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1. Introduction

This paper is devoted to studying the set of oscillations of a mass point, con-
strained to a smooth manifold, and forced by an autonomous vector field G with a
periodic perturbation F . We focus on a class of systems where G is “degenerate”:
its set of zeros being a noncompact submanifold of the constraint. There seem to
be no results in the literature for this general case while the “extreme” cases (i.e.,
when G ≡ 0 or G−1(0) is compact) are well understood. For instance, in [2] there
are studied branches of T -periodic solutions to second order differential equations
of the form

(E1) ξ̈π = λF (t, ξ, ξ̇) λ ≥ 0,

where F is tangent to a given differentiable manifold X and is T -periodic in t,
under the assumption that the averaged vector field

p 7→

� T

0

F (t, p, 0) dt :=
1

T � T

0

F (t, p, 0) dt

is admissible for the degree (that is, the set of its zeros is compact). In [4], T -
periodic solutions to equations of the form

(E2) ξ̈π = G(ξ, ξ̇) + λF (t, ξ, ξ̇) λ ≥ 0,

are studied under the assumption that G is admissible for the degree. In this case,
the average of F plays no role. As we said, little is known about the case when
G(·, 0)−1(0) is noncompact.

In this paper we wish to address, at least partially, this problem. We examine the
case when X is the Cartesian product of two manifolds and G is constantly zero on
one of them. In particular, this approach allows us to recover known results about
(E1) and (E2).

Let M and N be two smooth manifolds in R
k. Consider the following system of

two coupled second order ODEs:

(1.1)

{

ẍπM
= λf(t, x, ẋ, y, ẏ),

ÿπN
= g(x, ẋ, y, ẏ) + λh(t, x, ẋ, y, ẏ),

under the following assumptions on vector fields f, h, g:

(A1)

(i) f : R×TM ×TN −→ R
k is continuous, T -periodic in t and tangent

to M , that is: f(t, p, v, q, w) ∈ TpM for all t ∈ R, p ∈ M , v ∈ TpM ,
q ∈ N , w ∈ TqN ,

(ii) h : R×TM ×TN −→ R
k is continuous, T -periodic in t and tangent

to N ,
(iii) g : TM × TN −→ R

k is continuous and tangent to N .
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In (1.1) λ is a nonnegative parameter and the subscripts πM , πN denote the projec-
tions on the tangent spaces to M and N , respectively. That is, for example, ẍπM

(t)
denotes the orthogonal projection of the acceleration ẍ(t) ∈ R

k onto Tx(t)M .
In studying (1.1), the following vector field, tangent to M ×N , is of importance:

ν : M × N −→ R
k × R

k, ν(p, q) =

( � T

0

f(t, p, 0, q, 0) dt, g(p, 0, q, 0)

)

.

Given a manifold X ⊂ R
s, by C1

T (X) we denote the space of T -periodic C1 functions
from R to X, with the topology inherited from the Banach space C1

(

[0, T ], Rs
)

.
We will also identify points on X with constant functions from R to X. Thus, if S

is a subset of C1
T (X), by S ∩X we mean the set of those points of X, that regarded

as constant maps belong to S.
Our main result is the following:

Theorem 1.1. Assume (A1) and let Ω be an open subset of [0,∞) × C1
T (M × N)

such that

deg(ν,Ω ∩ (M × N))

is well defined and nonzero. Then there exists a connected set Γ ⊂ Ω enjoying the
properties:

(i) every triple (λ, x, y) ∈ Γ is a solution to (1.1),
(ii) if (λ, x, y) ∈ Γ then the parameter λ > 0 or (x, y) 6∈ M × N (that is, (x, y)

is not constant),
(iii) Γ̄∩ ({0}× ν−1(0))∩Ω 6= ∅, where Γ̄ stands for the closure of Γ in [0,∞)×

C1
T (M × N),

(iv) Γ̄ ∩ Ω is not contained in any compact subset of Ω.

