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Abstract

We apply topological methods to the study of the set of harmonic solutions of pe-
riodically perturbed autonomous ordinary differential equations on differentiable
manifolds, allowing the perturbing term to contain a fixed delay.

In the crucial step, in order to cope with the delay, we define a suitable (infinite

dimensional) notion of Poincaré T -translation operator and prove a formula that,

in the unperturbed case, allows the computation of its fixed point index.

1 Introduction

In this paper we shall study the set of harmonic solutions to periodic perturbations
of autonomous ODEs on (smooth) manifolds, allowing for the perturbation to con-
tain a delay. Namely, given T > 0, r ≥ 0 and a manifold M ⊆ Rk, we will consider
the T -periodic solutions to

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
, λ ≥ 0, (1.1)

where g is a tangent vector field on M and f is T -periodic in t and tangent to M
in the second variable (the meaning of these terms will be explained in due course).
Roughly speaking, we will give conditions ensuring the existence of a connected
component of pairs (λ, x), λ ≥ 0 and x a T -periodic solution to the above equation,
that emanates from the set of zeros of g and is not compact. We point out that,
although this result is valid for f and g merely continuous, its proof boils down, by
an approximation procedure, to the case when f and g are C1.
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Carrying out this program requires topological tools like the fixed point index
and the degree (also called the rotation or characteristic) of a tangent vector field,
that shall be briefly recalled in Section 2. In fact, in the case when the perturbation
f is independent of the delay, as in [FS97], the existence of such a connected com-
ponent of T -periodic solutions is based on the computation of the fixed point index
of the translation operator (at time T ) associated to the equation (1.1) when f and
g are C1. This computation is derived from a formula (see e.g. [FS96]) that relates
the degree of g with the fixed point index of the finite dimensional Poincaré T -
translation operator P at time T associated to the unperturbed equation ẋ = g(x).
However, since in our case the perturbing term f contains a delay, the T -translation
operator P must be replaced by its infinite dimensional version. Namely, the oper-
ator Q that to any function ϕ ∈ M̃ := C([−r, 0],M) associates the function of M̃
given by θ 7→ x

(
ϕ(0), θ+T

)
. Here x(p, ·) denotes the unique solution to the Cauchy

problem
ẋ = g(x), x(0) = p.

Clearly P and Q are closely related, although they operate in different spaces, only
one of which is finite dimensional. The relation between these operators is discussed
in Section 3, where we derive a formula that deduces the fixed point index of Q
from the degree of the tangent vector field g.

Let us be more precise about the above mentioned formulas for the fixed point
indices of P and Q. It has been proved in [FS96] that, given U ⊆M open, one has

ind(P,U) = deg(−g, U), (1.2)

provided that the left hand side member of (1.2) is defined. Formula (1.2) is a
generalization of a result of [CMZ92] valid for M = Rk, that was related to an
earlier theorem by Krasnosel’skĭı [Kr68]. This latter result holds for nonautonomous
differential equations on manifolds, but requires a rather restrictive assumption
called T -irreversibility (which, in our settings, simply means that the closure U
of U in M is compact and the map p 7→ x(p, t) is fixed point free on ∂U for all
t ∈ (0, T ]). Equation (1.2) does away with this heavy assumption and allows, by
means of the properties of Commutativity of the fixed point index and Excision of
the degree, to deduce a similar formula for Q. In fact, given W ⊆ M̃ open, we have

ind(Q,W ) = deg(−g,
∨

W ), (1.3)

provided that the left hand side member is defined. Here
∨

W denotes the set of
points of M that, when regarded as constant functions of M̃ , belong to W .

The formula described above for the computation of the fixed point index of
Q allows us, in Sections 4 and 5, to follow the lines of [FS97] in order to prove
our main result about the connected sets of T -periodic solutions (λ, x). We point
out that in Sections 3 and 4 the maps f and g are always considered C1, while in
Section 5 the merely continuous case is considered.

For what concerns the basic theory of delay differential equations we refer to the
book [HL93] and to the paper [Ol69].
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2 Preliminaries and notation

This section is devoted to some facts and notation that will be needed in this paper.
In particular we recall the notions of fixed point index of a map and of degree of a
tangent vector field.

Let us begin with the fixed point index. We recall that a metrizable space E is an
absolute neighborhood retract (ANR) if, whenever it is homeomorphically embedded
as a closed subset C of a metric space X, there exists an open neighborhood U of
C in X and a retraction r : U → C (see e.g. [Bo67, GD03]). Polyhedra and
differentiable manifolds are examples of ANRs. Let us also recall that a continuous
map between topological spaces is called locally compact if it has the property that
each point in its domain has a neighborhood whose image is contained in a compact
set.

