
ON THE CLASSIFICATION OF CONTROL SETS

FRITZ COLONIUS AND MARCO SPADINI

Abstract. The controllability behavior of nonlinear control systems is de-
scribed by associating semigroups to locally maximal subsets of complete con-
trollability, i.e., local control sets. Periodic trajectories are called equivalent if
there is a ‘homotopy’ between them involving only trajectories. The resulting
object is a semigroup, which we call the dynamic index of the local control
set. It measures the different ways the system can go through the local control
set.

1. Introduction

The purpose of this paper is to contribute to the qualitative study of the con-
trollability behavior of nonlinear control systems. We classify the behavior within
locally maximal subsets of complete controllability, local control sets as introduced
in [4]. To each local control set a semigroup is associated which is constructed from
periodic trajectories in the local control set. We take inspiration from the classical
construction of the (first) homotopy group in algebraic topology, but use periodic
orbits instead of closed loops. Two periodic orbits are equivalent, if they can be
connected via a homotopy involving only periodic trajectories. This leads to some
technical difficulties as it is necessary to make such an equivalence compatible with
the natural composition of orbits with the same initial point. The resulting object
is a commutative semigroup; in general it is not a group. This is due to the fact that
for many nonlinear control systems the equivalence classes of periodic trajectories
need not admit an inverse. We stress the fact that, even allowing trajectories fol-
lowed backward in time, we would not in general obtain a group. In fact a neutral
element would still be lacking.

The so-constructed semigroup is called dynamic index of the local control set. It
measures the “different” ways in which the system can go through the local control
set. It turns out, that for linear systems with controllable (A, B) and admissible
control range U the index is always trivial. This remains true for small nonlinear
perturbations. If the control range is small enough, we can also show that for a
local control set around an attracting periodic solution of the uncontrolled system
the index is isomorphic to the additive semigroup of natural numbers N.

Compare also San Martin and Santana [11], where the homotopy type of Lie
semigroups and invariant control sets is studied. We remark that in our construction
the direction of the trajectories plays a crucial role. This is a decisive difference of
our semigroup from homotopy groups. Katok and Hasselblatt [8, p. 117] briefly
discuss other constructions of topological invariants using trajectories of dynamical
systems. But perhaps closest in spirit to our paper are the papers [12, 13] by A.
Sarychev. He studied homotopy properties of the space of trajectories. However,
he was interested in the case, where the systems are completely controllable or,
in our terminology, where the control set coincides with the whole state space.
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Furthermore, his main result concerns systems without drift where trajectories can
be reversed.

After some basic definitions in Section 2 we define in Section 3 the key technical
notion for the construction of the index, the so-called ‘strong inner pairs’, and
show some of their relevant properties. Section 3 is devoted to the construction of
the index and two simple examples are provided. Section 4 presents the explicit
computation of the index in the case of the control set which arises, for a small
control range, around an attracting periodic orbit of the uncontrolled system.

2. Basic Definitions

We will consider the following control-affine system in R
d

ẋ(t) = f
(
x(t), u(t)

)
:= f0(x(t)) +

m∑

i=1

ui(t)fi(x(t)),(1)

u ∈ U = {u ∈ L∞(R, Rm), u(t) ∈ U for almost all t ∈ R}.

with sufficiently smooth vector fields fi, i = 0, 1, ..., m, on R
d and a compact con-

vex neighborhood U of the origin in R
m. We assume that for every control u ∈ U

and every initial condition x(0) = x0 ∈ R
d there exists a unique trajectory which

we denote by ϕ(t, x, u), t ∈ R. Our results will also hold–with some technical
modifications–for systems on manifolds. Note that for control affine systems, the
trajectories ϕ(t, x, u) depend continuously on (t, x, u), uniformly on bounded time
intervals; here U will be considered in the weak∗ topology inherited from the inclu-
sion U ⊂ L∞(R, Rm) =

(
L1(R, Rm)

)∗
. Notice that U is in this topology a compact

and separable metrizable space (see, e.g., Dunford/Schwartz [6]); an appropriate
metric will be fixed throughout and denoted by ‘d’; compare e.g. [1, Chapter 4] for
this setting.

At some places we will consider for 0 ≤ ρ ≤ 1, the control range ρU = {ρ · x :
x ∈ U}. Then we denote by Uρ the set of all L∞(R, Rm) control functions taking
values in ρU .

The following definitions specify subsets of complete approximate controllability,
which are our primary concern in this paper.

