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1. Introduction

In [3], some multiplicity results for the forced oscillations of a mass point
constrained on a sphere have been obtained. In particular, it was proved that a
small periodic perturbation of a gravitation-like tangent vector field induces at
least two forced oscillations. Such results depend strictly on the strong geometric
properties of the sphere and cannot be (easily) extended to the general setting of a
second order ODE on an arbitrary compact manifold. However, we will show that
such multiplicity results are, in some sense, “generic”.

Let M ⊂ Rk be a compact, boundaryless m-dimesional smooth manifold.
Let h : TM −→ Rk be continuous and tangent to M (i.e. h(p, v) ∈ TpM for any
p ∈ M and v ∈ TpM), and let T be a fixed positive real number.

We will be concerned with periodic solutions of the equation

(1) ẍπ = h(x, ẋ) + λf(t, x, ẋ) , λ ≥ 0,

where the perturbing function f : R× TM −→ Rk has the following properties:

(P1) (Carathéodory, T -periodicity in t)
• for any (p, v) ∈ TM , f(·, p, v) : R −→ Rk is measurable and T -

periodic,
• for a.a. t ∈ R, f(t, ·, ·) : TM −→ Rk is continuous,

(P2) (tangency)
• for any (p, v) ∈ TM for a.a. t ∈ R, f(t, p, v) ∈ TpM ,

(P3) (admissibility)
• for any compact K ⊂ TM there exists a function γK ∈ L1([0, T ],R)

such that for a.a. t ∈ [0, T ], for any (p, v) ∈ K,

|f(t, p, v)| < γK(t).

Following [4], where (1) was studied for f continuous, we first establish a
result on existence of an unbounded branch of the set of (T -periodic) solution
pairs (λ, x) for (1) (Theorem 3.3 below). Then, by introducing the notion of second
order non-T -resonancy, we study the equation

(2) ẍπ = g(x) + f(t, x, ẋ)
1
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and we prove that the set of Cr (r ≥ 0), autonomous vector fields g, having the
property that any “small enough” perturbation f induces at least |χ(M)| forced
oscillations (that is T -periodic solutions of (2)), is open and dense in the space of
Cr tangent vector fields on M (Theorem 5.2).

Finally, we restrict our attention to the gradient vector fields on M and
prove a corresponding “qualitative” multiplicity result with a sharper estimate of
the number of forced oscillations (Theorem 5.5).

The key step of our proof is Theorem 4.3 below. Although a similar result
could be gained (in the case of C1 perturbing functions) by an appropriate use
of the implicit function theorem, we prefer to use a more topological approach,
based on a continuation principle (Corollary 3.4), which is simpler and stresses the
geometrical aspects of the problem.

2. Preliminaries and notation

Throughout all the paper M, h, T, f will be as in the introduction, and by
TM we will mean the tangent bundle to the manifold M , that is the set

TM =
{
(p, v) ∈ Rk ×Rk : p ∈ M , v ∈ TpM

}
.

In what follows, the symbol C1
T (M) will denote the metric subspace of the Banach

space
(
C1

T (Rk) , ‖·‖1

)
, where ‖·‖1 is the usual C1 norm, of all the T -periodic, C1

functions x : R −→ M and, analogously, by CT (TM) we mean the metric space
of T -periodic, continuous functions x : R −→ TM , with the metric inherited from
the Banach space CT (Rk ×Rk) (the “sup” norm).

Given a subspace A of a topological space S and a subset B of A, we denote

by FrA(B) and B
A

respectively, the boundary and the closure of B relative to A.

As in [4], we tacitly assume some natural identifications; for example we
identify a point p ∈ M with the constant function t 7→ p in C1

T (M), or a function
x ∈ C1

T (M) with (x, ẋ) ∈ CT (TM). Also, we regard each of the above spaces as
the zero-slices of the space obtained as the Cartesian product of [0,∞) and the
space under consideration. In this manner, M becomes a subset of [0,∞)×C1

T (M)
and of [0,∞) × CT (TM) as well, and so on.

In the same spirit, by h|M : M −→ Rk we understand the function given by
h|M (p) = h(p, 0).