Let E be an ANR and let ψ : D(ψ) → E be a locally compact map defined on an
open subset D(ψ) of E. Given an open subset U of D(ψ), if the set Fix (ψ,U) of the
fixed points of ψ in U is compact, then it is well defined an integer, ind(ψ,U), called
the fixed point index of ψ in U (see, e.g. [GD03, Gr72, Nu91]). Roughly speaking,
ind(ψ,U) counts algebraically the elements of Fix (ψ,U).

The fixed point index turns out to be completely determined by the following
four properties that, therefore, could be used as axioms (see [Br70]). Here, E is an
ANR and U ⊆ E is open.

Normalization. Let ψ : E → E be constant. Then ind(ψ,E) = 1.

Additivity. Given a locally compact map ψ : U → E with Fix(ψ,U) compact, if
U1 and U2 are disjoint open subsets of U such that Fix(ψ,U) ⊆ U1 ∪U2, then

ind(ψ,U) = ind(ψ,U1) + ind(ψ,U2).

Homotopy Invariance. Assume that H : U × [0, 1] → E is an admissible ho-
motopy in U ; that is, H is locally compact and the set {(x, λ) ∈ U × [0, 1] :
H(x, λ) = x} is compact. Then

ind
(
H(·, 0), U

)
= ind

(
H(·, 1), U

)
.

Commutativity. Let E1, E2 be ANRs and let U1 ⊆ E1 and U2 ⊆ E2 be open.
Suppose ψ1 : U1 → E2 and ψ2 : U2 → E1 are locally compact maps. If one of
the sets

{x ∈ ψ−1
1 (U2) : ψ2 ◦ ψ1(x) = x} or {y ∈ ψ−1

2 (U1) : ψ1 ◦ ψ2(y) = y}

is compact, then so is the other and

ind
(
ψ2 ◦ ψ1, ψ

−1
1 (U2)

)
= ind

(
ψ1 ◦ ψ2, ψ

−1
2 (U1)

)
.

It is easily shown that the Additivity Property implies the following two impor-
tant ones:
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Solution. Let ψ : U → E be locally compact with Fix(ψ,U) = ∅. Then ind(ψ,U) =
0.

Excision. Given a locally compact map ψ : U → E with Fix(ψ,U) compact, and
an open subset V of U containing Fix(ψ,U), one has ind(ψ,U) = ind(ψ, V ).

From the Homotopy Invariance and Excision properties one could deduce the
following property:

Generalized Homotopy Invariance. Let W ⊆ E × [0, 1] be open. Assume that
H : W → E is locally compact and such that the set {(x, λ) ∈ W : H(x, λ) =
x} is compact. Let Wλ denote the slice Wλ := {x ∈ E : (x, λ) ∈ W}. Then,
ind

(
H(·, λ),Wλ

)
does not depend on λ ∈ [0, 1].

In the case when E is a finite dimensional manifold, the fixed point index is
uniquely determined by the first three properties (see [FPS04]). It is also worth
mentioning that when E = Rn, U is bounded, ψ is defined on U and fixed point
free on ∂U , then ind(ψ,U) is just the Brouwer degree degB(I − ψ,U, 0), where I
denotes the identity on Rn.

We now recall some basic notions about tangent vector fields on manifolds.
Let M ⊆ Rk be a manifold. Given any p ∈ M , TpM ⊆ Rk denotes the tangent

space of M at p. Let w be a tangent vector field on M , that is, a (continuous) map
w : M → Rk with the property that w(p) ∈ TpM for any p ∈ M . If p ∈ M is
such that w(p) = 0, then the Fréchet derivative w′(p) : TpM → Rk maps TpM into
itself (see e.g. [Mi65]), so that the determinant detw′(p) of w′(p) is defined. If, in
addition, p is a nondegenerate zero (i.e. w′(p) : TpM → Rk is injective) then p is an
isolated zero and detw′(p) 6= 0.

Let U be an open subset of M in which we assume w admissible for the degree;
that is, the set w−1(0) ∩ U is compact. Then, one can associate to the pair (w,U)
an integer, deg(w,U), called the degree (or characteristic) of the vector field w in
U , which, roughly speaking, counts (algebraically) the zeros of w in U (see e.g.
[Hi76, Mi65, FPS05] and references therein). For instance, when the zeros of w are
all nondegenerate, then the set w−1(0) ∩ U is finite and

deg(w,U) =
∑

q∈w−1(0)∩U

sign detw′(q).