Definition 1. A subset D with nonempty interior of the state space R
d is a pre-

control set if for all x, y ∈ D and every ε > 0 there exist T > 0 and u ∈ U such
that

ϕ(t, x, u) ∈ D for all t ∈ [0, T ] and |ϕ(T, x, u) − y| < ε.

A precontrol set D of R
d is a local control set if there exists a neighborhood V of

cl D such that for every precontrol set D′ with D ⊂ D′ ⊂ V one has D′ = D.

Thus a local control set is a locally maximal precontrol set. Note also that control
sets (with nonvoid interior) as discussed in [1] are globally maximal precontrol sets.
The sets of reachable points from x and controllable to x ∈ R

d in time T > 0 are
denoted by

O+
≤T (x) =

{
y ∈ R

d, there are 0 ≤ t ≤ T and u ∈ U with y = ϕ(t, x, u)
}

and

O−
≤T (x) =

{
y ∈ R

d, there are 0 ≤ t ≤ T and u ∈ U with x = ϕ(t, y, u)
}

,
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respectively. Throughout this paper we require local accessibility, that is, O+
≤T (x)

and O−
≤T (x) have nonvoid interiors for all x ∈ R

d and all T > 0. Then in the interior
of a local control set exact controllability holds. Recall also that local accessibility
is guaranteed by the following accessibility rank condition:

(2) dim ∆L(x) = d for all x ∈ R
d,

where L denotes the Lie algebra generated by the vector fields f0, ..., fm, and ∆L(x)
is the subspace of the tangent space (identified with R

d) generated by the vector
fields in L.

3. Strong Inner Pairs

In this section we specify the subclass of periodic trajectories which will be used
for the construction of the dynamic index.

Definition 2. A pair (u, x) ∈ U ×R
d is called a strong inner pair, if the control u

is piecewise constant with u(t) ∈ int U for all t ∈ R and there is δ > 0 such that for
all τ > 0, small enough, and for all y ∈ R

d with |x − y| < δ the following property
holds:
For all 0 < t ≤ τ there are neighborhoods N±

t (y) of ϕ(±t, y, u) such that for any
curve λ 7→ z+

λ ∈ N+
t (y) and λ 7→ z−

λ ∈ N−
t (y), with z±

0 = ϕ(±t, y, u), there are
continuous maps

λ 7→ (±t±λ , u±
λ ) : [0, 1] → (0, T )× U ,

with u±
λ piecewise constant for λ ∈ [0, 1], and

(±t±0 , u±
0 ) = (±t, u) and ϕ(±t±λ , y, u±

λ ) = z±λ .

The following remarks show that strong inner pairs are abundant provided that
local accessibility holds. Here we write etXx, with X = f(·, u), in place of ϕ(t, x, u)
provided that u is a constant control.

Remark 3. Assume that for some ε > 0 there exist s±i ∈ (0, ε) and u±
1 , . . . , u±

d ∈
int U such that the two maps

(td, ..., t1) 7→ e±sdX
±

d · · · e±s1X
±

1 x,

where X±
i := f(·, u±

i ), have full rank on (0, ε) × ... × (0, ε). On the interval

(−
∑d

i=1 s−i ,
∑d

i=1 s+
i ], define

u(t) =

{

u+
i for t ∈ (

∑i
j=1 sj ,

∑i+1
j=1 sj ],

u−
i for t ∈ (−

∑i+1
j=1 sj ,−

∑i

j=1 sj ].

Then (u, x) is a strong inner pair. To see that, it is sufficient to notice that the
rank condition holds for any y in a neighborhood of x and that neighborhoods of
ϕ(±t, y, u) are of the form

{e±tdXd ...e±t1X1x, with t1, ..., td ∈ (0, ε)}.

Hence the required continuous families can be obtained by appropriately changing
the times ti.

Strong inner pairs can also be easily obtained when the linearized control system
is controllable. Here it is convenient–also for later use in Section 4–to consider ρ-
dependent control ranges. Recall that for two vector fields X , Y one defines ad0

XY =

Y and for k = 1, 2, ... one defines adk
XY as the Lie bracket adk

XY := [X, adk−1Y ].



4 FRITZ COLONIUS AND MARCO SPADINI

Proposition 4. Let x ∈ R
d and assume that

(3) span {adk
f0

fi(x), i = 1, ..., m, k = 0, 1, ...} = R
d.

