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1. INTRODUCTION

This-paper is devoted to studying the set of oscillations of a mass point, con-
strained to a smooth manifold, and forced by an autonomous vector field G with a
periodic perturbation F. We focus on a class of systems where G is “degenerate”:
its set of zeros being a noncompact submanifold of the constraint. There seem to
be no results in the literature for this general case while the “extreme” cases (i.e.,
when G = () or G1(0) is compact) are well understood. For instance, in [2] there
are-studied branches of T-periodic solutions to second order differential equations
of the form

(E1) & =MF(tEE)  A>0,
where. [’ is\tangent to a given differentiable manifold X and is 7T-periodic in ¢,
under the assumption that the averaged vector field

T 1 T
pH][ F(t,p,0) dt == 7/ F(t,p,0) dt
0 T 0

is"admissible-for-the-degree (that is, the set of its zeros is compact). In [4], T-
periodic solutions to equations of the form

(E2) & =G0 +AF(,6E)  A=0,

are studied under the assumption that G is admissible for the degree. In this case,
the average of F' plays no role. As we said, little is known about the case when
G(-,0)71(0)\is noncompact.

In this paper we wish to address, at least partially, this problem. We examine the
case when X|is the Cartesian product of two manifolds and G is constantly zero on
one of them/ In particular, this approach allows us to recover known results about
(E¥yand (E2).

Let™M and N be two smooth manifolds in R¥. Consider the following system of
two coupled second order ODEs:

(1.1) { ‘ié‘ﬂ'j\/] = Af(t7 x’ $7 y) y')?
oy = 9(@, Ly, 9) + Ah(t, x, 8,9, 9),
under the following assumptions on vector fields f, h, g:

(i) f:RxTM x TN — RF is continuous, T-periodic in ¢ and tangent
to M, that is: f(t,p,v,q,w) € T,M forallt e R,pe M, v e T,M,
g€ N, weT,N,

(ii) h: RxTM x TN — R* is continuous, T-periodic in ¢ and tangent
to N,

(iii) g: TM x TN — R* is continuous and tangent to N.

(A1)
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In (1.1) A is a nonnegative parameter and the subscripts 7, 7n denote the projec-
tions on the tangent spaces to M and N, respectively. That is, for example, Z,, (t)
denotes-the orthogonal projection of the acceleration #(t) € R¥ onto ToyM.

In studying (1.1), the following vector field, tangent to M x N, is of importance:

T
viMxN—RxRF  u(p,q) = <][ f(t,p,0,4,0) dt, g(p,O,q,0)> :
0

Given a manifold X C R*, by C(X) we denote the space of T-periodic C! functions
from R to X, with the topology inherited from the Banach space C! ([O,T],RS).
We-will also identify points on X with constant functions from R to X. Thus, if S
is a subset of Ch(X), by SN X we mean the set of those points of X, that regarded
as constant maps belong to S.

Our main result is the following:

Theorem 1.1. Assume (A1) and let 2 be an open subset of [0,00) x CH(M x N)
such-that

deg(v, Q2N (M x N))

is~well_defined and nonzero. Then there exists a connected set I' C ) enjoying the
properties:

(i)Nevery triple (\,z,y) € T is a solution to (1.1),
(ii) of (Mz,y) € T then the parameter X\ > 0 or (x,y) € M x N (that is, (x,y)
is not constant),
(iii) L NL{0} x v=1(0)) N # O, where T stands for the closure of T in [0, 00) x
CHALx ),
(iv) TN Q is not contained in any compact subset of 2.

In particular, if M x N is closed in R** and Q = [0,00) x Ch(M x N) then T is
unbounded.

When either N or M is a singleton, our result reduces to Theorem 2.2 of [2] and
Theorem 4.2, of [4], respectively.

The structure of this short paper is as follows. In Section 2 we compute the
fixed point index of the T-translation operator associated to the reduced first order
systém, which is a version of (1.1) on the tangent bundle T (M x N). Section 3
contains the proof of Theorem 1.1 and an example illustrating the theory.

The results presented here are in the spirit of [5] where the first order case
is discussed. The techniques we use are close to those of, e.g. [2, 4], therefore we
describe only the main new ingredients and refer to those papers for a more detailed
exposition.