When M = Rk, deg(w,U) is just the classical Brouwer degree, degB(w, V, 0), where
V is any bounded open neighborhood of w−1(0) ∩ U whose closure is in U . More-
over, when M is a compact manifold, the celebrated Poincaré-Hopf Theorem states
that deg(w,M) coincides with the Euler-Poincaré characteristic χ(M) of M and,
therefore, is independent of w.

For the pourpose of future reference, we mention a few of the properties of the
degree of a tangent vector field that shall be useful in the sequel. Here U is an open
subset of a manifold M ⊆ Rk and g : M → Rk is a tangent vector field.

Solution. If (g, U) is admissible and deg(g, U) 6= 0, then g has a zero in U .
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Additivity. Let (g, U) be admissible. If U1 and U2 are two disjoint open subsets
of U whose union contains g−1(0) ∩ U , then

deg(g, U) = deg(g, U1) + deg(g, U2).

Homotopy Invariance. Let h : U × [0, 1] → Rk be an admissible homotopy of
tangent vector fields; that is, h(x, λ) ∈ TxM for all (x, λ) ∈ U × [0, 1] and
h−1(0) is compact. Then deg

(
h(·, λ), U

)
is independent of λ.

As in the case of the fixed point index, the Additivity Property implies the following
important one:

Excision Let (g, U) be admissible. If V ⊆ U is open and contains g−1(0)∩U , then
deg(g, U) = deg(g, V ).

3 Poincaré-type translation operators

Let M ⊆ Rk be a manifold, and g : M → Rk a tangent vector field on M . Let
f : R×M ×M → Rk be (continuous and) tangent to M in the second variable (i.e.
such that f(t, p, q) ∈ TpM for all (t, p, q) ∈ R×M ×M). Given T > 0, assume also
that f is T -periodic in t.

Given r > 0, consider the following delay differential equation depending on a
parameter λ ≥ 0:

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
. (3.4)

We are interested in the T -periodic solutions of (3.4). Without loss of generality
we will assume that T ≥ r ([Fr07]). In fact, for n ∈ N, equations (3.4) and

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− (r − nT ))

)

have the same T -periodic solutions. Thus, if necessary, one can replace r with
r − nT , where n ∈ N is such that 0 < r − nT ≤ T .

Let us introduce some notation.
Given any X ⊆ Rk, X̃ denotes the metric space C

(
[−r, 0],X) with the distance

inherited from the Banach space R̃k = C([−r, 0],Rk) with the usual supremum

norm. Notice that X̃ is complete if and only if X is closed in Rk. Given any
p ∈M , denote by p̂ ∈ M̃ the constant function p̂(t) ≡ p and, for any U ⊆M , define

Û =
{
p̂ ∈ M̃ : p ∈ U

}
. Also, given W ⊆ M̃ , we put

∨

W =
{
p ∈M : p̂ ∈W

}
.

Observe that, for any given U ⊆M , one has Û ⊆ Ũ and
∨

Ũ = U . It is known (see

e.g. [Ee66]) that M̃ is a smooth infinite dimensional manifold. Actually, it turns

out that it is a C1–ANR (see e.g. [EF76]), as a C1 retract of the open subset Ũ of

R̃k, U being a tubular neighborhood of M in Rk.
Assume now, till further notice, that g is C1. Consider the map Q in M̃ defined

by Q(ϕ)(θ) = x
(
ϕ(0), T + θ

)
, θ ∈ [−r, 0], where x(p, ·) denotes the unique solution
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of the Cauchy problem

ẋ(t) = g
(
x(t)

)
, (3.5a)

x(0) = p. (3.5b)

Well known properties of differential equations imply that the domain D(Q) of Q

is an open subset of M̃ . Also, since T ≥ r, the Ascoli-Arzelà Theorem implies that
Q is a locally compact map (see, e.g. [Ol69]).

Observe that the T -periodic solutions of (3.5a) are in a one-to-one correspon-
dence with the fixed points of Q. We will prove a formula (Theorem 3.2 below) for
the computation of the fixed point index of the admissible pairs (Q,W ), where W
is an open subset of D(Q). Clearly, Q is strictly related to the M -valued Poincaré
map P , given by P (p) = x(p, T ), whose domain is the open subset D(P ) of M con-
sisting of those points p such that the solution x(p, ·) of the above Cauchy problem
is defined up to T .

We shall need the following result of [FS96] about the fixed point index of P .

Theorem 3.1. Let g be as above and let U ⊆ M be open and such that ind(P,U)
is defined. Then, deg(−g, U) is defined as well and

ind(P,U) = deg(−g, U).

