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1 Introduction

This paper aims to provide a careful and self-contained introduction to the the-
ory of topological degree in Euclidean spaces. It is intended for people mostly
interested in analysis and, in general, a heavy background in algebraic or differ-
ential topology is not required.

Roughly speaking, our construction of the topological degree can be sum-
marized in a few steps. We first define a notion of degree for the special case of
regular triples that is for triples (f, U, y) where f is an Rk-valued smooth func-
tion defined (at least) on the closure U of the open set U ⊆ Rk and proper on
U , and y ∈ Rk is a regular value for f in U . We then proceed to the definition
of degree in the general case of admissible triples when f is assumed only con-
tinuous and proper on U , and y is any point in Rk \ f(∂U). Lastly, we consider
the so-called extended case of the weakly admissible triples, that is when f is
defined (and continuous) at least on U and y ∈ Rk is such that f−1(y) ∩ U is
compact.

Our approach emphasizes the importance of three fundamental properties
of topological degree: Normalization, Additivity, and Homotopy Invariance (see
below). Actually, these properties determine the notion of degree in a unique
way yielding a computation formula for the degree valid for admissible triples
(f, U, y) such that f is Fréchet differentiable in any x ∈ f−1(y). This allows an
alternative approach.

This paper is organized as follows: Section 2 gathers some results and notions
needed for the following sections. In Section 3 the notion of degree both for
regular triples and for admissible triples is defined, and the main consequences
of the three above mentioned fundamental properties are explored. Section 4
is devoted to the notion of degree for weakly admissible triples, while Section
5 contains the (lengthy) proof of the Homotopy Invariance Property for regular
triples.

A word of caution: unless differently stated, all the maps considered in this
paper are continuous. We also recall that we say that a function defined on an
arbitrary subset X of Rk is C∞ (resp. Cr with 1 ≤ r < ∞), if it admits a C∞

(resp. Cr) extension to an open neighborhood of X .
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2 Preliminaries

Let f : U → Rs be a C1 map defined on an open subset of Rk. An element
x ∈ U is called a critical point (of f) if the Fréchet derivative f ′(x) ∈ L(Rk, Rs)
is not onto; otherwise x is a regular point. An element y ∈ R

s is a critical value
if f−1(y) contains critical points; otherwise y is a regular value.

To avoid confusion, points are in the source space and values in the target
space.

Observe that if k < s, then any x ∈ U is a critical point. Consequently,
f(U) coincides with the set of critical values of f .

A very important special case is when k = s. In this context, x ∈ U
is a regular point (of f) if and only if the Jacobian of f at x, det(f ′(x)), is
nonzero. When this holds, the sign of det(f ′(x)) is called the index of f at x
and denoted i(f, x). Actually, the index i(f, x) is defined as sign(det(f ′(x)))
even if f is simply continuous, provided it is Fréchet differentiable at x with
invertible derivative.

Exercise 2.1. Let p be a complex polynomial and regard p as a map from R2

into itself. Show that z ∈ C ∼= R
2 is a critical point of p if and only if it is a

root of the polynomial p′. Prove that i(p, z) = 1 for any regular point z ∈ C.

The following result is of crucial importance in degree theory. (See e.g., [11]
or [8].)

Sard’s Lemma. Let f : U → Rs be a Cn map defined on an open subset of
Rk. If n > max{0, k−s}, then the set of critical values of f has (s-dimensional)
Lebesgue measure zero. In particular, the set of regular values of f is dense in
Rs.

Observe that, in view of Sard’s Lemma, a C1 curve α : [a, b] → Rs, s > 1,
cannot be a Peano curve (i.e. a curve whose image contains interior points).

Definition 2.2. A map f : X → Y between two metric spaces is proper if
f−1(K) is compact whenever K ⊆ Y is compact.

Clearly, if X is compact, then f is proper (any map is assumed to be con-
tinuous).

Exercise 2.3. Show that if f : X → Y is proper, then it is a closed map (that
is, f(A) is closed whenever A ⊆ X is closed).

Exercise 2.4. Let X ⊆ Rk be closed and unbounded. Prove that a map
f : X → Rs is proper if and only if

lim
x∈X, |x|→+∞

|f(x)| = +∞.

Example 2.5. Let p : C → C be a non-constant complex polynomial. Then
lim|z|→+∞ |p(z)| = +∞. Thus, p is a proper map.

In the following we will need to approximate continuous functions with more
regular ones. To do that, we shall make use of the following approximation
theorem
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An introduction to topological degree in Euclidean spaces 3

Smooth Approximation Theorem. Let U ⊆ Rk be open, and let f be an Rs-
valued (continuous) function defined on the closure U of U in Rk. Then, given
a continuous function ε : U → (0,∞), there exists a C∞ function g : U → R

s

such that |f(x) − g(x)| < ε(x) for any x ∈ U .

This fact could be proved directly. However, since any continuous function
defined on a closed subset of Rk with values in Rs can be extended to a contin-
uous function on Rk (this is a consequence of the well-known Tietze extension
Theorem, see e.g., [4]), the approximation result just stated can be deduced
from more known theorems valid for maps defined on open sets, see e.g., [6].

3 Brouwer degree in Euclidean spaces

3.1 The special case

Let U be an open subset of R
k, f an R

k-valued map defined (at least) on the
closure U of U , and y ∈ Rk.

Definition 3.1. The triple (f, U, y) is said to be admissible (for the Brouwer
degree in Rk) provided that f is proper on U and f(x) 6= y, ∀x ∈ ∂U .

Notice that, according to Exercise 2.3, f(∂U) is a closed subset of Rk.

Definition 3.2. An admissible triple (f, U, y) is said to be regular if f is C∞,
and y is a regular value for f in U .

We point out that if (f, U, y) is a regular triple, then the set f−1(y) ∩ U is
finite. In fact, f−1(y)∩U is compact (f being proper on U), it is contained in U
(since y /∈ f(∂U)) and it is discrete (because of the Inverse Function Theorem).
This justifies the following definition of degree for the special case of a regular
triple.

