent vector fields on M ⊆ R
k,

and f is T -periodic in the first variable. As before P g+λf
T denotes the Poincaré T -

translation operator associated with (3.19). Note that for λ = 0 one has P g
T = Φg

T .
By a starting point of (3.19) we mean a pair (λ, p) ∈ [0,∞) × M such that

P g+λf
T (p) = p. Clearly, (λ, p) is a starting point of (3.19) if and only if the unique

solution of ẋ = g(x) + λf(t, x) starting at p for t = 0 is T -periodic. Observe that
p ∈ M belongs to a T -periodic orbit of (3.19) for λ = 0 if and only if (0, p) is a
starting point. In particular, the set {0}×g−1(0) is made up of starting points, and
will be referred to as the set of trivial starting points (of (3.19)). Of course there
may exist starting points (0, p) which are nontrivial (this happens when p belongs
to a nontrivial T -periodic orbit of (3.19) for λ = 0).

The following results holds.

Theorem 3.14. Let f : R ×M → R
k and g : M → R

k be C1 tangent vector fields
on a manifold M ⊆ R

k, and let f be T -periodic in the first variable. Let U be

a relatively compact open subset of M such that P g+λf
T is defined on U for any

λ ∈ [0, 1], and assume there are no starting points on [0, 1]× ∂U of (3.19). Then

ind(P g+f
T , U) = deg(−g, U).

Proof. Since there are no fixed points of P g
T = Φg

T on ∂U , (Φg
T , U) is admissible for

the fixed point index. Thus, by Theorem 3.8,

(3.20) ind(P g
T , U) = ind(Φg

T , U) = deg(−g, U).
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By assumption, there are no fixed points of P g+λf
T on ∂U for any λ ∈ [0, 1].

Consequently, the map

(p, λ) 7→ P g+λf
T (p)

is an admissible homotopy. The homotopy invariance property of the fixed point
index yields

(3.21) ind(P g
T , U) = ind(P g+f

T , U).

The assertion follows from (3.20) and (3.21). �

Theorem 3.15. Let f : R ×M → R
k and g : M → R

k be C1 tangent vector fields
on a manifold M ⊆ R

k, and let f be T -periodic in the first variable. Let U be a
relatively compact open subset of M such that Φg

T is defined on U and fixed point

free on ∂U . Then, there exists λ0 > 0 such that ind(P g+λf
T , U) is well defined for

0 ≤ λ ≤ λ0, and

ind(P g+λf
T , U) = deg(−g, U).

Proof. Because of Theorem 2.25, the set
{
(λ, p) ∈ [0,∞) ×M : P g+λf

T (p) is defined
}

is open in [0,∞) ×M . Consequently, since by assumption P g
T = Φg

T is defined for

any p in the compact set U , so is the operator P g+λf
T for small values of λ. As the

set of starting points is closed and P g
T is fixed point free on the compact set ∂U ,

there are no starting points on [0, λ0] × ∂U for some λ0 > 0. The assertion now
follows from Theorem 3.14 replacing f by f/λ0. �

Since in the above result we have assumed that (Φg
T , U) is fixed point free on

∂U , as a consequence one has g(p) 6= 0 for all p ∈ ∂U . Thus Theorem 3.15 cannot
be seen as an extension of Theorem 3.11. As far as we know a result which includes
both these cases is still unknown.

An argument as in the proof of Theorem 3.15 yields a similar result for the
parametrized equation

(3.22) ẋ = a(t)g(x) + λf(t, x), λ ≥ 0,

where a : R → R is a T -periodic continuous function, g : M → R
k and f : R×M →

R
k are C1 tangent vector fields, and f is T -periodic in the first variable. As before,

a pair (λ, p) ∈ [0,∞) × M is a starting point for (3.22) if p is a fixed point of

P ag+λf
T .

Theorem 3.16. Assume that a : R → R is a T -periodic continuous function with
nonzero average ā, g : M → R

k and f : R×M → R
k are C1 tangent vector fields on

a manifold M ⊆ R
k, and f is T -periodic in the first variable. Let U be a relatively

compact open subset of M such that P ag
T is defined on U and fixed point free on ∂U .