Finally, by E we denote the topological vector space of all functions f :
R × TM −→ Rk having the properties (P1) – (P3), endowed with the topology
given by the following fundamental system of neighbourhoods of 0:

{
UK,ε : K is a compact subset of TM , ε > 0

}
,

where

UK,ε =
{
f ∈ E : for a.a. t ∈ [0, T ], for all (p, v) ∈ K, |f(t, p, v)| < ε}.
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Remark 2.1. If we restrict our attention to the space of continuous perturbing
functions E ∩C0

(
[0, T ]×TM , Rk

)
, the above topology on E induces the compact-

open topology.

Let us recall an important definition from [2]. We will say that (λ, x) is a
solution pair of (1) if:

• λ ≥ 0,
• x ∈ C1

T (M) and ẋ is absolutely continuous,
• for a.a. t ∈ R, ΠTx(t)M (ẍ(t)) = h(x(t), ẋ(t)) + λf(t, x(t), ẋ(t)),

where, for a fixed subspace E ⊂ Rk, ΠE : Rk −→ E is the orthogonal projection
of Rk onto E. From now on, X will denote the subset of [0,∞) × C1

T (M) of all
the solution pairs of (1).

We quote an important known result (see e.g. [1]):

Theorem 2.2. Let T 2M = {(p, v, u) ∈ Rk × Rk × Rk : p ∈ M ; v, u ∈ TpM}.
There exists exactly one smooth function ν : T 2M −→ Rk, such that:

(i) for any (p, v, u) ∈ T 2M , ν(p, v, u) ∈ (TpM)⊥,
(ii) for any p ∈ M , ν(p, ·, ·) : TpM × TpM −→ (TpM)⊥ is bilinear and sym-

metric,
(iii) (u, w) ∈ T(p,v)TM if and only if u ∈ TpM and Π(TpM)⊥(w) = ν(p, v, u).

Define

ĥ : TM −→ Rk ×Rk ; ĥ(p, v) = (v, r(p, v) + h(p, v)),

f̄ : R× TM −→ Rk ×Rk ; f̄(t, p, v) =
(
0, f(t, p, v)

)
,

where r : TM −→ Rk is given by: r(p, v) = ν(p, v, v). Since, by Theorem 2.2, ĥ
and f̄ are tangent to TM ,

(3) ξ̇ = ĥ(ξ) + λf̄(t, ξ) , λ ≥ 0,

where we put ξ(t) = (ξ1(t) , ξ2(t)), with ξ1(t) ∈ M and ξ2(t) ∈ Tξ1(t)M , is a first
order ODE on TM , which turns out to be equivalent to (1).
We say that (λ, ξ) is a solution pair of (3), if:

• λ ≥ 0,
• ξ ∈ CT (TM) and ξ is absolutely continuous,

• for a.a. t ∈ R, ξ̇(t) = ĥ(ξ(t)) + λf̄(t, ξ(t)).

We denote the set of all solution pairs of (3) by X̂ . Notice that (λ, x) ∈ X if and

only if (λ, (x, ẋ)) ∈ X̂.

Let U be an open subset of a smooth, boundaryless manifold N ⊂ Rl, and
v : N −→ Rl be a continuous tangent vector field which is admissible on U, i.e.
such that the set v−1(0)∩U is compact. Then, one can associate to the pair (v, U)
an integer, called the degree of the vector field v in U , and denoted by deg(v, U)
which, roughly speaking, counts (algebraically) the number of zeros of v in U (see
e.g. [8], and references therein). Given an isolated zero p of v, it is convenient to
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introduce the index i(v, p) of v at p as follows: i(v, p) = deg(v, U), where U is any
open neighborhood of p such that v−1(0) ∩ U = {p}.

In the flat case, namely if U is an open subset of Rk, deg(v, U) is just the
Brouwer degree (with respect to zero) of v in any bounded open set V containing
v−1(0) and such that V ⊂ U . One can see that all the standard properties of the
Brouwer degree on open subsets of Euclidean spaces, such as homotopy invariance,
excision, additivity, existence, etc. are still valid in the more general context of
differentiable manifolds.

Now we recall the notion of T -resonancy for first order ODE’s on manifolds,
introduced in [3]. Let N ⊂ Rl be as above, and g : N −→ Rl be a continuous
tangent vector field. We say that a point p ∈ g−1(0) is T -resonant for g if:

• g is C1 in a neighbourhood of p,
• the linear equation on TpN (note that g′(p) ∈ End(TpN))

ẋ = g′(p)x

admits nontrivial (i.e. nonzero) T -periodic solutions.