Definition 3.3. The Brouwer degree of a regular triple (f, U, y) is the integer

deg(f, U, y) :=
∑

x∈f−1(y)∩U

i(f, x) (3.1)

In some sense the Brouwer degree of a regular triple (f, U, y) is an algebraic
count of the number of solutions in U of the equation f(x) = y. This integer, as
we shall see, turns out to depend only on the connected component of Rk\f(∂U)
containing the regular value y. This is not so for the absolute count of the
solutions (i.e. the cardinality #f−1(y) of the set f−1(y)), as it happens, for
example, to the proper map f : R → R given by f(x) = x2. Incidentally,
observe that in this case we have deg(f, R, y) = 0 for any regular value y ∈ R

(i.e. for any y 6= 0).
Notice that the notation deg(f, U, y) is not redundant, since U can be strictly

contained in the domain of f (which is uniquely associated with f). For example,
if deg(f, U, y) is defined and V is an open subset of U such that f−1(y)∩∂V = ∅,
then also deg(f, V, y) is defined (and depends only on the restriction of f to V ).

Observe also that (f, U, y) is a regular triple if and only if so is (f − y, U, 0),
where f − y stands for the map x 7→ f(x) − y. Obviously, when this holds, one
has

deg(f, U, y) = deg(f − y, U, 0).
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Example 3.4. Given a positive integer n, let pn : C → C be the map defined
by pn(z) = zn. Identifying C with R2, 0 ∈ C is the only critical point of
pn (see Exercise 2.1). Therefore, 0 = pn(0) is the unique critical value and,
consequently, recalling that pn is a proper map (see Exercise 2.4), deg(pn, C, w)
is defined for any w ∈ C \ {0}. Since any w 6= 0 admits exactly n different
n-roots, Exercise 2.1 shows that deg(pn, C, w) = n for all w 6= 0. It is therefore
natural to extend the function w 7→ deg(pn, C, w) by putting deg(pn, C, w) = n
even for w = 0 (this will be a consequence of the general definition of degree).

Theorem 3.6 below collects the three fundamental properties of the degree
for regular triples. The first two, the Normalization and the Additivity, are
a straightforward consequence of the definition; the third one, the Homotopy
Invariance, is crucial for the construction of the degree in the general case, is
nontrivial and (to please the impatient reader) will be proved in the appendix to
this chapter. As we shall see later, there exists at most one integer-valued func-
tion (defined on the set of all regular triples) satisfying the three fundamental
properties.

In order to simplify the statement of Theorem 3.6, it is convenient to intro-
duce the following notion.

Definition 3.5. Let U be an open subset of Rk, H an Rk-valued map defined
(at least) on U × [0, 1], and α : [0, 1] → Rk a path. The triple (H, U, α) is said to
be a homotopy of triples (on U , joining (H(·, 0), U, α(0)) with (H(·, 1), U, α(1)) ).
If, in addition, H is proper on U × [0, 1] and H(x, λ) 6= α(λ) for all (x, λ) ∈
∂U × [0, 1], then (H, U, α) is called an admissible homotopy (of triples). If both
H and α are smooth maps, then (H, U, α) is said to be smooth.

Theorem 3.6. The degree for regular triples satisfies the following three fun-
damental properties:

(Normalization) deg(I, Rk, 0) = 1, where I denotes the identity on Rk;

(Additivity) if (f, U, y) is regular, and U1 and U2 are two disjoint open
subsets of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y);

(Homotopy Invariance) if (H, U, α) is a smooth admissible homotopy join-
ing two regular triples, then

deg(H(·, 0), U, α(0)) = deg(H(·, 1), U, α(1)).

3.2 The general case

The Brouwer degree, preliminarily defined for regular triples, can be extended
to the larger class of admissible triples; where, we recall, a triple (f, U, y) is
admissible (for the degree in Euclidean spaces) provided that U is an open
subset of R

k, f is an R
k-valued map which is proper on U , and y ∈ R

k does not
belong to the (possibly empty) set f(∂U).

The passage from the regular to the admissible case can be made in one big
step or, as usual, in two small steps (the intermediate stage regarding admissible
triples (f, U, y) with f smooth). We will reach the goal in just one step, but in
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An introduction to topological degree in Euclidean spaces 5

a way that the reader interested only in the smooth case can easily imagine how
to perform the first small step, which consists in removing the assumption that
the value y in the triple (f, U, y) is regular.

Before giving the definition of degree in the general case, we need some
preliminaries.

Let f and g be two Rs-valued maps defined (at least) on a subset X of Rk.
Given ε > 0, we say that f is ε-close to g in X if |f(x) − g(x)| ≤ ε, ∀x ∈ X .
Moreover, given y, z ∈ Rs, y is ε-close to z, provided that |y − z| ≤ ε.

Observe that if (f, U, y) is an admissible triple and g is ε-close to f in U
for some ε > 0, then g is proper on U (see Exercise 2.4). If, in addition,
ε < dist(y, f(∂U)),1 then y /∈ g(∂U), and in this case also the triple (g, U, y) is
admissible. More generally, if z ∈ Rk is σ-close to y and ε + σ < dist(y, f(∂U)),
then (g, U, z) is admissible as well.

Definition 3.7. The degree of an admissible triple (f, U, y), also called degree
of f in U at y, is the integer

deg(f, U, y) := deg(g, U, z),

where (g, U, z) is any regular triple with the following properties:

1. g is ε-close to f ;

2. z is σ-close to y;

3. ε + σ < dist(y, f(∂U)).

Clearly, given (f, U, y) admissible, the existence of a regular triple (g, U, z)
as in Definition 3.7 is ensured by the Smooth Approximation Theorem (which
shows the existence of g) and Sard’s Lemma (which shows the existence of z).

The following consequence of Theorem 3.6 guarantees that this Definition is
actually well posed.

Corollary 3.8. Let (f, U, y) be an admissible triple. Then,

deg(g0, U, z0) = deg(g1, U, z1)

for any pair of regular triples (g0, U, z0) and (g1, U, z1) satisfying the following
conditions:

1. g0 and g1 are ε-close to f ;

2. z0 and z1 are σ-close to y;

3. ε + σ < dist(y, f(∂U)).

Proof. Let (g0, U, z0) and (g1, U, z1) be as in the statement, and define the
smooth homotopy of triples (H, U, α) joining (g0, U, z0) and (g1, U, z1) by

H(x, λ) = (1 − λ)g0(x) + λg1(x), α(λ) = (1 − λ)z0 + λz1.

We have

H(x, λ) − f(x) = (1 − λ)(g0(x) − f(x)) + λ(g1(x) − f(x)).

1Recall the convention inf ∅ = +∞, which implies dist(y, ∅) = +∞
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Thus,
|H(x, λ) − f(x)| ≤ ε, ∀(x, λ) ∈ U × [0, 1],

which implies that H is proper on U , on the basis of Exercise 2.4. Analogously,

|α(λ) − y| ≤ σ, ∀λ ∈ [0, 1].