Then, there exists λ0 > 0 such that ind(P ag+λf
T , U) is well defined for 0 ≤ λ ≤ λ0,

and
ind(P ag+λf

T , U) = (sign ā)m deg(−g, U),

where m is the dimension of the manifold M .

The C1 assumption on the vector fields f and g made throughout this section can
be clearly relaxed. The important requirement is the uniqueness of the solutions
of the initial value problems. Actually, using the techniques described in [FuPe5,
Spa2], the results presented in this section could be extended to the Carathéodory
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case. Namely, when g is locally Lipschitz and f is assumed to satisfy the following
hypotheses:

(C1) for each p ∈M , the map t 7→ f(t, p) is Lebesgue measurable on R;
(C2) for a.a. t ∈ R, the map p 7→ f(t, p) is continuous on M ;
(C3) for any compact set K ⊆ M , there exists γK ∈ L1([0, T ]) such that

|f(t, p)| ≤ γK(t) for a.a. t ∈ [0, T ] and all p ∈ K;
(C4) for any p ∈M , f(t+ T, p) = f(t, p) ∈ TpM a.e. in R;
(C5) for any compact subset K of M , there exists αK ∈ L1([0, T ]) such that

|f(t, p1) − f(t, p2)| ≤ αK(t) |p2 − p1| ,

for a.a. t ∈ R and for any p1, p2 ∈ K.

Conditions (C1) – (C3) are the so-called Carathéodory type assumptions while
(C4) says that f is a time-dependent T -periodic tangent vector field on M . The
assumption (C5) ensures the uniqueness of the solutions of the initial value problems
(compare, e.g., [CoLe]).

In this framework, a solution to (3.19) is an absolutely continuous function
x : J →M ⊆ R

k defined on a (nontrivial) interval and satisfying the condition

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t)

)
, for a.a. t ∈ J.

4. Applications and examples

Below, we shall use the results of the previous section to investigate the structure
of the set of T -periodic solutions of equations (3.12) and (3.19). The possible field of
application ranges from continuation theorems for periodic solutions to multiplicity
results. However, we shall confine ourselves to the simplest applications and only
present those that seem most appropriate to shed light on the results discussed in
the previous section.

We will need the following global connectivity result.

Lemma 4.1 ([FuPe6]). Let X be a locally compact metric space and let K ⊆ X be
nonempty and compact. Assume that any compact subset of X containing K has
nonempty boundary. Then X \K contains a connected set whose closure intersects
K and is not compact.

By Theorem 2.25, the set Ω ⊆ [0,∞) ×M given by

Ω =

{
(λ, p) :

the solution x(·) of (3.19) satisfying
x(0) = p is defined on [0, T ]

}
,

is open. Thus it is locally compact. Clearly Ω contains the set S of all starting
points of (3.19). Observe that S is closed in Ω, though not necessarily closed in
[0,∞) ×M . Therefore it is locally compact.

In the sequel, given any subset A of [0,∞) × M and λ ≥ 0, the symbol Aλ

denotes the slice {x ∈ M : (λ, x) ∈ A} of A.

Theorem 4.2 ([FuSp1]). Let f : R ×M → R
k and g : M → R

k be two C1 tangent
vector fields on a manifold M ⊆ R

k, and let f be T -periodic in the first variable.
Denote by S the set of starting points of (3.19) and let V be an open subset of Ω. If
g−1(0)∩V0 is compact and deg(g, V0) is nonzero, then the set (S∩V )\

(
{0}×g−1(0)

)

of nontrivial starting points in V admits a connected subset whose closure in V
meets {0} × g−1(0) and is not compact.
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Proof. To prove the assertion it is enough to show that the topological pair

(X,K) =
(
S ∩ V, {0}× (g−1(0) ∩ V0)

)

satisfies the assumptions of Lemma 4.1. Since the set S ∩ V is open in the locally
compact set S, it is locally compact as well. Moreover, as deg(g, V0) is nonzero, the
compact set {0}× (g−1(0)∩V0) is nonempty. Assume, by contradiction, that there
exists a compact subset C of S ∩ V containing {0}×