Then for ρ > 0, small enough, each (u, y) ∈ Uρ ×R
d with u piecewise constant and

u ∈ Uρ′

, for some ρ′ < ρ and |y − x| < ρ′, is a strong inner pair for the ρ-system.

Sketch of the proof. If ρ > 0 and T > 0 are small enough, assumption (3) clearly
holds for ϕ(T, y, u) with y in a small neighborhood of x and ‖u‖∞ < ρ. This,
for all 0 < τ ≤ T , guarantees controllability for the control system linearized
along ϕ(t, y, u) (with unbounded controls). Then a standard result in nonlinear
control theory, see, e.g., [1, Theorem A.4.11 and Remark A.4.12] guarantees that
the nonlinear control system with controls in Uρ is locally controllable about the
trajectory ϕ(t, y, u), provided that u ∈ Uρ′

for some ρ′ < ρ. This is based on an
application of the inverse function theorem, which also provides the existence of
neighborhoods N±

t (y) as in Definition 2. �

The following proposition shows, in particular, that the interior of a local control
set corresponds to strong inner pairs.

Proposition 5. Let D be a local control set for (1) and assume that the accessibility
rank condition holds in D. Then, for any x, y ∈ int D, there are T > 0 and
a T -periodic control function u ∈ U such that (u, x) is a strong inner pair and
y ∈ ϕ([0, T ], x, u).

Proof. By the accessibility rank condition, as in the proof of Krener’s Theorem
(compare [9]), it follows that there exist u1, . . . , ud ∈ int U and δ > 0 such that,

N+ = int
{
etdXd · · · et1X1x : 0 ≤ ti ≤ δ, i = 1, ..., d

}
6= ∅,

N− = int
{
etdXd · · · et1X1x : −δ ≤ ti ≤ 0, i = 1, ..., d

}
6= ∅,

where Xi = f(·, ui) for i = 1, ..., d.
Take x+ ∈ N+. Since in the interior of D approximate controllability holds, one

can find a control function v0 and a time S0 such that x− := ϕ(S0, x
+, v0) ∈ N−.

By continuous dependence we can assume that v0 is a piecewise constant function
with values in int U . Let v+, v− ∈ U and S+, S− > 0 be such that

x+ = ϕ(S+, x, v+) and x = ϕ(S−, x−, v−).

Concatenating v−, v+ and v0, and taking T = S+ + S0 + S− one gets a T -periodic
trajectory driven by some T -periodic piecewise constant control function u. One
can also construct u as a control function which connects x+ to y and y to x−, in
a way that essentially follows the line of the first part of the proof. �

4. The Dynamic Index

In this section we construct a dynamic index for local control sets.
We consider a local control set D for (1) and assume throughout that the acces-

sibility rank condition holds. Define the set

P(D) =






(T, u, x) ∈ (0,∞) × U × R

d :
(u, x) is a T -periodic
strong inner pair, T > 0, and
ϕ(t, x, u) ∈ D, ∀t ∈ [0, T ]






,

endowed with the metric topology given by

dist
(
(T, u, x), (S, v, y)

)
= |T − S| + ‖x − y‖Rd + d(u, v).
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Below, when no confusion can possibly arise, we shall omit the explicit dependence
on the base set D.

Let us now introduce a relation on P .

Definition 6. (T, u, x) ∼ (S, v, y) in P if there are k + 1 elements (T0, u0, x0), . . . ,
(Tk, uk, xk) in P with the following properties:

(i) (T0, u0, x0) = (T, u, x) and (Tk, uk, xk) = (S, v, y);
(ii) for i = 0, ..., k there are

0 = τ0
i < ... < τki

i = Ti and 0 = σ0
i+1 < ... < σki

i+1 = Ti+1,

such that ϕ(τ j
i , xi, ui) = xi and ϕ(σj

i+1, xi+1, ui+1) = xi+1 for all i and all
j;

(iii) there are continuous maps Hj
i : [0, 1] → P such that for i = 0, ..., k and

j = 0, ..., ki − 1

Hj
i (0) =

(
τ j+1
i − τ j

i , ui(τ
j
i + ·), xi

)
, and

Hj
i (1) =

(
σj+1

i+1 − σj
i+1, ui+1(σ

j
i+1 + ·), xi+1

)
.

In other words, (Ti, ui, xi) and (Ti+1, ui+1, xi+1) are chopped into ki periodic

pieces of period τ j+1
i − τ j

i and σj+1
i+1 − σj

i+1 respectively, and the corresponding
pieces are homotopic via trajectories.