There is a simple relation between the domain D(Q) of Q and the domain D(P )

of P . In fact D(Q) = {ϕ ∈ M̃ : ϕ(0) ∈ D(P )}. In particular, D̃(P ) ⊆ D(Q).
Observe also that P (p) = Q(p̂)(0) for all p ∈ D(P ).

Theorem 3.2. Let g, T and Q be as above, and let W ⊆ M̃ be open. If the fixed

point index ind(Q,W ) is defined, then so is deg(−g,
∨

W ) and

ind(Q,W ) = deg(−g,
∨

W ).

Proof. The assumption that ind(Q,W ) is defined means that W ⊆ D(Q) and that

Fix(Q,W ) is compact. Let us show that deg(−g,
∨

W ) is defined too. We need to

prove that g−1(0) ∩
∨

W is compact. If p ∈ g−1(0) ∩
∨

W , then the constant function

p̂ is a fixed point of Q. Thus g−1(0) ∩
∨

W is compact since it can be regarded as a
closed subset of the compact set Fix(Q,W ).

We now use the Commutativity Property of the fixed point index in order to
deduce the desired formula for the fixed point index of Q from the analogous one for
P , expressed in Theorem 3.1. In order to do so, we define the maps h : D(P ) → M̃

and k : M̃ → M by h(p)(θ) = x(p, θ + T ) and k(ϕ) = ϕ(0), respectively. Clearly,
we have

(h ◦ k)(ϕ)(θ) = x
(
ϕ(0), θ + T

)
= Q(ϕ)(θ), ϕ ∈ D(Q), θ ∈ [−r, 0], (3.6)

and

(k ◦ h)(p) = x(p, T ) = P (p), p ∈ D(P ). (3.7)
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Define γ = k|W . By the Commutativity Property of the fixed point index,

ind
(
h ◦ γ, γ−1

(
D(P )

))
is defined if and only if so is ind

(
γ ◦ h, h−1(W )

)
, and

ind
(
h ◦ γ, γ−1

(
D(P )

))
= ind

(
γ ◦ h, h−1(W )

)
. (3.8)

Since W ⊆ D(Q), then γ−1
(
D(P )

)
= W . Hence, from formulas (3.6)–(3.7), it

follows that

ind(Q,W ) = ind
(
h ◦ γ, γ−1

(
D(P )

))
, (3.9)

ind
(
P, h−1(W )

)
= ind

(
γ ◦ h, h−1(W )

)
. (3.10)

Thus, by (3.8), we get

ind(Q,W ) = ind
(
P, h−1(W )

)
. (3.11)

From Theorem 3.1, we obtain

ind
(
P, h−1(W )

)
= deg

(
− g, h−1(W )

)
. (3.12)

From the definition of h it follows immediately that

g−1(0) ∩
∨

W = g−1(0) ∩ h−1(W ).

Therefore, from the Excision Property of the degree of a vector field, one has

deg
(
− g, h−1(W )

)
= deg(−g,

∨

W ) (3.13)

and the assertion follows from equations (3.11), (3.12) and (3.13).

Let W ⊆ D(Q) be open in M̃ . We point out that Theorems 3.1 and 3.2 imply
that the fixed point index of Q in W actually reduces to the fixed point index of

the finite dimensional operator P in
∨

W . Namely,

ind(Q,W ) = ind(P,
∨

W ). (3.14)

In fact, P is defined on
∨

W and Fix(P,
∨

W ) can be regarded as a closed subset of

Fix(Q,W ). Therefore, if ind(Q,W ) is defined, then so is ind(P,
∨

W ) and, applying

Theorems 3.2 and 3.1, we get ind(Q,W ) = deg(−g,
∨

W ) = ind(P,
∨

W ).
Let us remark that the mappings h and k, defined in the proof of Theorem 3.2,

establish a bijection between the fixed point sets of Q and P . However, we should
not think of formula (3.14) as a trivial consequence of this correspondence. In fact,
given W as in Theorem 3.2, we see that h and k induce a one-to-one correspondence
between the fixed points of Q in W and those of P in h−1(W ) but, in general,

Fix
(
P, h−1(W )

)
6= Fix

(
P,

∨

W
)
. Observe also that the “finite dimensional reduction

formula” (3.14) has a clear advantage over the more crude reduction formula (3.11)
obtained in the proof of Theorem 3.2 by means of the Commutativity Property of
the fixed point index (and that derives from the correspondence we just mentioned).