(
g−1(0)∩V0

)
and with empty

boundary in the space S ∩ V . Thus C is open in S ∩ V (in fact it is clopen). As V
is open in [0,∞)×M , C is actually open as a subspace of S. Thus there exists an
open subset W of [0,∞)×M such that S ∩W = C. Because of the compactness of
the slice C0 of C, we may choose W is such a way that the neighborhood W0 of C0

turns out to be relatively compact in M . Moreover, without loss of generality, we
may assume that the boundary of W0 in M does not contain points of S0 (i.e. fixed
points of P g

T = Φg
T ). Thus, applying the excision property of the degree, Theorem

3.8 and formula (2.4), one gets

ind(P g
T ,W0) =deg(−g,W0) = (−1)m deg(g,W0)

= (−1)m deg(g, V0) 6= 0,

where m is the dimension of M . As C is compact, there exists µ > 0 such that

the Poincaré operator P g+µf
T is fixed point free on the slice Wµ. Then, from the

generalized homotopy property and the solution property of the index, we get

ind
(
P g

T ,W0

)
= ind

(
P g+µf

T ,Wµ

)
= 0,

and this is a contradiction. �

A similar (but more general) result can be proved for equation (3.22). The proof
is analogous to that of Theorem 4.2 and, therefore, it will be omitted.

Theorem 4.3 ([Spa3]). Let a : R → R be a continuous function, and let f : R ×
M → R

k and g : M → R
k be two C1 tangent vector fields on M ⊆ R

k. Assume also
that f and a are T -periodic, and that the average of a is nonzero. Denote by S the
set of starting points of (3.22) and let V be an open subset of [0,∞)×M such that

P ag+λf
T (p) is defined for any (λ, p) ∈ V . Assume that deg(g, V0) is well defined and

nonzero. Then the set (S ∩ V ) \
(
{0}× g−1(0)

)
of nontrivial starting points (in V )

of (3.22) admits a connected subset whose closure in V meets {0} × g−1(0) and is
not compact.

The following result regarding equation (3.12) can be proved similarly to Theo-
rem 4.2.

Theorem 4.4 ([FuPe3]). Let f : R ×M → R
k be a C1 tangent vector field which

is T -periodic in the first variable. Denote by S the set of starting points of (3.12)

and let V ⊆ [0,∞)×M be open and such that P λf
T (p) is defined for any (λ, p) ∈ V .

Assume that deg(wf , V0) 6= 0. Then the set (S ∩ V ) \
(
{0} × M

)
of nontrivial

starting points (in V ) of (3.12) admits a connected subset whose closure in V
meets {0} × w−1

f (0) and is not compact.

Below, we give some simple consequences of Theorems 4.2, 4.3 and 4.4 which
illustrate their usefulness in describing the structure of the starting point sets.
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Corollary 4.5. Let M , a, g and f be as in Theorem 4.3. Assume that M is closed
as a subset of R

k and

‖f(t, x)‖ ≤ α+ β‖x‖, ‖g(x)‖ ≤ α+ β‖x‖

for some α, β ≥ 0 and all (t, x) ∈ R×M . If g−1(0) is compact and deg(g,M) 6= 0,
then there exists an unbounded connected set of starting points for (3.22) which
meets {0} × g−1(0).

Proof. Since M is closed in R
k, the assumptions on f and g imply that any (max-

imal) solution of (3.22) is defined on the whole real line. Thus, taking V =
[0,∞)×M , Theorem 4.3 implies the existence a connected set Σ of starting points
for the equation (3.22) whose closure (in [0,∞)×M or, equivalently, in [0,∞)×R

k)
is not compact and meets {0} × g−1(0). This implies that Σ is unbounded. �

We point out that the unbounded set of starting points ensured by Corollary 4.5
may be “completely vertical”; that is, contained in the slice {0}×M of [0,∞)×M .
Of course this may happen only if M is not compact. The following example with
M = R

2 and T = 2π illustrates this phenomenon:
{
ẋ = y
ẏ = −x+ λ sin t

Corollary 4.6. Assume that M is a compact manifold with χ(M) 6= 0. Let a, f
and g be as in Theorem 4.3. Then, there exists a connected set of starting points
Σ for (3.22) which meets {0} × g−1(0) and such that π1(Σ) = [0,∞), where π1

denotes the projection on the first factor of [0,∞) ×M .