This definition makes the natural operation of concatenation of trajectories
‘compatible’ with the relation ‘∼’. To be more precise consider two continuous
maps H and H ′ from [0, 1] to P . Clearly they establish ‘homotopies’ between
H(0) = (T, u, x) and H(1) = (S, v, y), and between H ′(0) = (T ′, u′, x) and H ′(1) =
(S′, v′, y) respectively. Define u ◦ u′ as the concatenation on [0, T + T ′] of u and u′

extended (T + T ′)-periodically to R. According to Definition 6 (T + T ′, u ◦ u′, x)
is related to (S + S′, v ◦ v′, y); whereas there might not exist any continuous
function F : [0, 1] → P with the property that F (0) = (T + T ′, u ◦ u′, x) and
F (1) = (S + S′, v ◦ v′, y).

Notice that the relation introduced above is an equivalence relation. Then,
consider on P/ ∼, the set Q of all the formal (juxtaposition) products, i.e., the free
semigroup on P/ ∼. (See, e.g., Howie [7] for some general facts about the algebraic
theory of semigroups.) Usually, we shall set

[T, u, x]n = [T, u, x] · · · [T, u, x]
︸ ︷︷ ︸

n times

,

for any n ≥ 0. Here the square parentheses denote the equivalence classes.
Clearly Q is a semigroup which, besides its non-commutativity, is far too large

for being of any use. Below we factorize it over the congruence induced by two
families of equations among the elements of Q. Recall that a congruence on a
semigroup (S, ·) is an equivalence relation ‘≡’ such that

a ≡ a′ and b ≡ b′ imply a · b ≡ a′ · b′,

for any a, a′, b, b′ ∈ S.
Consider the following families of relations:

F =
{

[T, u, x][S, v, x] = [T + S, u ◦ v, x] : (T, u, x), (S, v, x) ∈ P
}

,

G =
{

[T, u, x][S, v, y] = [S, v, y][T, u, x] : (T, u, x), (S, v, y) ∈ P
}

.
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Notice that the elements of F are well defined. In fact, by the definition of ‘∼’ one
has that

(T, u, x) ∼ (T̄ , ū, x̄) and (S, v, x) ∼ (S̄, v̄, x̄)

imply

(T + S, u ◦ v, x) ∼ (T̄ + S̄, ū ◦ v̄, x̄).

The union of the families F and G clearly can be seen as a relation on Q, i.e., as a
subset of Q×Q. Now, since the intersection of congruences is again a congruence,
it makes sense to consider the congruence (F ∪ G)# generated by the set F ∪ G,
namely the intersection of all the congruences containing F ∪ G (see e.g. [7]).

Finally, we define the dynamic index I(D) of D as the quotient

I(D) := Q(D)/(F ∪ G)# .

Notice that I(D) is a commutative semigroup. Next we consider two easy examples.

Example 7 (Linear Systems). Consider the following linear control system with
restricted control range

ẋ(t) = Ax(t) + Bu(t) in R
d, u ∈ U ,

where U ⊂ R
m is convex and compact with 0 ∈ int U and A and B are constant

matrices of dimensions d × d and d × m, respectively. We assume that the pair
(A, B) is controllable, i.e., that rank [B, AB, ...Ad−1B] = d. Then the index I(D)
of the unique control set D reduces to the unity. In fact: For a T -periodic strong
inner pair (u, x) in the interior of D, define a homotopy to the origin via

H(α) := (T, αu, αx), α ∈ [0, 1].

Linearity implies that ϕ(T, αx, αu) = αx for all α ∈ [0, 1]. Hence this is a periodic
solution, and for α = 0 one obtains the equilibrium. If 0 /∈ U then the same result
holds provided that A is hyperbolic (cp. [3]).

Example 8 (Small perturbations of linear systems). Consider a control process of
the form:

(5) ẋ(t) = Ax(t) + Bu(t) +

m∑

i=1

ui(t)Fi(x(t)), u ∈ U ,

with U ⊂ R
m compact and convex with non empty interior. Assume that (A, B) in

(5) is controllable and A is hyperbolic, and let Fi be C1.
It follows from the proof of the uniqueness for perturbations in [4] that there

exists M > 0 such that, if

‖D1Fi(x, u)‖ ≤ M, and ‖D2Fi(x, u)‖ ≤ M

for all (x, u) and i = 1, ..., m, then the control process (5) admits exactly one control
set D. Furthermore, the dynamic index I(D) reduces to its unity. In fact, in [4],
we constructed a homotopy between any two given periodic triples (possibly with
different periods).
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5. The index of a control set near a periodic orbit

This section is devoted to the computation of the index of the control set for
(1) which arise for a small control range around an isolated attracting periodic
orbit γ = ϕ([0, T ], x0, 0), with (minimal) period T > 0, of the uncontrolled system,
assuming that the linearized system along γ is controllable. Recall that a periodic
orbit (of an autonomous differential equation) is called attracting, if the eigenvalues
of the linearized Poincaré map are strictly smaller than one in modulus; compare
[10].