In particular, if M × N is closed in R
2k and Ω = [0,∞) × C1

T (M × N) then Γ is
unbounded.

When either N or M is a singleton, our result reduces to Theorem 2.2 of [2] and
Theorem 4.2 of [4], respectively.

The structure of this short paper is as follows. In Section 2 we compute the
fixed point index of the T -translation operator associated to the reduced first order
system, which is a version of (1.1) on the tangent bundle T (M × N). Section 3
contains the proof of Theorem 1.1 and an example illustrating the theory.

The results presented here are in the spirit of [5] where the first order case
is discussed. The techniques we use are close to those of, e.g. [2, 4], therefore we
describe only the main new ingredients and refer to those papers for a more detailed
exposition.

2. Reduction to a first order system.

Towards a proof of Theorem 1.1, we conveniently express the system (1.1) in the
first order form. Given a manifold M , one can prove (see, e.g. [1]) that there exists
a unique smooth map rM : TM −→ R

k such that for any C2 curve x : R −→ M ,
rM (x(t), ẋ(t)) is the orthogonal projection of ẍ(t) onto Tx(t)(M)⊥. The map rM

satisfies, in particular, rM (p, v) ∈ (TpM)⊥ and:

(2.1) |rM (x(t), ẋ(t))| = κM (x(t), ẋ(t)) · |ẋ(t)|2,
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where κM (p, v) is the normal curvature of M at p in the direction of v. Hence (1.1)
can be equivalently written as a first order system on TM × TN :

(2.2)















ẋ1 = x2,

ẋ2 = rM (x1, x2) + λf(t, x1, x2, y1, y2),
ẏ1 = y2,

ẏ2 = rN (y1, y2) + g(x1, x2, y1, y2) + λh(t, x1, x2, y1, y2).

For t ≥ 0, denote by P λ
t (p, v, q, w) the value at time t (when defined) of the solution

to (2.2) which takes as initial values:

(2.3) x1(0) = p, x2(0) = v, y1(0) = q, y2(0) = w.

Lemma 2.1. Let f, g, h be C1 vector fields satisfying (A1). Assume that for some
relatively compact open subset U of TM × TN we have that:

(i) P 0
T is well defined on Ū ,

(ii) every fixed point of P 0
T on ∂U corresponds to a constant solution of (1.1),

(x1, y1) = (p, q),
(iii) ν has no zeros on the boundary (in M × N) of the set U ∩ (M × N).

Then for λ > 0 sufficiently small:

ind(Pλ
T , U) = deg

(

ν, U ∩ (M × N)
)

.

Proof. For a given λ ≥ 0 and µ ∈ [0, 1], let H(λ, p, v, q, w, µ) ∈ TM × TN be the
value at time T of the solution to:

(2.4)



























ẋ1 = x2,

ẋ2 = rM (x1, x2)

+λ
(

µf(t, x1, x2, y1, y2) + (1 − µ) � T

0
f(t, x1, x2, y1, y2) dt

)

,

ẏ1 = y2,

ẏ2 = rN (y1, y2) + g(x1, x2, y1, y2) + λµh(t, x1, x2, y1, y2),

satisfying (2.3).
1. We first claim that for every small λ, the mapping H(λ, ·) : Ū×[0, 1] −→ TM×

TN is an admissible homotopy for the fixed point index. We argue by contradiction
and assume that there are sequences λi → 0, µi → µ0 ∈ [0, 1], (pi, vi, qi, wi) →
(p0, v0, q0, w0) ∈ ∂U such that the corresponding solutions (xi

1, x
i
2, y

i
1, y

i
2) of (2.4)

satisfy xi
1(T ) = pi, xi

2(T ) = vi, yi
1(T ) = qi, yi

2(T ) = wi. Clearly the sequence
(xi

1, x
i
2, y

i
i , y

i
2) converges uniformly on [0, T ] to a T -periodic solution of (2.2) with

λ = 0. In view of (ii), there must be v0 = 0, w0 = 0 and

(2.5) g(p0, 0, q0, 0) = 0.