Proof. By the compactness of M , any solution of (3.22) is globally defined. We
apply Theorem 4.3 to the open set V = [0,∞)×M . By the Poincaré-Hopf Theorem,
we have deg(g, V0) = χ(M) 6= 0. Therefore there exists a connected set Σ of starting
points of (3.22) which meets {0}×g−1(0) and is not contained in any compact subset
of V . This implies that Σ is unbounded and, M being compact, its projection on
[0,∞) must be unbounded, connected and containing 0. �

An analogous argument proves (see e.g. [FuPe3]) the following consequence of
Theorem 4.4.

Corollary 4.7. Assume that M is a compact manifold with χ(M) 6= 0. Let f
be as in Theorem 4.4. Then there exists an unbounded connected set of starting
points which meets {0} × w−1

f (0). In particular the equation ẋ = f(t, x) admits a
T -periodic solution.

The fact that the global branch ensured by Theorem 4.2 emanates from the set
of zeros of g, and not merely from the set of all T -periodic orbits of ẋ = g(x),
allows us to obtain information about the starting point set of equation (3.22) also
in the case of a compact manifold with zero Euler-Poincaré characteristic, as in the
following multiplicity result. Here the index at an isolated zero z of a tangent vector
field g : M → R

k is defined as deg(g, U), where U is an isolating neighborhood of
z. This makes sense because of the excision property of the degree of a vector field.
In particular, when z is a nondegenerate zero, its index is either +1 or −1.

Corollary 4.8. Let M ⊆ R
k be a compact manifold. Assume that f and g are as

in Theorem 4.2 and, in addition, that g has exactly two distinct zeros z1 and z2
with nonzero index. Denote by S1 and S2 the connected components of the set of
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starting points of (3.19) which contain respectively z1 and z2. Then just one of the
following two possibilities holds:

(1) S1 = S2,
(2) S1 and S2 are disjoint and both unbounded (in [0,∞) ×M).

In particular, if (2) holds, there exist at least two distinct T -periodic solutions of
(3.22) for each λ ∈ [0,∞).

Proof. Since M is compact, any solution of (3.19) is globally defined. Take

V1 = [0,∞) ×M \ {(0, z2)},

V2 = [0,∞) ×M \ {(0, z1)}.

Obviously (0, zi) ∈ Vi and, by the excision property, deg(g, Vi) 6= 0 for i ∈ 1, 2. We
may assume S1 6= S2. In this case S1 and S2, being connected components, are
clearly disjoint and, consequently, S1 ⊆ V1 and S2 ⊆ V2. Because of Theorem 4.2,
S1 and S2 are not contained in any compact subset of V1 and V2 respectively and,
in particular, they are not compact. Now S1 and S2 are closed in the set S of all
starting points of (3.19). Since S is closed in V = [0,∞) ×M , which is closed in
R

k+1, the two components S1 and S2 must be unbounded. �

A remarkable consequence of Theorem 4.4 is the following continuation result
regarding T -periodic solutions (see [FuPe3] for a more general version). Observe
that in Theorems 4.2, 4.3 and 4.4 we have assumed the global existence in [0, T ] of
the solutions of the initial value problem. This hypothesis is not explicitly stated in
Theorem 4.9 below, since it is ensured by suitable a priori bounds on the T -periodic
orbits of the equation (see e.g. [CaMaZa, Kra, Maw]).

Theorem 4.9. Let f : R×M → R
k be a C1 tangent vector field which is T -periodic

in the first variable. Assume that:

(1) deg(wf ,M) is well defined and nonzero;
(2) the T -periodic orbits of (3.12) for λ ∈ (0, 1] lie in a compact subset of M .

Then, the equation

(4.1) ẋ = f(t, x)

has a T -periodic solution.