Proposition 9. Let γ be a attracting orbit of the uncontrolled system, and let A
be a neighborhood of γ. Assume that the controllability rank condition (3) holds.
Then there exist ρ0 such that for any 0 < ρ ≤ ρ0 there exists a unique control set
Dρ with γ ⊂ Dρ ⊂ A.

Proof. The controllability rank condition implies by Proposition 4 that all pairs
(x, 0) ∈ γ × Uρ are strong inner pairs, hence inner pairs. Then Corollary 4.7.6 in
[1] implies the assertion. �

We shall prove that, when ρ is small enough, the index of the control set Dρ

containing the T -periodic orbit γ is isomorphic to N. To prove this result we need
to show that when (T1, u1, x1) ∈ P(Dρ) is such that ϕ([0, T1], x1, u1) goes n times
around γ, then (T1, u1, x1) ∼ (nT, 0, x0) and therefore [T1, u1, x1] = [T, 0, x0]

n. To
make this precise we shall introduce Definition 11 below.

However, it is first necessary to establish some preliminaries on the Poincaré map
for control systems. We will use some notions and results from Colonius/Sieveking
[2].

Definition 10. Let x0 ∈ R
n, L : R

d → R linear and α > 0. If Lf(x, u) > α for
all x in a neighborhood W of x0 and all u ∈ U then the connected component of
W ∩ L−1(Lx0) containing x0 is called a local transversal section through x0.

Obviously, trajectories “can cross a local transversal section only from one side”.

Definition 11. Let Ω be a neighborhood of γ. We say that a closed orbit γ1 =
ϕ([0, T1], x1, u1) ⊂ Ω goes n times around γ (relatively to Ω) if there exists a linear
map L as in Definition 10 such that

(1) S := Ω ∩ L−1(Lx0) is a local transversal section to γ,
(2) γ ∩ S = {x0},
(3) x1 ∈ S, and
(4) there exist exactly n times ti ∈ (0, T1], i = 1, ..., n, such that ϕ(ti, x1, u1) ∈

S.

It is a consequence of the Hahn-Banach Theorem that x0 admits a local transver-
sal section if 0 /∈ f(x0, U), since the set f(x0, U) is convex and compact. Therefore,
if x0 is not an equilibrium of the uncontrolled system, i.e., if 0 6= f(x0, 0), then
x0 admits a local transversal section for the system with control range ρU with ρ
small enough.

Definition 12. Let S be a local transversal section through x0, and let V1 ⊂ V0

be neighborhoods of x0. The triple (V0, V1, S) is a flow box around x0 if it has the
following property:

If ϕ(·, x0, u) satisfies

ϕ(t0, x0, u) /∈ V0, ϕ(t1, x0, u) ∈ V1, ϕ(t2, x0, u) /∈ V0
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for some 0 ≤ t0 < t1 < t2, then there exists t ∈ (t0, t2) such that ϕ(t, x0, u) ∈ S
and ϕ(s, x0, u) ∈ V0 for all s between t and t1.

The following result establishes the existence of flow boxes; it is a slight modifi-
cation of Theorem 2.16 in [2].

Lemma 13. Let S be a local transversal section through x0. Then for every neigh-
borhood W of S there are neighborhoods V0 and V1 of x0 contained in W such that
(V0, V1, S) is a flow box around x0.

Proof. There exist a linear map L : R
d → R, a constant α > 0, and a neighborhood

W1 ⊂ W of x0 with S ⊃ W1 ∩ L−1(Lx0) and

Lf(y, v) > α for all y ∈ W1, v ∈ U .