In fact, differently from the set h−1(W ) that appears in (3.11), the open set
∨

W does
not depend on the equation (3.5a).
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4 Branches of starting pairs

Any pair (λ, ϕ) ∈ [0,∞)× M̃ is said to be a starting pair (for (3.4)) if the following
initial value problem has a T -periodic solution:

{
ẋ(t) = g

(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
t > 0,

x(t) = ϕ(t), t ∈ [−r, 0].
(4.15)

A pair of the type (0, p̂) with g(p) = 0 is clearly a starting pair and will be called a
trivial starting pair. The set of all starting pairs for (3.4) will be denoted by S.

Throughout this section we shall assume that f and g are C1, so that (4.15)
admits a unique solution that we shall denote by ξλ(ϕ, ·). Observe that ξ0

(
ϕ(0), ·

)
=

x
(
ϕ(0), ·

)
, where, we recall, x(p, ·) is the unique solutions of the Cauchy problem

(3.5). By known continuous dependence properties of delay differential equations

the set V ⊆ [0,∞) × M̃ given by

V :=
{
(λ, ϕ) : ξλ(ϕ, ·) is defined on [0, T ]

}

is open. Clearly V contains the set S of all starting pairs for (3.4). Observe that

S is closed in V, even if it could be not so in [0,+∞) × M̃ . Moreover, by the
Ascoli-Arzelà Theorem it follows that S is locally compact.

In the sequel, given A ⊆ R × M̃ and λ ∈ R, we will denote the slice {x ∈ M̃ :

(λ, x) ∈ A} by the symbol Aλ. Observe that
∨

V0 = D(P ) where P is the Poincaré
operator defined in the previous section.

In order to study the T -periodic solutions of (1.1), it will be convenient to

introduce, for each λ ≥ 0, the map Qλ : Vλ → M̃ given by

Qλ(ϕ)(θ) = ξλ(ϕ, θ + T ), θ ∈ [−r, 0].

Notice that Q0 coincides with the map Q defined in the previous section.
We will need the following global connectivity result of [FP93].

Lemma 4.1. Let Y be a locally compact metric space and let Z be a compact subset
of Y . Assume that any compact subset of Y containing Y0 has nonempty boundary.
Then Y \ Z contains a connected set whose closure (in Y ) intersects Z and is not
compact.

Proposition 4.1. Assume that f , g, S are as above. Given W ⊆ [0,∞]× M̃ open,

if deg(g,
∨

W 0) is (defined and) nonzero, then the set

(S ∩W ) \
{
(0, p̂) ∈W : g(p) = 0

}

of nontrivial starting pairs in W , admits a connected subset whose closure in S∩W
meets

{
(0, p̂) ∈W : g(p) = 0

}
and is not compact.

Proof. Let us define the open set U = W ∩ V. Since g−1(0) ∩
∨

U0 = g−1(0) ∩
∨

W 0,
and S ∩ U = S ∩W , we need to prove that the set of nontrivial starting pairs in

8



U admits a connected subset whose closure in S ∩ U meets
{
(0, p̂) ∈ U : g(p) = 0

}

and is not compact.
As pointed out before, S is locally compact, thus, U being open, S∩U is locally

compact. Moreover the assumption that deg(g,
∨

W 0) is defined means that the set

{
p ∈

∨

W 0 : g(p) = 0
}

=
{
p ∈

∨

U0 : g(p) = 0
}

is compact. Thus the homeomorphic set {(0, p̂) ∈ U : g(p) = 0} is compact as well.
The assertion will follow applying Lemma 4.1 to the pair

(Y,Z) =
(
S ∩ U,

{
(0, p̂) ∈ U : p ∈ g−1(0)

})
.

In fact, if Σ is a connected set as in the assertion of Lemma 4.1, its closure satisfies
the requirement.

Assume, by contradiction, that there exists a compact subset C of the set S ∩U
of starting pairs of (4.15) in U containing Z and with empty boundary in S ∩ U .
Thus C is a relatively open subset of S ∩U . As a consequence, (S ∩U)\C is closed
in S ∩ U , so the distance, δ = dist

(
C, (S ∩ U) \ C

)
, between C and (S ∩ U) \ C is

nonzero (recall that C is compact). Consider the set

A =
{
(λ, ϕ) ∈ U : dist

(
(λ, ϕ), C

)
< δ/2

}
,

which, clearly, does not meet (S ∩ U) \ C.
Because of the compactness of S ∩ U ∩ A = C, there exists λ > 0 such that

({λ} × Aλ) ∩ S ∩ U = ∅. Moreover, the set S ∩ U ∩ A coincides with {(λ, ϕ) ∈
A : Qλ(ϕ) = ϕ}. Then, from the Generalized Homotopy Invariance Property of the
fixed point index,

0 = ind
(
Qλ, Aλ

)
= ind

(
Qλ, Aλ

)
,

for all λ ∈ [0, λ]. But, by Theorem 3.2 and by the Excision Property of the degree,
we get

ind(Q,A0) = deg(−g,
∨

A0) = deg(−g,
∨

W 0) 6= 0.