Proof. Let K be a compact subset of M containing all the zeros of wf and all the
T -periodic orbits of (3.12) for λ ∈ (0, 1], and let U ⊆ M be a relatively compact
open set containing K. Let σ : M → [0, 1] be a C1 function with compact support
in M and such that σ(p) = 1 for each p ∈ U . Since the tangent vector field σf
has compact support, for each (λ, p) ∈ [0,∞) ×M the solution of the initial value
problem

(4.2)

{
ẋ = λσ(x)f(t, x)
x(0) = p

is globally defined on R. We have σwf = wσf . Thus, from the excision property it
follows that

deg(wσf , U) = deg(wf , U) = deg(wf ,M) 6= 0.
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Hence, taking V = [0, 1)×U , Theorem 4.4 implies the existence of a connected set
Σ ⊆ V of starting points of (4.2) which is closed in V , meets w−1

σf (0)∩U = w−1
f (0)

and is not compact. Consider the following subset of Σ:

Σ̃ =

{
(λ, p) ∈ Σ :

the solution x of (4.2) corresponding to
(λ, p) is such that x(t) ∈ U for all t

}
.

As Σ meets w−1
f (0), Σ̃ is nonempty. Moreover, it is easy to check that Σ̃ is open

and closed in Σ. Thus, Σ̃ = Σ. Since σ(p) ≡ 1 in U , this implies that any (λ, p) ∈ Σ
is, in fact, a starting point of (3.12).

Observe that, Σ being noncompact and closed in [0, 1) × U , the closure of Σ in
the compact set [0, 1]×U must intersect the boundary of [0, 1)×U in [0,∞)×M ,
which is the union of [0, 1)× ∂U and {1} × U .

By the continuous dependence on data of the solutions, if (λ, p) is in the closure
of Σ, then it is a starting point. Therefore, by the choice of the compact set K,
one has p ∈ K. As K ⊆ U , the closure of Σ does not intersect the set [0, 1) × ∂U .
Thus, there exists a starting point of (3.12) of the form (1, p), and this proves the
assertion. �

In this section we have introduced only a small number of consequences of
the formulas obtained in Section 3. Among the applications to T -periodic so-
lutions of differential equations not presented here, we mention multiplicity re-
sults, guiding function-like existence results and other continuation results (see e.g.
[FuPe2, Spa1, Spa3]). It should also be remarked that the results of this section,
mainly Theorems 4.2, 4.3 and 4.4, can be reformulated somewhat more elegantly in
an infinite-dimensional framework (see e.g. [FuPe1, FuSp2] and also [FuPe5, Spa2]
for the Carathéodory case).

Since second order ordinary differential equations on a manifoldM can be written
as first order equations on its tangent bundle TM (see e.g. [Fur]), one can apply
the results of Section 3 to this kind of equation (see e.g. [FuPe6, FuSp3], see also
[FuPeSp1, FuPeSp2] and references therein for a discussion of the multiplicity results
obtainable using this methods).
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[Bou] Bouligand G., Introduction à la géométrie infinitesimale directe, Gauthier-Villard,

Paris, 1932.
[Bro] Brown R.F., An elementary proof of the uniqueness of the fixed point index, Pacific

J. Math. 35 (1970), 549-558.
[CaMaZa] Capietto A., Mawhin J., Zanolin F., Continuation theorems for periodic perturbations

of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41-72.
[CoLe] Coddington E.A., Levinson N., Theory of Ordinary Differential Equation, McGraw-

Hill Book Company Inc., New York 1955.
[Cop] Coppel W.A., Stability and asymptotic behavior of differential equations, Heath Math.

Monograph, Boston, 1965.

[DuGr] Dugundji J., Granas A., Fixed Point Theory, Springer-Verlag, New York, 2003.
[Fur] Furi M., Second order differential equations on manifolds and forced oscillations, Topo-

logical Methods in Differential Equations and Inclusions, A. Granas and M. Frigon
Eds., Kluwer Acad. Publ. series C, vol. 472, 1995.



Pr
ep

ri
nt

THE FIXED POINT INDEX OF THE POINCARÉ. . . 33
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