Choose a ball V0 = B(r0, x0) around x0 with radius r0 > 0 such that V0 ⊂ W1 and
set c := sup{|f(y, u)| , y ∈ V and v ∈ U}. Then choose r1 ∈ (0, r0) so small that

(6) Lz − α/2c(r0 − r1) ≤ Ly ≤ Lz + α/2c(r0 − r1)

for all z, y ∈ V1 = B(r1, x0). We have for t > t′ ≥ 0 :

ϕ(t, x, u) = ϕ(t′, x, u) +

∫ t

t′
f(ϕ(s, x, u), u(s)) ds

and hence

Lϕ(t, x, u) = Lϕ(t′, x, u) +

∫ t

t′
Lf(ϕ(s, x, u), u(s)) ds

≥ Lϕ(t′, x, u) + α(t − t′),

provided that ϕ(s, x, u) ∈ W1, t′ ≤ s ≤ t. Without loss of generality, we may
assume

ϕ(s, x, u) ∈ V0 for all t0 ≤ s ≤ t2

replacing, if necessary, t0 by the last time before t1 at which ϕ(t, x, u) is in the
complement of V0 and t2 by the first time after t1 at which ϕ(t, x, u) leaves V0. We
have

r0 − r1 ≤ |ϕ(t1, x, u) − ϕ(t0, x, u)| ≤ c(t1 − t0),

r0 − r1 ≤ |ϕ(t2, x, u) − ϕ(t1, x, u)| ≤ c(t2 − t1).

If Lϕ(t0, x, u) ≤ Lx0 ≤ Lϕ(t2, x, u), or Lϕ(t2, x, u) ≤ Lx0 ≤ Lϕ(t1, x, u), the
assertion follows by continuity of t 7→ Lf(t, x, u). Hence we only have to consider
the following two cases:

(1) Lx0 < min{Lϕ(t0, x, u), Lϕ(t2, x, u)}. Here Lϕ(t1, x, u) ≥ Lϕ(t0, x, u) +
α(t1 − t0) > Lx0 + α/c(r0 − r1), contradicting (6) for y = Lϕ(t1, x, u).

(2) Lx0 > max{Lϕ(t0, x, u), Lϕ(t2, x, u)}. Here Lϕ(t2, x, u) ≥ Lϕ(t1, x, u) +
α(t2 − t1) > Lϕ(t1, x, u) + α/c(r0 − r1), again contradicting (6).

�

We now turn to the Poincaré map. Note that for ρ = 0 a local transversal section
as in Definition 10 coincides with the usual notion of a local transversal section for
autonomous differential equations. Then it defines for ρ > 0, small enough, also a
local transversal section for the system with control range ρU .
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Proposition 14. Let S be a local transversal section through x0 ∈ γ. If ρ is small
enough, there exists a neighborhood V of x0 in S such that the Poincaré first return
map P : V ×Uρ → S is well-defined and continuous. Moreover, the map that takes
(x, u) into the ‘first return time’ τ(x, u) is continuous.

Proof. Let us first show that P is well-defined. Notice that the orbits can cross S
only from one side; therefore it is sufficient to show that there exists a neighborhood
V ⊂ S of x0 such that the orbits return to S after a finite time.

Let W be a neighborhood of x0 in R
d and (V0, V1, S) be a flow box around x0

with cl V0 ⊂ W . Taking if necessary a smaller W , we can assume that there are
times t0 and t1, with 0 < t0 < T < t1, for which ϕ(t0, x0, 0) and ϕ(t1, x0, 0) are in
W \ cl V0.

By continuous dependence on initial data there exist a neighborhood V ⊂ V1 of
x0 in S and ρ0 > 0 such that, for 0 < ρ < ρ0 and for every (x, u) ∈ V × Uρ

ϕ(t0, x, u) ∈ W \ cl V0, ϕ(t1, x, u) ∈ W \ cl V0, ϕ(T, x, u) ∈ V1.

Since (V0, V1, S) is a flow box, for each (x, u) ∈ V × Uρ there exists a time τ(x, u),
with t0 < τ(x, u) < t1 such that ϕ

(
τ(x, u), x, u

)
∈ S. For W small enough this

time is unique proving that P (x, u) := ϕ
(
τ(x, u), x, u

)
is well-defined.

We shall now prove continuity of the map (x, u) 7→ P (x, u). Consider a sequence
{(ξn, un)} in S × Uρ converging to (ξ0, u0). Fix a neighborhood W of P (ξ0, u0) in

S and let Ŵ be a neighborhood of P (ξ0, u0) in R
d such that W = Ŵ ∩ S. Let

(V0, V1, S) be a flow box around P (ξ0, u0) with cl V0 ⊂ Ŵ .
Let τ = τ(ξ0, u0). As in the first part of the proof, taking W smaller if necessary,

one can find times 0 < τ0 < τ < τ1 such that

ϕ(τ0, x0, u0), ϕ(τ1, x0, u0) ∈ W \ cl V1.