That contradicts the previous formula, since Q = Q0.

5 Branches of T -periodic pairs

Let us introduce the function space where most of the work of this section is done.
We will denote by CT (M) the metric subspace of the Banach space

(
CT (Rk) , ‖·‖

)

of all the T -periodic continuous maps x : R →M with the usual C0 norm. Observe
that CT (M) is not complete unless M is complete (i.e. closed in Rk). Nevertheless,
since M is locally compact, CT (M) is always locally complete.

For the sake of simplicity, we will identify M with its image in [0,∞) ×CT (M)
under the embedding which associates to any p ∈ M the pair (0, p̄), p̄ ∈ CT (M)
being the map constantly equal to p. According to these identifications, if E is a
subset of [0,∞) ×CT (M), by E ∩M we mean the subset of M given by all p ∈M
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such that the pair (0, p̄) belongs to E. Observe that if Ω ⊆ [0,∞)×CT (M) is open,
then so is Ω ∩M .

A pair (λ, x) ∈ [0,∞)×CT (M), where x a solution of (3.4), is called a T -periodic
pair (for (3.4)). Those T -periodic pairs that are of the particular form (0, p) are
said to be trivial. Observe that (0, p) ∈ [0,∞) ×CT (M) is a trivial T -periodic pair
if and only if g(p) = 0. We point out that if x is a nonconstant T -periodic solution
of the unperturbed equation ẋ(t) = g

(
x(t)

)
, then (0, x) is a nontrivial T -periodic

pair.
We are now in a position to state our main result. The proof is inspired by

[FS96, FP93].

Theorem 5.1. Let g : M → Rk be a tangent vector field on M and, given T > 0,
let f : R × M × M → Rk be T -periodic in the first variable and tangent to M
in the second one. Let Ω be an open subset of [0,∞) × CT (M), and assume that
deg(g,Ω∩M) is defined and nonzero. Then Ω contains a connected set of nontrivial
T -periodic pairs whose closure in Ω meets the set {(0, p) ∈ Ω : g(p) = 0} and is not
compact.

In particular, the set of T -periodic pairs for (3.4) contains a connected com-
ponent that meets {(0, p) ∈ Ω : g(p) = 0} and whose intersection with Ω is not
compact.

Proof. Denote by X the set of T -periodic pairs of (3.4) and by S the set of starting
pairs of the same equation; that is, of all pairs

(
λ, x|[−r,0]

)
with (λ, x) ∈ X, x|[−r,0]

being the restriction to [−r, 0] of x.
Assume first that f and g are smooth. Define the map h : X → S by h(λ, x) =(

λ, x|[−r,0]

)
and observe that h is continuous, onto and, since f and g are smooth,

it is also one to one. Furthermore, by the continuous dependence on data, h−1 :
S → X is continuous as well.

Take

SΩ = {(λ, ϕ) ∈ S : the solution of (3.4) is contained in Ω} .

So that X ∩ Ω and SΩ correspond under the homeomorphism h : X → S. Thus,
SΩ is an open subset of S and, consequently, we can find an open subset W of
[0,∞) × M̃ such that S ∩W = SΩ. This implies

{
p ∈

∨

W 0 : g(p) = 0
}

=
{
p ∈M : (0, p̂) ∈W, g(p) = 0

}
=

=
{
p ∈M : (0, p) ∈ Ω, g(p) = 0

}
=

{
p ∈ Ω ∩M : g(p) = 0

}
.

Thus, by excision, deg(g,
∨

W 0) = deg(g,Ω ∩M) 6= 0. Applying Proposition 4.1, we
get the existence of a connected set

Σ ⊆ (S ∩W ) \
{
(0, p̂) ∈W : g(p) = 0

}

whose closure in S ∩W meets
{
(0, p̂) ∈W : g(p) = 0

}
and is not compact.