Correspondingly, p ∈ g−1(0) is non-T -resonant for g, if g is C1 in a neighbourhood
of p and the only T -periodic solution of the above equation is the trivial one.
Notice that p is non-T -resonant for g if and only if the spectrum spec

(
g′(p)

)
of

g′(p) contains no eigenvalues of the form 2πni
T , with n ∈ Z. Thus, in particular, if

p is non-T -resonant for g, then p is an isolated zero of g, with index ±1.

3. Branches of solution pairs

We quote two results, which will be useful in the sequel.

Theorem 3.1 ([10]). Let N ⊂ Rl be a boundaryless, smooth manifold, g : N −→
Rl be a continuous tangent vector field, and Φ : R × N −→ Rl be such that the
mapping Φ1 : R × TN −→ Rl, given by Φ1(t, p, v) = Φ(t, p), satisfies (P1)–(P3)
(with M replaced by N). Denote by Y the set of solution pairs of the following
first order ODE on N :

(4) ẋ = g(x) + λΦ(t, x) , λ ≥ 0

(defined as the set X̂, with N instead of TM) and let Ω be an open subset of
[0,∞) × CT (N) such that the degree deg(g, Ω ∩ N) is well defined and nonzero
(note that Ω ∩ N makes sense by the identifications introduced in the preceding
section). Then there exists a set Γ ⊂ Ω, satisfying:

(i) Γ ⊂ Y \ g−1(0) (i.e. Γ contains only “nontrivial” solution pairs of (4)),
(ii) Γ is connected,

(iii) Γ
[0,∞)×CT (N)

∩
(
Ω ∩ g−1(0)

)
6= ∅,

(iv) Γ is not contained in any compact subset of Ω.

If, additionally, N is closed in Rl and Ω = [0,∞)×CT (N), then Γ is unbounded.
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Theorem 3.2 ([4]). Let U be an open subset of TM . Then h|M is admissible (for

the topological degree) on U ∩ M if and only if ĥ is admissible on U , and in this
case we have

deg(ĥ, U) = deg(−h|M , U ∩ M).

Now we adapt Theorem 3.1 to the case of second order ODE’s on M .

Theorem 3.3. (M need not be compact.) Let Ω be an open subset of [0,∞) ×
C1

T (M) such that deg(h|M , Ω ∩ M) is well defined and nonzero. Then there exists
a set Γ ⊂ Ω, satisfying:

(i) Γ ⊂ X \ (h|M )−1(0) (i.e. Γ contains only “nontrivial” solution pairs of
(1)),

(ii) Γ is connected,

(iii) Γ
[0,∞)×C1

T (M)
∩
(
Ω ∩ (h|M )−1(0)

)
6= ∅,

(iv) Γ is not contained in any compact subset of Ω.

If additionally M is closed in Rk and Ω = [0,∞)×C1
T (M), then Γ is unbounded.

Proof. (Compare the proof of Theorem 4.2 in [4].) Let Ω̂ be an open subset of

[0,∞)×CT (TM) such that Ω̂∩([0,∞)×C1
T (M)) = Ω. Since

(
Ω̂∩TM

)
∩M = Ω∩M ,

by Theorem 3.2 we have

deg(ĥ, Ω̂ ∩ TM) = deg(−h|M , Ω ∩ M) = (−1)m deg(h|M , Ω ∩ M) 6= 0

(here m is the dimension of the manifold M).

Thus, by Theorem 3.1, there exists a connected set G, contained in Ω̂∩
(
X̂ \

ĥ−1(0)
)

such that G
[0,∞)×CT (TM)

∩
(
Ω ∩ ĥ−1(0)

)
6= ∅ and G is not contained in

any compact subset of Ω̂. The proof is completed defining Γ equal to the above
set G regarded as a subset of [0,∞) × C1

T (M).

Corollary 3.4 (A continuation principle). (M need not be compact, only closed
in Rk.) Let Ω0 be an open bounded subset of C1

T (M) such that:

(i) deg(h|M , Ω0 ∩ M) is well defined and nonzero,

(ii)
(
[0, 1]× FrC1

T
(M)Ω0

)
∩ X = ∅.