From [1, Lemma 4.3.2] one has

lim
n→∞

ϕ(τ, ξn, un) = ϕ(τ, ξ0, u0) = P (ξ0, u0),

lim
n→∞

ϕ(τ0, ξn, un) = ϕ(τ0, ξ0, u0),

lim
n→∞

ϕ(τ1, ξn, un) = ϕ(τ1, ξ0, u0).

Therefore, for n large enough,

ϕ(τ0, xn, un), ϕ(τ1, xn, un) /∈ V0 and ϕ(τ, xn, un) ∈ V1.

Since (V0, V1, S) is a flow box there exists τn ∈ (τ0, τ1) such that P (xn, un) =
ϕ(τn, xn, un) ∈ S∩W . This proves that, for n large, P (xn, un) ∈ W and continuity
follows. Notice also that, in the construction above, τn = τ(ξn, un) satisfies

τ1 − τ0 > |τ − τn|;

by shrinking W , we can make the differences τ1−τ0 as small as we please, therefore
proving the continuity of the map (x, u) 7→ τ(x, u). �

The (technically involved) proof of the following proposition is given in [5]. Here
for a control function u and a time T > 0 the function u | [0, T ] extended periodically
to R is denoted by [u]T .

Proposition 15. Let λ 7→ Tλ : [0, 1] → R be continuous. Then, for a (fixed)
control function u ∈ U , the map λ 7→ uλ := λ [u]Tλ

: [0, 1] → U is continuous.
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The next fact is crucial for the construction of the homotopy between the orbits
that wind n times around γ and [T, 0, x]n.

Lemma 16. Assume that the T -periodic orbit γ = ϕ([0, T ], x0, 0) is attracting,
and let S be a local transversal section for the orbit γ through x0. Then there exists
ρ > 0 and a neighborhood V of x0 such that P (·, u) is a contraction, uniformly for
u ∈ Uρ.

Proof. Without loss of generality we can assume that S lies on the hyperplane
X := {xd = 0} ⊂ R

d. Here and along all this proof the exponent d denotes the
d-th component in R

d. Take

F := Uρ ∩ C1(R, Rm)

with the L∞ topology, and define for u ∈ F the C1 function Ψu : R × X → R as

Ψu(t, y) := ϕd(t + τu, y, u)− yd,

where τu = τ(x0, u). One has Ψu (0, x0) = 0. Observe that Ψu is continuous,
uniformly for u ∈ F . Moreover, reducing ρ if necessary, one can find δ > 0 such
that

D1Ψu (0, x0) = fd
(
ϕ(τu, x0, u), u(τu)) ≥ 1/δ.

A parametrized version of the implicit function theorem implies the existence
of a neighborhood V of x0 in S and of a C1 function tu : V → R such that
Ψu

(
tu(x), x

)
= 0 for every x ∈ V .

Clearly, if ρ is small enough and x ∈ V , then the time τ(x, u) for the Poincaré
map coincides with tu(x) + τu. Thus D1τ(x, u) is well defined and the map

(x, u) 7→ D1P (x, u) = D1ϕ
(
τ(x, u), x, u

)
D1τ(x, u) + D2ϕ

(
τ(x, u), x, u

)

is continuous. Since γ is attracting, the eigenvalues of D1P (x0, 0) are strictly
smaller than one in modulus. Thus there exists a norm on S such that the operator
D1P (x0, 0) has norm smaller than one. By continuity and restricting V and ρ if
necessary, we can assume that the same is true for D1P (x, u) for every x ∈ V and
u ∈ Uρ ∩ C1(R, Rm). Whence it follows that P (·, u) is a contraction with constant

k = sup
(ξ,µ)∈V ×Uρ

‖D1P (ξ, µ)‖ < 1.

Let us show that P (·, u) remains a k-contraction when u is a general (not necessarily
continuously differentiable) element of Uρ. Since the C1 functions are dense in Uρ

in the weak* topology, there is a sequence {un} of C1 functions in Uρ converging
to u0 in the weak* topology. Take x and y in V , by Proposition 14 we know that P
is continuous when Uρ is endowed with the weak* topology. Therefore, for ε > 0,
one has

|P (x, u) − P (x, un)| + |P (y, u) − P (y, un)| < ε,

for n sufficiently large. Therefore

|P (x, u) − P (y, u)| ≤ |P (x, u) − P (x, un)| + |P (x, un) − P (y, un)|

+ |P (y, un) − P (y, u)|

≤ k|x − y| + ε.