Let us show that

H(x, λ) 6= α(λ), ∀(x, λ) ∈ ∂U × [0, 1].

In fact, given (x, λ) ∈ ∂U × [0, 1], we have

H(x, λ) − α(λ) = H(x, λ) − f(x) + f(x) − y + y − α(λ)

and, consequently,

|H(x, λ) − α(λ)| ≥ |f(x) − y| − ε − σ > 0.

The assertion now follows from the Homotopy Invariance Property for regular
triples (see Theorem 3.6).

The following important result is an extension, a consequence, and the ana-
logue of Theorem 3.6 for the general case.

Theorem 3.9. The Brouwer degree in Rk satisfies the following three Funda-
mental Properties:

(Normalization) deg(I, Rk, 0) = 1, where I denotes the identity on Rk;

(Additivity) if (f, U, y) is admissible, and U1 and U2 are two disjoint open
subsets of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y);

(Homotopy Invariance) if (H, U, α) is an admissible homotopy, then

deg(H(·, 0), U, α(0)) = deg(H(·, 1), U, α(1)).

Proof. Only the last two properties need to be proved.

(Additivity) Since f if proper on U , the subset C = f(U \ (U1∪U2)) of Rk is
closed. Moreover, the assumption f−1(y) ∩ U ⊆ U1 ∪ U2 implies dist(y, C) > 0.
Let g be any smooth map which is ε-close to f , with ε < dist(y, C). It is easy to
check that g−1(y)∩U ⊆ U1 ∪U2. The assertion now follows from Definition 3.7
and the Additivity Property of the degree for regular triples (stated in Theorem
3.6).

(Homotopy Invariance) Observe that, on the basis of Exercise 2.4, the map

(x, λ) 7→ H(x, λ) − α(λ)

is proper on U × [0, 1]. Thus the image, under this map, of the set ∂U × [0, 1]
is closed in R

k. Consequently, since this set does not contain the origin of R
k,

the extended real number

δ := inf
{

|H(x, λ) − α(λ)| : (x, λ) ∈ ∂U × (0, 1)
}

is nonzero. Let (G, U, β) be any smooth homotopy of triples, joining two regular
triples, and satisfying the following properties:
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An introduction to topological degree in Euclidean spaces 7

1. G is ε-close to H (on U × [0, 1]);

2. β is σ-close to α (on [0, 1]);

3. ε + σ < δ.

The existence of such a triple is ensured by the Smooth Approximation Theorem
and Sard’s Lemma. As in the proof of Corollary 3.8 one can show that (G, U, β)
is an admissible homotopy. Therefore, because of the Homotopy Invariance
Property for regular triples, we get

deg(G(·, 0), U, β(0)) = deg(G(·, 1), U, β(1)).

The assertion now follows from Definition 3.7.

3.3 Direct consequences of the Fundamental Properties

We will prove now some important additional properties of the Brouwer degree.
Even if they could be easily deduced from the definition of degree, we prefer to
prove them starting from the three Fundamental Properties stated in Theorem
3.9: Normalization, Additivity and Homotopy Invariance. The advantage of this
method will be evident in the next subsection, which is devoted to the axiomatic
approach.

First of all we observe that, given a map f : X → Rk defined on a subset X
of Rk and given y ∈ Rk, the triple (f, ∅, y) is admissible. Therefore, deg(f, ∅, y)
is defined. We claim that this degree is zero.

Indeed, from the Additivity Property, putting U = ∅, U1 = ∅ and U2 = ∅,
we get

deg(f, ∅, y) = deg(f, ∅, y) + deg(f, ∅, y),

which implies our assertion.

The following property, which is evident in the regular case, shows that the
degree of an admissible triple (f, U, y) depends only on the behavior of f in any
neighborhood of the set of solutions of the equation f(x) = y, x ∈ U .

Theorem 3.10 (Excision Property). If (f, U, y) is admissible and V is an
open subset of U such that f−1(y) ∩ U ⊆ V , then (f, V, y) is admissible and

deg(f, U, y) = deg(f, V, y).

Proof. The admissibility of (f, V, y) is clear. To show the equality apply the
Additivity Property with U1 = V and U2 = ∅.

As the above property, also the following one is evident in the regular case.

Theorem 3.11 (Existence Property). If deg(f, U, y) 6= 0, then the equation
f(x) = y admits at least one solution in U .

Proof. Assume that f−1(y) ∩ U is empty. By the Excision Property, taking
V = ∅, we get

deg(f, U, y) = deg(f, ∅, y) = 0,

which is a contradiction.
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Given an admissible triple (f, U, y), since the target space of f is Rk, the
equation f(x) = y is equivalent to f(x) − y = 0. In terms of degree this fact is
expressed by the following property, which is evident in the regular case.

Theorem 3.12 (Translation Invariance Property). If (f, U, y) is admissi-
ble, then so is (f − y, U, 0), and

deg(f, U, y) = deg(f − y, U, 0).

Proof. Consider the family of equations

f(x) − λy = (1 − λ)y, λ ∈ [0, 1],

and apply the Homotopy Invariance Property with H(x, λ) = f(x) − λy and
α(λ) = (1 − λ)y.

The next result is a straightforward consequence of the Homotopy Invariance
Property, and the proof is left to the reader.

Theorem 3.13 (Continuous Dependence Property). Let f be proper on
the closure of an open subset U of Rk. Then the map y 7→ deg(f, U, y), which
is defined on the open set Rk \ f(∂U), is locally constant. Thus, deg(f, U, y)
depends only on the connected component of Rk \ f(∂U) containing y.

Because of the above property, given an open U ⊆ Rk, f proper on U and
a connected subset V of Rk \ f(∂U), we will use the notation deg(f, U, V ) to
indicate the degree of f in U at any y ∈ V . In particular, if U = Rk, the integer
deg(f, Rk, Rk) will be denoted by deg(f).

The following property means that, given y ∈ Rk and U ⊆ Rk open and
bounded, the degree of a map f : U → Rk (in U at y) depends only on the
restriction of f to the boundary of U (assuming the condition y /∈ f(∂U),
which, U being bounded, is sufficient for the degree to be defined). This is
important since, in many cases, it allows us to deduce the existence of solutions
in U of the equation f(x) = y only from the inspection of the behavior of f
along the boundary of U ; as in the case of U = (a, b) ⊆ R, where the condition
f(a)f(b) < 0 implies f(x) = 0 has a solution in (a, b).