Then ({1}×Ω0)∩X 6= ∅ (in other words, there exists a T -periodic solution of (1)
for λ = 1, which is an element of Ω0).

Proof. Define Ω = [0,∞) × Ω0. Since

deg(h|M , Ω ∩ M) = deg(h|M , Ω0 ∩ M) 6= 0,

there exists a set Γ ⊂ Ω ∩
(
X \ (h|M )−1(0)

)
as in Theorem 3.3. The connected

set Γ = Γ
[0,∞)×C1

T (M)
is contained in X (as X is closed in [0,∞) × C1

T (M)), so

Γ ∩ ([0, λ̄] × FrC1
T

(M)Ω0) = ∅. On the other hand, Ascoli’s theorem together with

the closedness of M implies that bounded and closed subset of X are actually
compact. Then, using the connectedness of Γ, we have Γ ∩

(
{1} × Ω0

)
6= ∅.
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4. T -resonancy revisited

We will say that a point p ∈ (h|M )−1(0) is second order T -resonant for h, if

(p, 0) ∈ TM is T -resonant for ĥ.
Assuming h to be C1 in a neighbourhood of (p, 0) in TM , we see that p ∈

(h|M )−1(0) is second order non-T -resonant, if and only if (ĥ)′(p, 0) does not have

eigenvalues of the form 2πni
T with n ∈ Z.

Since

T(p,0)TM = TpM × TpM,

the linear operator (ĥ)′(p, 0) : T(p,0)TM −→ T(p,0)TM is represented by the block
matrix: (

0 I
D1h(p, 0) D2h(p, 0)

)
,

where I is the identity on TpM . This immediately gives a description of the second
order non-T -resonancy of p, namely the unique T -periodic solution of the linear
equation (on TpM)

ÿ = D2h(p, 0)ẏ + (h|M )′(p)y

is the trivial one.
By the Schur formulas (see e.g. [5])

det((ĥ)′(p, 0) − µĪ) = det

(
−µI I

D1h(p, 0) D2h(p, 0) − µI

)

= det
(
− D1h(p, 0) − µD2h(p, 0) + µ2I

)
,

where Ī is the identity on T(p,0)TM . Hence 2πni
T ∈ spec((ĥ)′(p, 0)), for some n ∈ Z,

if and only if

(5) det

(
D1h(p, 0) +

2πni

T
D2h(p, 0) +

(
2πn

T

)2

I

)
= 0.

In the particular case when D2h(p, 0) = 0, the formula (5) implies that p is second
order non-T -resonant if and only if

(6) −

(
2nπ

T

)2

/∈ spec((h|M )′(p)),

for any n ∈ Z.
Another interesting particular case is when h is the sum of a positional vector

field and a friction, that is h is of the form: h(p, v) = g(p) − µv with µ > 0. In
this case, formula (5) yields that p ∈ g−1(0) is second order non-T -resonant if and
only if

(7) −

(
2πn

T

)2

+ µ
2πni

T
/∈ spec(g′(p)),

for any n ∈ Z.
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We need a sharpened version of Lemma 3.3 from [3]

Lemma 4.1. Let N, g be as in Theorem 3.1. Let p ∈ g−1(0) be non-T -resonant
for g. Fix a compact neighbourhood K ⊂ N of p and a number εK > 0. Then for
any sufficiently small neighbourhood V of p in CT (N) there exists a real number
δV > 0 such that the set [0, δV ] × FrCT (N)V does not contain any solution pair of
(4), whenever Φ is as in Theorem 3.1 and

(8) |Φ(t, x)| < εK for a.a. t ∈ [0, T ], for all x ∈ K.

Proof. Let W be an open neighbourhood of p in CT (N) such that {0}×W
CT (N)

does not contain any solution pair of (4) different from (0, p). The existence of
such a set was shown in the proof of Lemma 3.3 in [3]. Define

W1 = {x ∈ W : x(t) ∈ intNK for all t ∈ R}.