We will now show that also ν(p0, q0) = 0 and hence obtain a contradiction with
(iii). By (2.1) and in view of the periodicity of (xi

1, x
i
2) we have:

� T

0

|rM (xi
1(t), x

i
2(t))| dt ≤ C1 � T

0

|xi
2(t)|

2 dt ≤ C2 � T

0

(

� T

0

|ẋi
2(s)|ds

)2

dt

≤ C2T
2 � T

0

|ẋi
2(t)|

2 dt ≤ C3 � T

0

|rM (xi
1(t), x

i
2(t))|

2 dt + C3λ
2
i ,

(2.6)

where C1, C2 and C3 are positive constants which may depend on T , f and the
geometry of M but are independent of i. To see the second inequality in (2.6),
notice that xi

2 is the derivative of a periodic function xi
1, and thus any component

of xi
2 must have a zero in [0, T ].
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The last inequality in (2.6) follows from (2.4) and the following simple calcula-
tion:

� T

0

∣

∣

∣

∣

∣

µf(t, xi
1, x

i
2, y

i
1, y

i
2) + (1 − µ)

� T

0

f(s, xi
1, x

i
2, y

i
1, y

i
2) ds

∣

∣

∣

∣

∣

2

dt

= µ2 � T

0

|f |2 + (1 − µ2)T ·

∣

∣

∣

∣

∣

� T

0

f

∣

∣

∣

∣

∣

2

≤ � T

0

|f(t, xi
1, x

i
2, y

i
1, y

i
2)|

2 dt

The last quantity above is clearly bounded, independently of i, because all trajec-
tories (xi

1, x
i
2, y

i
1, y

i
2) are contained in a compact region of TM × TN .

Using (2.1) again and since xi
2 converges to 0, we obtain for sufficiently large i:

C3 � T

0

∣

∣rM (xi
1(t), x

i
2(t))

∣

∣

2
dt ≤

1

2 � T

0

∣

∣rM (xi
1(t), x

i
2(t))

∣

∣ dt,

Thus, by (2.6):

� T

0

|rM (xi
1(t), x

i
2(t))| dt ≤ 2C3λ

2
i .

Integrating on [0, T ] the second equation in (2.4) we get:
∣

∣

∣

∣

∣ � T

0

f(t, xi
1, x

i
2, y

i
1, y

i
2) dt

∣

∣

∣

∣

∣

=
1

λi

∣

∣

∣

∣

∣ � T

0

rM (xi
1(t), x

i
2(t)) dt

∣

∣

∣

∣

∣

≤ 2C3λi,

which after passing to the limit implies: 0 = � T

0
f(t, p0, 0, q0, 0) dt. Hence by (2.5)

we obtain ν(p0, q0) = 0.
2. By the homotopy invariance of the fixed point index, we conclude that for

every small λ > 0 there holds:

ind (Pλ
T , U) = ind (H(λ, ·, µ = 0), U).

The last index above is by Theorem 2.1 [3] equal to deg (−νλ, U), where

νλ(p, v, q, w) =

(

v, rM (p, v) + λ

� T

0

f(t, p, v, q, w) dt, w, rN (q, w) + g(p, v, q, w)

)

.

Further, Lemma 3.2 [4] implies that:

deg (−νλ, U) = deg (ν̃λ, U ∩ (M × N))

where ν̃λ(p, q) = (λ � T

0
f(t, p, 0, q, 0) dt, g(p, 0, q, 0)). On the other hand, clearly:

deg (ν̃λ, U ∩ (M × N)) = deg (ν, U ∩ (M × N))

which ends the proof of the Lemma.

3. A proof of Theorem 1.1 and an example

We will use the following abstract result from [2]:

Lemma 3.1. Let Y be a locally compact metric space and let K be a nonempty,
compact subset of it. Assume that any compact subset of Y containing K has
nonempty boundary. Then Y \K contains a connected set whose closure intersects
K and is not compact.