Theorem 3.14 (Boundary Dependence Property). Let U ⊆ Rk be open
and bounded, and let f, g : U → R

k be such that f(x) = g(x) for all x ∈ ∂U .
Then, given y ∈ Rk \ f(∂U), one has

deg(f, U, y) = deg(g, U, y).

Proof. The assertion follows from the fact that the homotopy of triples (H, U, α)
defined by

H(x, λ) = λf(x) + (1 − λ)g(x), α(λ) = y

is admissible.

We point out that, in the above result, the assumption that U is bounded
cannot be dropped. To see this, take U = (0, +∞), f(x) = x, g(x) = −x, y = 1.
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An introduction to topological degree in Euclidean spaces 9

3.4 The axiomatic approach

From an axiomatic point of view, the topological degree (in Euclidean spaces)
is a map which to any admissible triple (f, U, y) assigns an integer, deg(f, U, y),
satisfying the three Fundamental Properties (stated in Theorem 3.9): Normal-
ization, Additivity and Homotopy Invariance.

A famous result by Amann-Weiss [1] (1973) asserts the uniqueness of the
topological degree. That is, there exists at most one integer-valued map (defined
on the class of the admissible triples) which verifies the three Fundamental
Properties.

There are several methods for the construction of degree (see, for example,
[2, 3, 5, 7, 8, 9, 10, 12, 13]), however, because of the Amann-Weiss result, with
any of such methods, what is important is to prove the three Fundamental Prop-
erties (called, in this subsection, Amann-Weiss axioms): all the other classical
properties will follow, as we have already shown in the previous subsection.

Let us show that from the three Amann-Weiss axioms one obtains an explicit
formula for computing the degree of triples which are, in a sense to be made
precise, dense in the family of the admissible triples. In particular, we will show
that when an admissible triple (f, U, y) is actually regular, then

deg(f, U, y) =
∑

x∈f−1(y)∩U

i(f, x).

The uniqueness of the degree will follow easily from the above formula and the
Homotopy Invariance Property (see Theorem 3.17 below).

Recall first that, given a proper map f : Rk → Rk, deg(f) stands for
deg(f, Rk, y), where y is any value in Rk. This notation is justified by the
Continuous Dependence Property, which, as all the other properties in the pre-
vious subsection, is a consequence of the axioms. Observe that, because of
the Existence Property, if deg(f) 6= 0, then f is surjective. We point out
also that, as a consequence of the Homotopy Invariance axiom, if a homotopy
H : Rk×[0, 1] → Rk is proper, then deg(H(·, λ)) is well defined and independent
of λ.

Let, as usual, L(Rk) denote the normed space of linear endomorphisms of
Rk and let GL(Rk) stand for the open subset of L(Rk) of the automorphisms;
that is,

GL(Rk) =
{

L ∈ L(Rk) : det(L) 6= 0
}

.

Now, let L ∈ GL(Rk) be given. Since L is invertible, it is a proper map of Rk

onto itself (notice that any homeomorphism is a proper map). Thus, deg(L) is
well defined.

Let us show that the Amann-Weiss axioms imply

deg(L) = sign(det(L)), ∀L ∈ GL(Rk). (3.2)

To this end, we recall that the open subset GL(Rk) of L(Rk) has exactly two
connected components. Namely,

GL+(Rk) =
{

L ∈ L(Rk) : det(L) > 0
}

.

and
GL−(Rk) =

{

L ∈ L(Rk) : det(L) < 0
}

.
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As a consequence of the Homotopy Invariance axiom it is easy to check that the
map which assigns deg(L) to any L ∈ GL(Rk) is locally constant. Indeed, if L0

and L1 are close one to the other, the homotopy H(x, λ) = L0x + λ(L1 − L0)
is proper. Consequently, deg(L) depends only on the component of GL(Rk)
containing L.

Since the identity I of Rk belongs to GL+(Rk), the Normalization axiom
implies deg(L) = 1, ∀L ∈ GL+(Rk).

Let us show that deg(L) = −1, ∀L ∈ GL−(Rk). For this purpose consider
the map f : Rk → Rk given by

f(ξ1, . . . , ξk−1, ξk) = (ξ1, . . . , ξk−1, |ξk|).

This map is proper, since ‖f(x)‖ = ‖x‖, ∀x ∈ Rk. Thus deg(f) makes sense
and is zero, because f is not surjective.

Let V− and V+ denote, respectively, the open half-spaces of the points in R
k

with negative and positive last coordinate. Consider the two solutions

x− = (0, . . . , 0,−1) and x+ = (0, . . . , 0, 1)

of the equation f(x) = y, with y = (0, . . . , 0, 1), and observe that x− ∈ V−,
x+ ∈ V+.

By the Additivity axiom we get

0 = deg(f) = deg(f, V−, y) + deg(f, V+, y).

Now, observe that in V+ the map f coincides with the identity I of R
k. There-

fore, because of the Excision Property, one has

deg(f, V+, y) = deg(I) = 1,

which implies deg(f, V−, y) = −1.
Since f in V− coincides with the linear map L− ∈ GL−(Rk) given by

(ξ1, . . . , ξk−1, ξk) 7→ (ξ1, . . . , ξk−1,−ξk),

we obtain deg(L−) = −1. Thus, GL−(Rk) being connected, we finally get
deg(L) = −1 for all L ∈ GL−(Rk), as claimed.

Let us show how from the Amann-Weiss axioms one can deduce the formula
(3.1) for computing the degree of a regular triple. More generally, we prove the
following result.

Theorem 3.15 (Computation Formula). Let (f, U, y) be an admissible triple.
Assume that, at any x ∈ f−1(y)∩U , f is Fréchet differentiable with nonsingular
derivative. Then f−1(y) ∩ U is finite and

deg(f, U, y) =
∑

x∈f−1(y)∩U

i(f, x).

In order to prove Theorem 3.15 we need the following result.