W1 is an open neighbourhood of p in CT (N).
Take an open subset V of W1, containing p. Assume by contradiction that

there is no number δV as in the assertion. Then, there exist three sequences {λn} ⊂
[0,∞), {xn} ⊂ FrCT (N)V and {Φn}, with Φn as in Theorem 3.1, such that:

(i) {λn} converges to 0,
(ii) each xn is absolutely continuous,
(iii) each Φn satisfies (8),
(iv) ẋn(t) = g

(
xn(t)

)
+ λnΦn

(
t, xn(t)

)
, for a.a. t ∈ R and all n.

By Ascoli’s theorem, we may without loss of generality assume that {xn} converges
in CT (N) to some x0 ∈ FrCT (N)V , and ẋ0(t) = g

(
x0(t)

)
for a.a. t ∈ R. Since

x0 ∈ W
CT (N)

and x0 6= p, we obtain the desired contradiction.

Now we specialize the above lemma for the second order case.

Corollary 4.2. Let p ∈ h−1
|M (0) be second order non-T -resonant for h. Fix a

compact neighbourhood K of (p, 0) in TM and εK > 0. Then for any sufficiently
small neighbourhood V of p in C1

T (M) there exists a real number δV > 0 such
that the set [0, δV ]×FrC1

T
(M)V does not contain any solution pair of (1), whenever

f ∈ UK,εK
.

Proof. By the definition of second order non-T -resonancy, we know that the point

(p, 0) ∈ TM is non-T -resonant for ĥ. For a fixed set V as in the assertion, let V̂

be an open subset of CT (TM) such that V = V̂ ∩C1
T (M). Note that if V is small

enough, V̂ can be chosen as small as required in Lemma 4.1, so there exists the

corresponding number δ �

V > 0. Since FrC1
T

(M)V ⊂ FrCT (TM)V̂ , one can define

δV = δ �

V .

We are now in a position to give a multiplicity result for the following second
order differential equation:

(9) ẍπ = h(x, ẋ) + f(t, x, ẋ) ,

where h and f are as in (1).



8 MARTA LEWICKA AND MARCO SPADINI

Theorem 4.3. (M need not be compact.) Let p1, . . . , pn ∈ (h|M )−1(0) be second
order non-T -resonant for h. Then there exists an open neighbourhood U ⊂ E of 0
such that for every f ∈ U equation (9) has at least n geometrically distinct (more
precisely, with pairwise disjoint images) T -periodic solutions.

Proof. We claim that if p is a second order non-T -resonant zero of h|M then,
given a sufficiently small compact neighborhood C of p in M , there exists an open
neighborhood Up of 0 in E such that for every f ∈ Up equation (9) has a T -periodic
solution whose image is contained in C.

To see this, take a compact subset K of TM such that K ∩ M = C and let
V be an open subset of CT (TM) containing (p, 0). Shrinking V if necessary, we
can assume that:

(i) the image of any x ∈ V ∩ C1
T (M) is contained in C,

(ii) (ĥ|V ∩TM )−1(0) = {(p, 0)},
(iii) there exists δ > 0 such that [0, δ]×FrC1

T
(M)(V ∩C1

T (M)) does not contain

any solution pair of (1) for any f ∈ UK,1.

Since (
V ∩ C1

T (M)
)
∩ M = (V ∩ TM) ∩ M = V ∩ M ,

by (ii) and Theorem 3.2 we get

deg
(
h|M ,

(
V ∩ C1

T (M)
)
∩ M

)
= deg

(
h|M ,

(
V ∩ TM

)
∩ M

)

= (−1)m deg
(
ĥ, V ∩ TM

)
= ±1 .

Thus, by Corollary 3.4, one can see that Up = UK,δ fulfils our claim.
To complete the proof, for i = 1, . . . , n, choose pairwise disjoint compact

neighborhoods Ci of pi as above. By the first part of the proof, to each of the Ci

it corresponds an open neighborhood Upi
of 0 in E such that for every f ∈ Upi

equation (9) has a T -periodic solution whose image is contained in Ci. Hence
U =

⋂n
i=1 Upi

is an open neighborhood of 0 in E which has the desired properties.