Observe that the trivial T -periodic pairs correspond to the trivial starting pairs
under the homeomorphism h. Thus, Γ = h−1(Σ) ⊆ X ∩ Ω is a connected set of
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nontrivial T -periodic pairs whose closure in X ∩ Ω meets {(0, p) ∈ Ω : g(p) = 0}
and is not compact. Since X is closed in [0,∞)×CT (M), the closures of Γ in X ∩Ω
and in Ω coincide. This proves that Γ satisfies the requirements of the first part of
the assertion.

Let us remove the smoothness assumption on g and f . As above, it is enough to
show the existence of a connected set Γ of nontrivial T -periodic pairs whose closure
in X ∩ Ω meets {(0, p) ∈ Ω : g(p) = 0} and is not compact.

Observe that the closed subset X of [0,∞)×CT (M) is locally compact because
of Ascoli-Arzelà Theorem. It is convenient to introduce the following subset of X:

Υ =
{
(0, p) ∈ [0,∞) × CT (M) : g(p) = 0

}
.

Take
Y = X ∩ Ω and Z = Υ ∩ Ω

and notice that Y is locally compact as an open subset of X. Moreover, Z is a
compact subset of Y (recall that, by assumption, deg(g,M ∩ Ω) is defined). Since
Y is closed in Ω, we only have to prove that the pair (Y,Z) satisfies the hypothesis
of Lemma 4.1. Assume the contrary. Thus, we can find a relatively open compact
subset C of Y containing Z. Similarly to the proof of Proposition 4.1, given 0 <
ρ < dist(C, Y \ C), we consider the set Aρ of all pairs (λ, ϕ) ∈ Ω whose distance
from C is smaller than ρ. Thus, Aρ ∩Y = C and ∂Aρ ∩Y = ∅. We can also assume
that the closure Aρ of Aρ in [0,∞)×CT (M) is contained in Ω. Since C is compact
and [0,∞) ×M is locally compact, we can take Aρ in such a way that the set

{(
λ , x(t), x(t− r)

)
∈ [0,∞) ×M ×M : (λ, x) ∈ Aρ, t ∈ [0, T ]

}

is contained in a compact subset of [0,∞) × M × M . This implies that Aρ is
bounded with complete closure and Aρ∩M is a relatively compact subset of Ω∩M .
In particular g is nonzero on the boundary of Aρ∩M (relative to M). By well known
approximation results on manifolds, we can find sequences {gi} and {fi} of smooth
maps uniformly approximating g and f , and such that the following properties hold
for all i ∈ N:

• gi(p) ∈ TpM for all p ∈M ;

• fi(t, p, q) ∈ TpM for all (t, p, q) ∈ R ×M ×M ;

• fi is T -periodic in the first variable.

For i ∈ N large enough, we get

deg(gi, A
ρ ∩M) = deg(g,Aρ ∩M).

Furthermore, by excision,

deg(g,Aρ ∩M) = deg(g,Ω ∩M) 6= 0.

Therefore, given i large enough, the first part of the proof can be applied to the
equation

ẋ(t) = gi

(
x(t)

)
+ λfi

(
t, x(t), x(t− r)

)
. (5.16)
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Let Xi denote the set of T -periodic pairs of (5.16) and put

Υi =
{
(0, p) ∈ [0,∞) × CT (M) : gi(p) = 0

}
.

Because of the first part of the proof, there exists a connected subset Γi of Aρ whose
closure in Aρ meets Υi ∩ A

ρ and is not compact. Let us denote by Γi and Aρ the
closures in [0,∞) × CT (M) of Γi and Aρ, respectively.

Let us show that, for i large enough, Γi ∩ ∂A
ρ 6= ∅. Thus, Xi being closed, we

get Γi ⊆ Xi. This will imply the existence of a T -periodic pair (λi, xi) ∈ ∂Aρ of
(5.16). It is enough to prove that Γi is compact. In fact, if this is true and if we
assume Γi ∩ ∂Aρ = ∅, then Γi ⊆ Aρ which implies that the closure of Γi in Aρ

coincides with the compact set Γi, and this is a contradiction. The compactness of
Γi, for i large enough, follows from the completeness of Aρ and the fact that, by the
Ascoli-Arzelà Theorem, Γi is totally bounded, when i is sufficiently large. Thus, for
i large enough, there exists a T -periodic pair (λi, xi) ∈ ∂Aρ of (5.16).

Again by Ascoli-Arzelà Theorem, we may assume that xi → x0 in CT (M) and
λi → λ0 with (λ0, x0) ∈ ∂Aρ. Passing to the limit in equation (5.16), it is not
difficult to show that (λ0, x0) is a T -periodic pair of (3.4) in ∂Aρ. This contradicts
the assumption ∂Aρ ∩ Y = ∅ and proves the first part of the assertion.