Lemma 3.16. Let (f, V, y0) be an admissible triple. Assume that the equation
f(x) = y0 has a unique solution x0 ∈ V . If f is Fréchet differentiable at x0 and
f ′(x0) is invertible, then deg(f, V, y) = deg(f ′(x0)).
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An introduction to topological degree in Euclidean spaces 11

Proof. Since f is differentiable at x0, we have

f(x) = y0 + f ′(x0)(x − x0) + ‖x − x0‖ε(x − x0), ∀x ∈ V ,

where ε(h) is defined for h ∈ −x0 + V , is continuous, and such that ε(0) = 0.
Observe that the linearized map of f at x0, g(x) := y0 +f ′(x0)(x−x0), is an

affine map with linear part f ′(x0) ∈ GL(Rk). Thus, g is proper and, because of
the Translation Invariance Property, one has deg(g) = deg(f ′(x0)). Therefore,
by the Excision Property, it is enough to show that

deg(f, W, y0) = deg(g, W, y0), (3.3)

where W is a sufficiently small open neighborhood of x0 contained in V .
For this purpose, define the homotopy H : V × [0, 1] → Rk joining g with f

by
H(x, λ) = y0 + f ′(x0)(x − x0) + λ‖x − x0‖ε(x − x0).

We have
‖H(x, λ) − y0‖ ≥ (m − ‖ε(x − x0)‖) ‖x − x0‖,

where m = inf{‖f ′(x0)v‖ : ‖v‖ = 1} is positive, f ′(x0) being invertible. This
shows that, in a convenient neighborhood W of x0, the homotopy of triples
(H, W, y0) is admissible, and the equality 3.3 is established.

Proof of Theorem 3.15. Since f is proper on U , the set f−1(y) ∩U is compact,
and the condition y /∈ f(∂U) ensures that it is contained in U . On the other
hand, as in the proof of Lemma 3.16, the assumption that at any x ∈ f−1(y)∩U
the derivative f ′(x) is injective ensures that this set is made up of isolated
points. Therefore, it is actually a finite set. Let V1, V2, . . . , Vn be pairwise
disjoint open subsets of U , each of them containing exactly one point of f−1(y).
The Additivity axiom implies

deg(f, U, y) =

n
∑

i=1

deg(f, Vi, y),

and the assertion follows from Lemma 3.16 and formula (3.2) for computing the
degree of a linear automorphism.

The following result shows, in particular, that the degree of an admissible
triple coincides with the degree of any sufficiently close regular triple, and this
implies the uniqueness of the degree.

Theorem 3.17. Let (f, U, y) be an admissible triple. If (g, U, z) is a regular
triple which can be joined to (f, U, y) via an admissible homotopy, then

deg(f, U, y) =
∑

x∈g−1(z)∩U

i(g, x). (3.4)

In particular, this is true for any regular triple (g, U, z) such that:

1. g is ε-close to f ;

2. z is σ-close to y;
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12 P. Benevieri — M. Furi — M.P. Pera — M. Spadini

3. ε + σ < dist(y, f(∂U)).

Proof. Let (g, U, z) be a regular triple which can be joined to (f, U, y) via an
admissible homotopy. From the Homotopy Invariance axiom one gets

deg(f, U, y) = deg(g, U, z),

and the equality (3.4) follows from Theorem 3.15.
Assume now that (g, U, z) is a regular triple which satisfies properties 1, 2

and 3. It is enough to show that the homotopy of triples (H, U, α), defined by

H(x, λ) = (1 − λ)f(x) + λg(x), α(λ) = (1 − λ)y + λz,

is admissible on U . This can be done as in the proof of Corollary 3.8.

3.5 First topological applications

We give now some direct topological applications of the Brouwer degree in Eu-
clidean spaces.

Let us show, first of all, that the topological degree of a (non-constant)
polynomial is the same as its algebraic degree. This provides one of the many
proofs of the Fundamental Theorem of Algebra (which is actually a result of
topological nature) and justifies the expression “degree” used by Brouwer. In
some sense, the Brouwer degree is an extension of the algebraic notion of degree
to more general situations.

As before, if f : R
k → R

k is a proper map, by deg(f) we shall mean the
integer deg(f, Rk, y), where y is any point of Rk. Because of the Continuous
Dependence Property (Theorem 3.13), deg(f) is well defined.

Observe that if H : Rk × [0, 1] → Rk is a proper map, then, because of the
Homotopy Invariance Property, deg(H(·, λ)) is independent of λ ∈ [0, 1].

Theorem 3.18. Let pn : C → C be a polynomial of algebraic degree n > 0.
Then pn, regarded as a map from R2 into itself, has topological degree n.

Proof. Write pn(z) = azn + q(z), with a 6= 0 and q(z) a polynomial of degree
less then n. Consider the homotopy

H(z, λ) = azn + λq(z)

and observe that
lim

|z|→+∞
|H(z, λ)| = +∞,

uniformly with respect to λ ∈ [0, 1]. Thus H is a proper map and, consequently,
the topological degrees of the two maps pn and fn : z 7→ azn are equal. To
conclude that the Brouwer degree of fn is n, observe that the equation azn = a
has exactly n solutions each of them with index one (see Exercise 2.1).

With the same method as in the proof of Theorem 3.18 one can show that if
pn : C → C is a polynomial of algebraic degree n > 0, then the map fn : C → C

given by fn(z) = pn(z̄), where z̄ is the conjugate of z, has degree −n. Thus, we
have examples of proper maps from R2 into R2 of arbitrary nonzero degree. A
simple (proper) map of degree zero is given by f0(x, y) = (x, y2).
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An introduction to topological degree in Euclidean spaces 13

It is easy to check that if f : R2 → R2 is proper and I denotes the identity
on Rs, then the map

I × f : R
s × R

2 → R
s × R

2

is proper and deg(I × f) = deg(f). Thus, if k > 1, one can find maps from Rk

into itself of arbitrary degree.

Exercise 3.19. Show that if f : R → R is proper, then deg(f) may assume
only three values: −1, 0, 1.

From Theorem 3.18 and the Existence Property of the degree follows imme-
diately the

Fundamental Theorem of Algebra. Any non-constant polynomial with com-
plex coefficients admits at least one root.

The following is another famous topological result that can be easily deduced
from degree theory.

Brouwer Fixed Point Theorem. Let U be the open unit ball in Rk and
let f : U → R

k be continuous and such that f(U) ⊆ U (or, more generally,
f(∂U) ⊆ U). Then f has a fixed point in U .

Proof. If the triple (I − f, U, 0) is not admissible, then f has a fixed point on
∂U , and we are done. Assume, therefore, this is not the case. Consider the
homotopy H : U × [0, 1] → Rk given by H(x, λ) = x − λf(x) and observe that
x 6= λf(x) for all x ∈ ∂U and λ ∈ [0, 1]. Thus, by the Homotopy Invariance
Property, we have

deg(I − f, U, 0) = deg(I, U, 0).