In order to illustrate Theorem 4.3, let us consider the second order differential
equation

(10) ẍ = (gradG)(x) − µẋ + f(t, x, ẋ),

where G : M −→ R is a C2 function with nondegenerate critical points (i.e. a
Morse function), and µ > 0. By standard computations, using the fact that the
frictional coefficient is nonzero, one can show that the critical points of G are
second order non-T -resonant zeros of h(p, v) = (gradG)(p) − µv. Furthermore,
from the weak Morse inequality (see e.g. [7]) it follows that G has at least

b(M) =

m∑

i=1

bi(M)
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critical points, where bi(M) denotes the i-th Betti number of M . Hence Theo-
rem 4.3 implies that (10) has at least b(M) geometrically independent T -periodic
solutions, for every f belonging to a suitable neighbourhood of 0 in E .

5. Genericity and multiplicity

In this section we will consider a particular case of equation (1),

(11) ẍπ = g(x) + λf(t, x, ẋ) , λ ≥ 0,

where g : M −→ Rk is a Cr (r ≥ 1), tangent vector field. An easy but important
result is the following:

Lemma 5.1. Let g : M −→ Rk be a C1 tangent vector field on M . Let p1, . . . , pn

be nondegenerate zeros of g. There exists a C∞
c function ν : M −→ R such that

p1, . . . , pn are second order non-T -resonant zeros of g + ρ gradν for any ρ ∈ (0, 1].

Proof. Let us introduce the notation: S = {−(2nπ/T )2 : n ∈ Z}.
For a given nondegenerate zero p ∈ M of g we choose δp > 0 such that

spec(g′(p) + ρδpI) ∩ S = ∅ for every ρ ∈ (0, 1] (here I stands for the identity on
TpM); for instance we may take δp = min{2π2/T 2 , d/2}, where

d = min
{
|s − e| : s ∈ S , e ∈ spec

(
g′(p)

)
\ S
}

> 0.

Let {v1, . . . , vk} be an orthonormal basis of Rk such that {v1, . . . , vm} spans
TpM . Define a C∞ function E : Rk −→ R by

E(q) =
δp

2

m∑

i=1

〈q − p , vi〉
2 , q ∈ Rk.

Fix an open, relatively compact neighbourhood U of p in M and a C∞ function
σ : M −→ [0, 1] such that supp(σ) ⊂ U and p ∈ intM (σ−1(1)). If we define
w : M −→ R by w(q) = σ(q) E(q), then supp(w) ⊂ U and, since (gradw)(p) = 0,
(g + ρ gradw)′(p) = g′(p) + ρδpI . Hence spec

(
(g + ρ gradw)′(p)

)
∩ S = ∅ for every

ρ ∈ (0, 1]. Thus, by (6), p is second order non-T -resonant for g + gradw.

Using the procedure described above, we construct C∞ functions wi : M −→
R, for each point pi. Without loss of generality we can assume

supp(wi) ∩ supp(wj) = ∅

for i 6= j. The function ν =
∑n

i=1 wi, fulfils the requirements.

Denote by X
r(M), r ≥ 0, the subspace of the Banach space Cr(M,Rk) made

up of the Cr tangent vector fields on M . Let us consider the set X
r
T (M) of all

functions g ∈ X
r(M) having the property that there exists an open set U ⊂ E ,

containing 0, such that the equation (2) has at least |χ(M)| geometrically distinct
T -periodic solutions (i.e. functions x ∈ C1

T (M) with (1, x) being a solution pair for
(11)), for every f ∈ U . As a consequence, whenever g ∈ X

r
T (M), for every f ∈ E

there exists a positive number λ̄ such that for every λ ∈ [0, λ̄) the equation (11)
has at least |χ(M)| geometrically distinct T -periodic solutions.

We will show that X
r
T (M) is “generic” in X

r(M).
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Theorem 5.2. The set X
r
T (M), r ≥ 0, is open and dense in X

r(M).

Proof. Let us prove first the openess of X
r
T (M) in X

r(M). Take g ∈ X
r
T (M) and

an open neighbourhood U of 0 in E , such that (2) has at least |χ(M)| geometrically
distinct solutions. Without loss of generality, we may assume U = UK,δ for some
δ > 0 and a compact subset K of TM . Let Br

δ/2(0) denote the ball centered at 0,

of radius δ/2 in the space X
r(M). Then g + Br

δ/2(0) is an open neighbourhood of

g in X
r(M) such that g + Br

δ/2(0) ⊂ X
r
T (M).