Since ε > 0 is arbitrary, this proves the assertion. �
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Proposition 17. Assume that the T -periodic orbit γ = ϕ([0, T ], x0, 0) is attracting,
and let S be a local transversal section for γ through x0. Then there exists ρ > 0
and a neighborhood V of x0 such that for every n ∈ N and every (x, u) ∈ V × Uρ

the map (x, u) → P n(x, u) is well defined.
Moreover, for every u ∈ Uρ, there exists a Tu > 0 and a unique Tu-periodic

solution ϕ(·, xu, [u]Tu
) winding n times around γ, and the functions u 7→ Tu and

u 7→ xu are continuous.

Proof. In Lemma 16 we proved that for u ∈ Uρ, with ρ sufficiently small, P (·, u) is
a contraction on cl V . Consequently, we can assume that P

(
cl V, u

)
⊂ cl V for any

u ∈ Uρ. In particular P n(·, u) is well-defined for any n ∈ N and u ∈ Uρ. Notice
also that for every n ∈ N and u ∈ Uρ also P n(·, u) is a contraction. Therefore,
given n and u as above, there exist a unique fixed point xu for P n(·, u) in N which
depends continuously on u. Define Tu as the time needed for ϕ(·, xu, u) to reach xu

after winding n times around γ. Continuous dependence of Tu on u follows from
continuity of the first return time as shown in Proposition 14. �

Notice that in P n(x, u) the control u restricted to [0, Tu] is applied n times.
When the control function is identically zero and V is small enough, the sets of
fixed points of P (·, 0) and of P n(·, 0) reduce to x0. However, this needs not be true
when nontrivial controls are applied. Indeed, when the controllability condition
(3) is satisfied one can for n > 1 construct a (small) control u which yields a
periodic trajectory meeting the transversal section in n distinct points. (This can
be deduced from Proposition 9.) Thus, for such u, the fixed point set of P n(·, u)
strictly contains that of P (·, u).

We are finally in a position to prove the claim we made at the beginning of this
section.

Theorem 18. Assume that the uncontrolled system has an attracting T -periodic
solution ϕ(·, x0, 0) with T > 0, and that the controllability condition (3) is satisfied.
Then, when ρ is small enough, the dynamic index I(Dρ) of the control set Dρ

containing γ := ϕ([0, T ], x0, 0) is isomorphic to N.

Proof. Let N = cl V be the compact neighborhood of x0 found in the proof of
Proposition 17 above. Consider a T1-periodic orbit ϕ(·, x, u) with x ∈ N , u ∈

Uρ′

for some 0 < ρ′ < ρ and u piecewise constant. There exists n such that
ϕ(T1, x, u) = P n(x, u). By Proposition 17, there exist Tλ > 0 and a unique Tλ-
periodic solution ϕ(·, xλ, [λu]Tλ

) winding n times around γ. By Proposition 15 the
map λ 7→ uλ := [λu]Tλ

is continuous. Hence, again by Proposition 17, it follows
that Tλ and xλ depend continuously on λ. In particular, T0 = nT . Since by
Proposition 4 ([v]Tλ

, xλ) is a strong inner pair for each λ, this yields the desired
homotopy between (T1, u1, x1) and (T0, 0, x0). �

We conclude the paper with a remark showing that the dynamic index allows us
to distinguish control sets around an attracting periodic orbit as above from control
sets around a homoclinic orbit.

Remark 19. Suppose that the uncontrolled system has a homoclinic orbit given by

ϕ(t, x1, u1), t ∈ R, with lim
t→±∞

ϕ(t, x1, u1) = x0,

where x0 is an equilibrium of the uncontrolled system. If the controllability condition
(3) holds for all points in γ := {x0} ∪ {ϕ(t, x1, u1), t ∈ R} and this is a chain
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recurrent component of the uncontrolled system, then for every ρ > 0 there is a
control set Dρ containing this set in its interior and

⋂

ρ>0

Dρ = γ;

see Corollary 4.7.6 in [1]. For any small ρ, the index I(Dρ) contains an element
[T, x0, 0] which is idempotent, i.e., [T, x0, 0]2 = [T, x0, 0]. Hence I(Dρ) is not
isomorphic to N.
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