On the other hand, the Excision Property implies

deg(I, U, 0) = deg(I, Rk, 0) = 1.

The result now follows from the Existence Property applied to the equation
x − f(x) = 0, x ∈ U .

We recall that a subset A of a topological space X is a retract of X if there
exists a continuous map r : X → A, called retraction, whose restriction to
A is the identity map. Clearly the boundary of an interval [a, b] ⊆ R, being
disconnected, is not a retract of [a, b]. The following easy consequence of the
Boundary Dependence Property extends this elementary fact.

Theorem 3.20. Let U be a bounded open subset of R
k. Then ∂U is not a

retract of U .

Proof. Assume there exists a map r : U → ∂U such that r(x) = x, ∀x ∈ ∂U .
Let y ∈ U . Since U is bounded, the Boundary Dependence Property (Theorem
3.14) implies

deg(r, U, y) = deg(I, U, y) = 1.

Hence the equation r(x) = y has a solution in U , and this is a contradiction
since r maps U onto ∂U .
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The fact that the boundary of the subset (0, +∞) of R is a retract of [0, +∞)
shows that in Theorem 3.20 the assumption that U is bounded cannot be re-
moved.

We give now some applications of degree theory to problems of existence
and multiplicity of solutions for nonlinear equations in Rk.

We start with the following result.

Proposition 3.21. Let f : R
k → R

k be proper and let g : R
k → R

k be a
bounded map. Then f + g is proper and deg(f + g) = deg(f). Consequently, if
deg(f) 6= 0, the equation f(x) + g(x) = 0 has at least one solution.

Proof. The map f +g is proper (on the basis of Exercise 2.4), since the assump-
tion

lim
‖x‖→+∞

‖f(x)‖ = +∞

implies
lim

‖x‖→+∞
‖f(x) + g(x)‖ = +∞.

For the same reason, also the map (x, λ) 7→ f(x) + λg(x) is proper, and the
equality deg(f +g) = deg(f) follows immediately from the Homotopy Invariance
Property.

Let us show, with a simple example, how the above result can be applied to
prove the existence of solutions of a nonlinear equation in Rk.

Example 3.22. Consider the following nonlinear system of two equations in
two unknowns:

{

x2 − 2y2 − sin(xy) = 0
xy + 2 cosx + 1

1+y2 = 0
(3.5)

We claim that this system has at least one solution. It is not difficult to check
that the map f : R2 → R2 given by f(x, y) = (x2 − 2y2, xy) is proper. Indeed,
let c be a positive constant and consider the inequalities

|x2 − 2y2| ≤ c and |xy| ≤ c.

The first one implies that when |x| is large, so is |y|; but this is in contrast with
the second one. Thus, if f(x, y) belongs to a compact set, also (x, y) must stay
in a compact set.

To compute the degree of f , which is well defined, observe that the system
{

x2 − 2y2 = 1
xy = 0

has the following two solutions: (1, 0) and (−1, 0). One can check that these
solutions are both regular with index 1. Thus deg(f) = 2, and Proposition 3.21
implies the existence of at least one solution of system (3.5), as claimed.

Actually, since deg(f) = 2, applying Sard’s Lemma (and the definition of
degree for a regular triple) one can say more: for almost all (a, b) ∈ R2 the
system

{

x2 − 2y2 − sin(xy) = a
xy + 2 cosx + 1

1+y2 = b

has at least two solutions (and, of course, at least one for all (a, b) ∈ R2).
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An introduction to topological degree in Euclidean spaces 15

From Proposition 3.21 it follows immediately that a nonlinear system of the
type

Lx + g(x) = 0 (3.6)

has at least one solution, provided that L is an invertible linear operator in Rk

and g : Rk → Rk is a bounded map. This, on the other hand, can be shown also
by means of the Brouwer Fixed Point Theorem, since (3.6) can be equivalently
written as a fixed point equation in the form x = −L−1g(x), where the map
x 7→ −L−1g(x) sends the whole space Rk into a bounded set (and, in particular,
some closed ball into itself).

An extension of this existence result is Corollary 3.24 below, which is a direct
consequence of the following continuation principle (stated without any notion
of degree theory).

Theorem 3.23 (Continuation Principle in Euclidean Spaces). Let U be
a bounded open subset of Rk, f : U → Rk a continuous map of class C1 in a
neighborhood of f−1(0), and h : U × [0, 1] → Rk a continuous map. Assume
that:

1. h(x, 0) = 0 for all x ∈ U ;

2. f(x) + h(x, λ) 6= 0 for all (x, λ) ∈ ∂U × [0, 1];

3. det(f ′(x)) 6= 0 for any x ∈ f−1(0);

4. the integer
∑

x∈f−1(0)

sign(det(f ′(x)))

is nonzero.

Then, the equation f(x) + h(x, 1) = 0 has at least one solution in U .

Proof. Define H : U × [0, 1] → Rk by H(x, λ) = f(x)+h(x, λ) and observe that,
because of assumption 2, the triple (H, U, 0) is an admissible homotopy. Thus,
from the Homotopy Invariance Property it follows that

deg(H(·, 0), U, 0) = deg(H(·, 1), U, 0).

On the other hand, because of condition 1, we have H(·, 0) = f , and the assertion
now follows from assumptions 3 and 4, the Computation Formula (Theorem
3.15), and the Existence Property (Theorem 3.11).

The following easy consequence of Theorem 3.23 extends the existence result
related to equation (3.6), removing the assumption that the map g is bounded.

Corollary 3.24. Let L be a linear operator in Rk and g : Rk → Rk a continuous
map. If the set

S =
{

x ∈ R
k : Lx + λg(x) = 0 for some λ ∈ [0, 1]

}

is bounded, then the equation Lx + g(x) = 0 has at least one solution.

Proof. Observe that the boundedness of S implies that L is injective and, con-
sequently, det(L) 6= 0. The assertion now follows from Theorem 3.23 with U
any open ball containing S, f = L, and h(x, λ) = λg(x).
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Corollary 3.24 can be proved in a more elementary way: it can be deduced
directly from the Brouwer Fixed Point Theorem (this is not so for the above
continuation principle). Let us show, briefly, how this can be done.

Define σ : Rk → [0, 1] by σ(x) = max{1−dist(x, S), 0} and observe that any
solution of the equation Lx+σ(x)g(x) = 0 lies in S. Therefore it is also a solution
of Lx + g(x) = 0, since σ(x) = 1 for x ∈ S. To show that Lx + σ(x)g(x) = 0
has a solution, notice that L is invertible (since S is bounded) and apply the
Brouwer Fixed Point Theorem to the equation x = −σ(x)L−1g(x).