Let us prove the last part of the assertion. Consider the connected component
Ξ of X that contains the connected set Γ of the first part of the assertion. We shall
now show that Ξ has the required properties. Clearly, Ξ meets the set

{
(0, p) ∈

Ω : g(p) = 0
}

because the closure Γ
Ω

of Γ in Ω does. Moreover, Ξ ∩ Ω cannot

be compact, since Ξ ∩ Ω, as a closed subset of Ω, contains Γ
Ω
, and Γ

Ω
is not

compact.

The following corollary, in the case of a compact boundaryless manifolds, extends
a result of [BCFP07] in which g is identically zero.

Corollary 5.1. Let f and g be as in Theorem 5.1 and let M ⊆ Rk be compact
with nonzero Euler-Poincaré characteristic χ(M). Then, there exists an unbounded
connected set of nontrivial T -periodic pairs whose closure meets {(0, p) ∈ [0,∞) ×
CT (M) : g(p) = 0}. In particular, equation (4.15) has a solution for any λ ≥ 0.

Proof. Since M is compact, [0,∞)×CT (M) is a complete metric space. Moreover,
the Ascoli-Arzelà Theorem implies that any bounded set of T -periodic pairs is
totally bounded. The Poincaré-Hopf Theorem yields deg(g,M) = χ(M) 6= 0. Thus,
Theorem 5.1 implies the existence of an unbounded connected set Γ of nontrivial
T -periodic pairs whose closure in [0,∞)×CT (M) meets {(0, p) ∈ [0,∞)×CT (M) :
g(p) = 0}. The last assertion follows from the fact that CT (M) is bounded while Γ
is unbounded.

Corollary 5.2. Let f and g be as in Theorem 5.1. Assume that M is closed as
a subset of Rk. Let Ω ⊆ [0,∞) × CT (M) be open and such that deg(g,Ω ∩M) is
defined and nonzero. Then there exists a connected component Γ of T -periodic pairs
that meets

{
(0, p) ∈ Ω : g(p) = 0

}
and cannot be both bounded and contained in Ω.

In particular, if Ω is bounded, then Γ ∩ ∂Ω 6= ∅.
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Proof. Since M is a closed subset of Rk, [0,∞) × CT (M) is complete. Moreover,
the Ascoli-Arzelà Theorem implies that any bounded set of T -periodic pairs is
totally bounded. Thus, the first part of the assertion follows from Theorem 5.1.
The last part of the assertion follows from the fact that Γ is connected and that
∅ 6= Γ ∩ Ω 6= Γ.

To better understand the meaning of Corollary 5.2, consider for example the
case when M = Rm. If g−1(0) is compact and deg(g,Rm) 6= 0, then there exists
an unbounded connected set of T -periodic pairs in [0,∞) × CT (Rm) which meets
the set {(0, p) ∈ [0,∞) × CT (M) : g(p) = 0}, that can be identified with g−1(0).
The existence of this unbounded connected set cannot be destroyed by a particular
choice of f . However it is possibly “completely vertical”, i.e. contained in the slice
{0} × CT (M). This peculiarity is exhibited, for instance, by the set of T -periodic
pairs of the equation {

ẋ = y,
ẏ = −x+ λ sin t,

where M = R2 and T = 2π.
A somewhat opposite behavior is shown by the set X of T -periodic pairs for

(3.4) in the “degenerate” situation when f(t, p, q) ≡ 0. In this case, X consists
of the pairs (λ, x), where λ ≥ 0 and x is a T -periodic solution to ẋ = g(x). In
particular, given any p ∈ M such that g(p) = 0, the connected component Γ of X
containing {0}×p contains the “horizontal” set [0,+∞)×{p} and, clearly, satisfies
the requirement of Corollary 5.2.
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[Kr68] M. A. Krasnosel’skĭı, Translation Along Trajectories of Differential Equa-

tions, Transl. Math. Monographs vol. 19, Amer. Math. Soc. Providence, R. I.
1968.

[Mi65] J. W. Milnor, Topology from the differentiable viewpoint, Univ. press of Vir-
ginia, Charlottesville, 1965.

[Nu91] R. D. Nussbaum, The fixed point index and fixed points theorems, C.I.M.E.
course on topological methods for ordinary differential equations, eds M. Furi
and P. Zecca, Lecture notes in Math. 1537, Springer Verlag 1991, 143–205.

[Ol69] W. M. Oliva, Functional differential equations on compact manifolds and an

approximation theorem, J. Differential Equations 5 (1969), 483–496.

14