2. REDUCTION TO A FIRST ORDER SYSTEM.

Towards a proof of Theorem 1.1, we conveniently express the system (1.1) in the
first order form. Given a manifold M, one can prove (see, e.g. [1]) that there exists
a unique smooth map ry; : TM — R¥ such that for any C? curve z : R — M,
rar((t), #(t)) is the orthogonal projection of #(t) onto Ty (M)+. The map ryy
satisfies, in particular, rps(p,v) € (T, M)+ and:

(2.1) Irar (2(t), 2(t))| = mar(x(t), &(1)) - [£(8)]%,
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where k7 (p, v) is the normal curvature of M at p in the direction of v. Hence (1.1)
can be equivalently written as a first order system on TM x T'N:

il = T2,

$2 = TM(Z'l,fEQ) + Af(t,$1,$2,y1,y2)a
(2.2) .

Y1 = Y2,

U2 = rn(y1,y2) + 9(x1, 22, y1,y2) + At 21, 22, 41, Y2).

For ¢t > 0, denote by P;*(p, v, q,w) the value at time ¢ (when defined) of the solution
to (2.2) which takes as initial values:

(2.3) z1(0) = p, 22(0) = v, y1(0) = ¢, y2(0) = w.
Lemma-2.1. Let f,g,h be C! vector fields satisfying (A1). Assume that for some
relatively compact open subset U of TM x TN we have that:

(i) P2 is well defined on U,
(ii) every fived point of PY on OU corresponds to a constant solution of (1.1),

(331791) = (pa q)7
(iil) v has no zeros on the boundary (in M x N ) of the set UN (M x N).

Then for X\ > 0 sufficiently small:
ind(Pp,U) = deg (v,U N (M x N)).

Proof~For a given A > 0 and p € [0,1], let H(\, p,v,q,w, ) € TM x TN be the
value at ‘time T of the solution to:

Ty = 9,
i = ru(z1,T2)

(24) +A(/U‘f(t7$11 z2ay17y2) + (1 - ,LL) f()T f(ta'rlax27y17 y2) dt)y
yl =Yz

U2 = rn(y1,y2) + 9(x1, 22, Y1, y2) + Aph(t, z1, 22, 41, y2),

satisfying. (2.3).

1.~We fitst claim that for every small A, the mapping H (), -) : Ux[0,1] — TM x
TN is an admissible homotopy for the fixed point index. We argue by contradiction
and assume that there are sequences A\; — 0, u; — po € [0,1], (pi, vi, qi, w;) —
(po,vo, qo, wg) € OU such that the corresponding solutions (zt,x%,yi,y%) of (2.4)
satisfy 24 (7) = pi, 25(T) = v;, ¥i(T) = ¢, y5(T) = w;. Clearly the sequence
(x4 2h, yisys) converges uniformly on [0,7] to a T-periodic solution of (2.2) with
A =0-Tn view of (ii), there must be vy = 0, wg = 0 and

(25) g(p0a07QO70) =0.

We will now show that also v(pg, go) = 0 and hence obtain a contradiction with
(iii)=By<(2:1) and in view of the periodicity of (z¢,z%) we have:

T T T T 2
/0 e (2 (), 24())] dt < €y / wi(1)[2 dt < C, / (/ |¢;<s>ds) dt

T T
< CQTQ/ G (0|2 dt < 03/ g (2 (8), 2 (£)|? dt + C5A2,
0 0

(2.6)

where Cp, C5 and C3 are positive constants which may depend on T, f and the
geometry of M but are independent of i. To see the second inequality in (2.6),
notice that x% is the derivative of a periodic function z¢, and thus any component
of 2 must have a zero in [0, T.
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The last inequality in (2.6) follows from (2.4) and the following simple calcula-

tion:
T
I

2

T
W (b2 ) + (1 —mf s ah gt h) ds| dt
0

= [ g fo2
0 0

The last quantity above is clearly bounded, independently of 7, because all trajec-
tories (z%,xh, yt, y4) are contained in a compact region of TM x T'N.
Using-(2+1) again and since =} converges to 0, we obtain for sufficiently large i:
T

T
Cy /0 [ras (@ (0, 251" dt < %/O [raea (0), 22(0)] dt,
Thus, by (2.6):

T
g/ (62 )| d
0

T
[ Irana 0. 0] de < 20002,
0

Integrating-on [0, T the second equation in (2.4) we get:

T T
/ F(tat ahy g yl) de / rar (@ (1), 24(1)) dt| < 205N,
0 0

1
=%

which after passing to the limit implies: 0 = fOT f(t,po,0,q0,0) dt. Hence by (2.5)
we obtain v(pg, go) = 0.