Example 3.25. To illustrate how Corollary 3.24 applies, we prove that the
system

{

x + y + x3 + sin(xy) = 0
y + 2 cos(xy) + y5 = 0

has at least one solution. For this purpose we need to show that all the possible
solutions (x, y) of the system

{

x + y + λx3 + λ sin(xy) = 0
y + 2λ cos(xy) + λy5 = 0

are a priori bounded when the parameter λ varies in [0, 1]. In fact, the second
equation implies that, if (x, y) is such a solution, then y must lie in the interval
[−2, 2] and, as a consequence, from the first equation one gets |x| ≤ 3.

Degree can be useful to prove the existence of nontrivial solutions of an
equation of the type f(x) = 0, where f : R

k → R
k satisfies the condition

f(0) = 0. The following result is in this direction.

Theorem 3.26. Let f : Rk → Rk be a proper map such that f(0) = 0. Assume
that f is Fréchet differentiable at the origin. If f ′(0) is invertible and deg(f) 6=
i(f, 0), then the equation f(x) = 0 has a nontrivial solution (i.e. a solution
x 6= 0).

Proof. If the equation f(x) = 0 had the unique solution x = 0, the Computation
Formula would contradict the assumption deg(f) 6= i(f, 0).

Example 3.27. Consider the system

{

x − 2 sin(x + x2 − y2) = 0
2x + y + 1 − cos(xy) = 0

and observe that it admits the trivial solution (0, 0). Since the degree of the
invertible linear operator L : (x, y) 7→ (x, 2x + y) is 1, by Proposition 3.21 the
map

(L + g) : (x, y) 7→ (x − 2 sin(x + x2 − y2), 2x + y + 1 − cos(xy))

is proper with degree 1.
Now, notice that the linearized map of (L + g) at the origin is given by

(x, y) 7→ (−x, 2x + y), whose determinant is negative. Thus, Theorem 3.26
implies that the above system has at least one nontrivial solution (very likely,
at least two, because of Sard’s Lemma and the Computation Formula).
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An introduction to topological degree in Euclidean spaces 17

Degree theory has important applications in the study of bifurcation prob-
lems. Let us see its rôle in the finite dimensional context.

Let J be a real interval, U an open subset of R
k containing the origin 0 ∈ R

k,
and f : J × U → Rk a continuous map satisfying the condition f(λ, 0) = 0 for
any λ ∈ J . Consider the equation

f(λ, x) = 0. (3.7)

Any pair (λ, 0), with λ ∈ J , is called a trivial solution of the above equation
and, consequently, any other solution is said to be nontrivial.

A bifurcation point of the equation (3.7) is a number λ0 ∈ J (or, equivalently,
a trivial solution (λ0, 0) ∈ J × U) with the property that any neighborhood of
(λ0, 0) contains nontrivial solutions.

For example, if f has the special form

f(λ, x) = λx − Lx,

where L is a linear operator in Rk, any eigenvalue of L is a bifurcation point.
Therefore, in some sense, a bifurcation point is the nonlinear analogue of what
in the liner case is the eigenvalue.

Assume now that f is continuously differentiable with respect to the second
variable (at least in a neighborhood of the set J × {0} of trivial solutions) and
let λ0 ∈ J be given. If the partial derivative ∂2f(λ0, 0) is nonsingular, then the
Implicit Function Theorem implies that in a convenient neighborhood I × V of
(λ0, 0) the set f−1(0) is the graph of a map from I to V . Consequently, the
assumption f(λ, 0) ≡ 0 implies that λ0 is not a bifurcation point. We have,
therefore, the following result.

Theorem 3.28 (Necessary Condition for Bifurcation). Let f be as above,
and consider the (continuous) real function ϕ(λ) = det(∂2f(λ, 0)), λ ∈ J . If
λ0 ∈ J is a bifurcation point for the equation f(λ, x) = 0, then ϕ(λ0) = 0.

There are simple examples showing that the condition ϕ(λ0) = 0 is not
sufficient for λ0 to be a bifurcation point. Perhaps, the simplest one is given by
f : R2 → R defined as f(λ, x) = (λ2 + x2)x, in which λ0 = 0.

A sufficient condition for λ0 to be a bifurcation point is that ϕ(λ) changes
sign at λ0. In fact, we have the following result.

Theorem 3.29 (Sufficient Condition for Bifurcation). Let [a, b] be a real
interval, U an open subset of Rk containing the origin 0 ∈ Rk, and f a contin-
uous map from [a, b]×U into R

k satisfying the condition f(λ, 0) = 0 for any λ
in [a, b]. Assume that f is differentiable with respect to the second variable at
any trivial solution (λ, 0) of the equation f(λ, x) = 0, and define ϕ : [a, b] → R

by ϕ(λ) = det(∂2f(λ, 0)).
If ϕ(a)ϕ(b) < 0, then the interval [a, b] contains at least one bifurcation

point. In particular, if ϕ(λ) has a sign-jump at some λ0 ∈ [a, b], then λ0 is a
bifurcation point.

Proof. Assume the contrary. Then, by the compactness of [a, b], there exists a
bounded open neighborhood V of 0 such that V ⊆ U and that the solutions of
the equation f(λ, x) = 0 which are in [a, b] × V are all trivial. In particular

f(λ, x) 6= 0, ∀(λ, x) ∈ [a, b] × ∂V.
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Thus, the Homotopy Invariance Property implies

deg(f(a, ·), V, 0) = deg(f(b, ·), V, 0).

On the other hand, by the Computation Formula (Theorem 3.15), we get

deg(f(a, ·), V, 0) = sign(ϕ(a)) and deg(f(b, ·), V, 0) = sign(ϕ(b)),

contradicting the assumption ϕ(a)ϕ(b) < 0.

The following simple example illustrates how Theorem 3.29 applies.

Example 3.30. The system

{

x − λ sin(x + x2 − y2) = 0
2x + y + 1 − cosxy = 0

(3.8)

has a bifurcation point at λ = 1. To see this consider the linearized problem

{

x − λx = 0
2x + y = 0

(of (3.8) at the origin of R2) and observe that the function

ϕ(λ) = det

(

1 − λ 0
2 1

)

has a sign-jump at λ = 1.