Proof of Theorem 1.1. We prove the result under the additional assumption that
f, g, h are C1. The extension to nonsmooth vector fields follows in a straightforward
manner, as in [5].

Let W be the subset of [0,∞) × TM × TN given by:

W = {(λ, x1(0), x2(0), y1(0), y2(0)); (λ, x1, x2, y1, y2) ∈ Ω},
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and set

S = W ∩ {(λ, x1(0), x2(0), y1(0), y2(0)); (λ, x1, x2, y1, y2) solves (2.2)},

K = S ∩ ({0} × ν−1(0)).

We will prove that the set S \K has a connected subset which meets K and whose
closure is not compact. This will be done by checking the assumptions of Lemma
3.1 for the pair (Y,K) with:

Y = S \ {(0, p, 0, q, 0); g(p, 0, q, 0) = 0 and ν(p, q) 6= 0}.

In the sequel, given any set A ⊂ [0,∞) × TM × TN and λ ≥ 0, we will denote
Aλ = {(p, v, q, w); (λ, p, v, q, w) ∈ A}.

Firstly, since by assumption we have deg (ν,W0) 6= 0, we conclude that K must
be nonempty. Because of the regularity of g, arguing as in the first part of the proof
of Lemma 2.1 one can show that any sequence (λi, pi, vi, qi, wi) ∈ S with λi → 0+

converges to a point in Y , and conclude that Y is locally compact.
Assume now, by contradiction, that Y has a compact subset C, containing K

and with empty boundary in Y . Choose an open set A ⊂ W so that A ∩ Y = C

and ∂A∩ S = ∅. In particular ∂A0 ∩K = ∅. Now, by Lemma 2.1 we see that for a
sufficiently small λ > 0:

ind (Pλ
T , Aλ) = deg (ν,Aλ ∩ (M × N))

= deg (ν,A0 ∩ (M × N)) = deg (ν,W0) 6= 0.
(3.1)

On the other hand, the map δ 7→ ind (P δ
T , Aδ) is constant in view of the generalized

homotopy invariance of the fixed point index. Recalling the compactness of C, its
value must equal 0 for some δ > 0, when P δ

T has no fixed points in Aδ. This,
however, contradicts (3.1) and ends the proof of the theorem.

Observe that the connected set Γ in Theorem 1.1 might be contained in the slice
{0} × C1

T (M × N), as in the system:
{

ẍ = λf(t, x, y),
ÿ = −y + λ sin t,

where we put M = N = R, T = 2π.

Example. Let n ∈ N be an odd number and consider the two coupled ODEs:

(3.2)

{

ẍ = −x − αẋ + µ(y − x)n,

ÿ = µ(x − y)n + f(t),

describing the mechanical system as in the figure below.

O P1 P2S1 S2

x

y

There are two equal masses P1 and P2 and a fixed point O confined to a linear rail
and connected by two springs: a nonlinear spring S2 (whose elastic force is pro-
portional to the n-th power of the displacement) and a linear spring S1. Moreover,
P1 is subject to friction and P2 to a T -periodic force f with nonzero average. In
(3.2) α > 0 is the friction coefficient and µ > 0 is a parameter used to control the
stiffness of S2.
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We apply Theorem 1.1 to show that for small µ > 0, (3.2) admits a T -periodic
solution. With the change of variable λ = µn, ξ = λx, η = λy the system becomes:

(3.3)

{

ξ̈ = −ξ − αξ̇ + λ(η − ξ)n,

η̈ = λ
(

(ξ − η)n + f(t)
)

.

Take Ω = [0,∞) × C1
T (R2), and notice that the degree of the vector field

ν(p, q) =
(

(p − q)n +

� T

0

f(t) dt,−q
)

relative to Ω∩R
2 is nonzero. By Theorem (1.1), (3.3) has an unbounded connected

set of of T -periodic solutions that branches from

(

0,−
(

� T

0
f(t) dt

)1/n

, 0

)

. This

proves the claim.
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