2. By the homotopy invariance of the fixed point index, we conclude that for
every small/\ > 0 there holds:

ind (Pp,U) =ind (H(\,-,u=0),U).
Thelast-index-above-is by Theorem 2.1 [3] equal to deg (—vx,U), where

T
V/\(anaQaw) = <U7TM(p7’U) +)‘][ f(t,p7'U7q,w) dtawarN(Q7w) +g(pavaqaw)> -
0

Further) Lemma 3.2 [4] implies that:
deg (—vx,U) =deg (7n,UN (M x N))
where 74 (p,q) = (A fOT f(t,p,0,q,0) dt, g(p,0,¢,0)). On the other hand, clearly:
deg (7, UN (M x N)) =deg (v,UN (M x N))
which ends the proof of the Lemma. |

3. A PROOF OF THEOREM 1.1 AND AN EXAMPLE
We-will-use the following abstract result from [2]:

Lemma-3:1. Let Y be a locally compact metric space and let K be a nonempty,
compact subset of it. Assume that any compact subset of Y containing K has
nonempty boundary. Then Y \ K contains a connected set whose closure intersects
K and is not compact.

Proof of Theorem 1.1. We prove the result under the additional assumption that
f,g,h are C'. The extension to nonsmooth vector fields follows in a straightforward
manner, as in [5].

Let W be the subset of [0,00) x TM x TN given by:

W = {(X,21(0),22(0),y1(0),42(0)); (A, 21, 22,91,92) € 2},
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and set

S =Wn{Az1(0),22(0),y1(0),y2(0)); (A, z1,22,y1,y2) solves (2.2)},

K =80 ({0} x v~ 1(0)).

We will prove that the set S\ K has a connected subset which meets K and whose
closure is not compact. This will be done by checking the assumptions of Lemma
3.1 for the pair (Y, K) with:

Y =S\ {(0,p,0,¢,0); g(p,0,q,0) =0 and v(p,q) # 0}.

In the sequel, given any set A C [0,00) x TM x TN and A > 0, we will denote
Ay ={(p,vyq,w); (A\,p,v,q,w) € A}.

Firstly;since by assumption we have deg (v, Wy) # 0, we conclude that K must
be nonempty. Because of the regularity of g, arguing as in the first part of the proof
of Lemma 2.1 one can show that any sequence (A\;, p;,v;, qi,w;) € S with A\; — 0%
converges to a point in Y, and conclude that Y is locally compact.

Assume now, by contradiction, that Y has a compact subset C', containing K
and with empty boundary in Y. Choose an open set A C W so that ANY = C
and 9ANS = (). In particular 94g N K = (). Now, by Lemma 2.1 we see that for a
sufficiently small A > 0:

ind (Pp, Ay) = deg (v, Ay N (M x N))

(34 — deg (v, Ao N (M x N)) = deg (v, Wo) % 0.

On the other/hand, the map § — ind (P, As) is constant in view of the generalized
homotopy invariance of the fixed point index. Recalling the compactness of C, its
value_must/equal 0 for some & > 0, when Pq‘i has no fixed points in As. This,
however, contradicts (8.1) and ends the proof of the theorem. |

Observe that the connected set I' in Theorem 1.1 might be contained in the slice
{0} x CL(M x N), as in the system:

&= Af(tz,y),
§ = —y + Asint,

where we put M = N =R, T = 27.

Example. Let n € N be an odd number and consider the two coupled ODEs:

§=plr—y)" + f(t),

describing the mechanical system as in the figure below.

57 vt A

There are two equal masses P; and P, and a fixed point O confined to a linear rail
and connected by two springs: a nonlinear spring Sy (whose elastic force is pro-
portional to the n-th power of the displacement) and a linear spring S;. Moreover,
P, is subject to friction and P, to a T-periodic force f with nonzero average. In
(3.2) a > 0 is the friction coefficient and p > 0 is a parameter used to control the
stiffness of Ss.
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We apply Theorem 1.1 to show that for small g > 0, (3.2) admits a T-periodic
solution. With the change of variable A = u”, £ = Az, n = Ay the system becomes:

i =A((€ =)+ £0)).
Take = [0,00) x CL(R?), and notice that the degree of the vector field
T
v(p,q) = ((p -q)" +][ f@t) dt, —q)
0
relative to 2 NR? is nonzero. By Theorem (1.1), (3.3) has an unbounded connected

1/n
set of of T-periodic solutions that branches from <O, - (fOT f(t) dt) ,0). This

(3.3)

proves the claim.
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