We now prove the density. Consider first the case r ≥ 1. It is a well known
consequence of the Thom transversality theorem that the set of the Cr tangent
vector fields on M whose zeros are nondegenerate is dense in X

r(M) (see e.g. [9]).
By the Poincaré-Hopf theorem, such vector fields have at least |χ(M)| zeros, hence,
by Lemma 5.1, also the set Ar

T of the vector fields in X
r(M) which have at least

|χ(M)| second order non-T -resonant zeros is dense in X
r(M). Hence X

r
T (M) ⊃ Ar

T

is, in turn, dense.
Let us now take r = 0. Since the set A1

T is dense in X
1(M), it is also dense

in X
0(M), so X

0
T (M) is dense in X

0(M) and the proof is complete.

Remark 5.3. We have already observed that, given a Morse function G, equation
(10) admits at least b(M) geometrically distinct T -periodic solutions provided that
µ > 0. In the case when gradG is replaced by a function g with only nondegenerate
zeros, the situation becomes slightly more complicated. As in the proof of Theorem
5.2, we have #

{
g−1(0)

}
≥ |χ(M)|. Let p1, . . . , p|χ(M)| be nondegenerate zeros

of g−1(0). By (7), in order pj to be second order non-T -resonant for h(p, v) =
g(p) − µv, we must have

−

(
2nπ

T

)2

+ µ
2nπi

T
/∈ spec

(
g′(pj)

)
,

for any n ∈ Z. Obviously this condition is fulfilled for any but a finite number of
values of µ > 0. Hence, given g with only nondegenerate zeros, for all but a finite
number of values µ > 0 there exists U ⊂ E such that the equation

(12) ẍπ = g(x) − µẋ + f(t, x, ẋ)

admits at least |χ(M)| geometrically distinct T -periodic solutions whenever f ∈ U .

Remark 5.4. Let us fix µ > 0 in (12) and consider the set X
r
T,µ(M) of all the

functions g ∈ X
r(M) with the property that there exists an open neighbourhood

U ⊂ E of 0, such that (12) has at least |χ(M)| geometrically distinct T -periodic
solutions for any f ∈ U . With the same argument used in the proof of Lemma 5.1
and Theorem 5.2, it can be shown that X

r
T,µ(M) is open and dense in X

r(M).

If we restrict our attention to a less general class of vector fields, we are able
to give a result sharper than Theorem 5.2. Consider the following equation:

(13) ẍπ = (gradG)(x) + f(t, x, ẋ),

where G : M −→ R is of class Cr (r ≥ 1).
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Denote by Gr
T (M) the subspace of Cr(M,R) of all the Cr functions G having

the property that there exists an open set U ⊂ E , containing 0, such that (13) has
at least b(M) geometrically distinct T -periodic solutions. We will show that Gr

T (M)
is “generic” in Cr(M,R).

Theorem 5.5. The set Gr
T (M), r ≥ 1, is open and dense in Cr(M,R).

Proof. For the openess of Gr
T (M) in Cr(M,R) we proceed as in the first part of

the proof of Theorem 5.2.
Let us prove the density. Assume first r ≥ 2. It is well known (see e.g. [6])

that Morse functions of class Cr constitute a dense, open subset of Cr(M,R). Let
G be a Morse function. By the weak Morse inequality (see e.g. [7]):

b(M) ≤ #
{

(gradG)−1 (0)
}

.

Lemma 5.1 yields the density in Cr(M,R) of the set DT of the functions G ∈
Cr(M,R) with b(M) non-T -resonant zeros of gradG.

In the case r = 1, we proceed as in the last part of the proof of Theorem 5.2,
showing that G1

T (M) is open and dense in C1(M,R).

Let us compare, by an example, the kind of information carried by Theorems
5.2 and 5.5. For instance, in the case when M is the two-dimensional sphere S2, we
have

∣∣χ(S2)
∣∣ = 2 = b(S2) hence the two theorems assert, respectively, that equa-

tions (2) and (13) have “generically” two T -periodic solutions for small T -periodic
perturbations. On the other hand, when the manifold is the two-dimensional torus
T2, we have

∣∣χ(T2)
∣∣ = 0 while b(T2) = 4. Hence, in this case, no useful infor-

mation follows from the former theorem while the latter guarantees that on T2

the equation (13) has “generically” four T -periodic solutions for any small enough
T -periodic perturbation.
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