4 The extended case

In this section we extend the Brouwer degree to the class of weakly admissible
triples; that is, triples of the type (f, U, y), where U ⊆ Rk is an open set, f is
an Rk-valued map defined (at least) on U , and y ∈ Rk is such that f−1(y) ∩ U
is compact.

The Excision Property of the degree for admissible triples (Theorem 3.10)
shows that the following definition is well posed.

Definition 4.1. The Brouwer degree of a weakly admissible triple (f, U, y) is
the integer

deg(f, U, y) := deg(f, V, y),

where V is any bounded open neighborhood of f−1(y) ∩ U such that V ⊆ U .

Let, as above, U be an open subset of Rk, H an Rk-valued map defined (at
least) on U × [0, 1], and α : [0, 1] → Rk a path. The triple (H, U, α) is said to
be a weakly admissible homotopy of triples if the set

Σ =
{

(x, λ) ∈ U × [0, 1] : H(x, λ) = α(λ)
}

is compact.

The following result is a direct consequence of Theorem 3.9.
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Theorem 4.2. The Brouwer degree for weakly admissible triples satisfies the
following three fundamental properties:

(Normalization) deg(I, Rk, 0) = 1, where I denotes the identity on Rk;

(Additivity) if (f, U, y) is weakly admissible, and U1 and U2 are two dis-
joint open subsets of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y);

(Homotopy Invariance) if (H, U, α) is a weakly admissible homotopy of
triples, then

deg(H(·, 0), U, α(0)) = deg(H(·, 1), U, α(1)).

Given an open subset U of Rk and an Rk-valued map f defined (at least) on
U , the integer deg(f, U, y) does not necessarily depend continuously on y. For
instance, the triple (exp, R, y) is weakly admissible for all y ∈ R, but the map
y 7→ deg(exp, R, y) is discontinuous at y = 0. To avoid this inconvenience, given
U and f as above, we weed out a subset of R

k, called boundary set of f in U ,
with the property that the map y 7→ deg(f, M, y) turns out to be well defined
and continuous in the complement of this set. Moreover, when f is proper on
U , this set coincides with f(∂U).

Given y ∈ Rk, we say that f is y-proper in U if there exists a neighborhood
V of y such that f−1(K) ∩ U is compact for any compact subset K of V (this
means that the restriction of f from U ∩ f−1(V ) into V is proper). Clearly, the
set

{

y ∈ R
k : f is y-proper in U

}

is open in Rk. Consequently, its complement, called the boundary set of f in U
and denoted by ∂(f, U), is closed.

Clearly deg(f, U, y) is defined for any y ∈ Rk \ ∂(f, U) and, because of the
homotopy property, depends continuously on y.

Exercise 4.3. Let f : U → R
k be a map defined on an open subset U of R

k.
Prove that f is proper if and only if ∂(f, U) = ∅.

Exercise 4.4. Let f be an Rk-valued map defined (at least) on an open set
U ⊆ R

k. Show that f(∂U) ⊆ ∂(f, U). If, in addition, f is proper on U , prove
that f(∂U) = ∂(f, U).

The following result is an useful extension of the above Homotopy Invariance
Property.

Theorem 4.5 (General Homotopy Invariance Property). Let H be an
Rk-valued map defined on an open subset W of Rk × [0, 1] and α : [0, 1] → Rk a
path. If the set

Σ =
{

(x, λ) ∈ W : H(x, λ) = α(λ)
}

is compact, then
deg(Hλ, Wλ, α(λ))

does not depend on λ ∈ [0, 1], where Hλ : Wλ → Rk denotes the partial map
H(·, λ) defined on the slice Wλ = {x ∈ Rk : (x, λ) ∈ W}.
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Proof. Clearly, given λ ∈ [0, 1], deg(Hλ, Wλ, α(λ)) is well defined, since the
set H−1

λ (α(λ)) coincides with the λ-slice Σλ of Σ, which is compact. There-
fore, it is enough to show that the function ϕ : [0, 1] → Z given by ϕ(λ) =
deg(Hλ, Wλ, α(λ)) is locally constant. For this purpose, fix any µ ∈ [0, 1] and
consider any bounded open neighborhood V of Σµ such that V ⊆ Wµ. Since V
is compact, there exists a closed neighborhood Iδ = [µ− δ, µ + δ] ∩ [0, 1] of µ in
[0, 1] such that V × Iδ ⊆ W .

We claim that, if δ is sufficiently small, then Σλ ⊆ V for all λ ∈ Iδ . Assume
the contrary. Thus, there exists a sequence {(xn, λn)} in Σ such that λn → µ
and xn /∈ V for all n ∈ N. Because of the compactness of Σ (and the fact that V
is open) we may assume that xn → y /∈ V . Therefore (y, µ) ∈ Σ, which implies
y ∈ Σµ; and this is a contradiction since, by assumption, Σµ ⊆ V .

Assume, without loss of generality, Σλ ⊆ V for all λ ∈ Iδ. Since, in addition,
V is compact and contained in Wλ for all λ ∈ Iδ , by Definition 4.1 we get

deg(Hλ, Wλ, α(λ)) = deg(Hλ, V, α(λ)), ∀λ ∈ Iδ .

Now, observe that H(x, λ) 6= α(λ) for all (x, λ) ∈ ∂V × Iδ. Thus, the Homotopy
Invariance Property of the degree (in Theorem 3.9) implies that ϕ(λ) does not
depend on λ ∈ Iδ , and the assertion follows since µ is arbitrary.

5 Appendix: proof of the Homotopy Invariance

Property for regular triples

Our purpose, here, is to prove a crucial result in the construction of the Brouwer
degree: the Homotopy Invariance Property for regular triples (see Theorem 3.6).

Let U be open in Rk and f : U → Rk a proper smooth map (we recall that
f is smooth on U if it admits a smooth extension on an open set containing U).
Consider the closed set

K = {x ∈ U : det(f ′(x)) = 0}

of the critical points of f in U . Recalling that proper maps are closed (see
Exercise 2.3), the set

W = R
k \ (f(∂U) ∪ f(K))

of the points y for which (f, U, y) is a regular triple is open. As already pointed
out, for any y ∈ W , the set f−1(y) is compact and discrete, therefore finite.

We need the following lemma which cannot be considered as a particular case
of Theorem 3.13 since the latter has been deduced from the three Fundamental
Properties.

Lemma 5.1. Let U , f and W be as above. Then the map

deg(f, U, ·) : W → Z,

is locally constant.

Proof. Fix any y ∈ W and let f−1(y) = {x1, x2, · · · , xn}. Because of the Inverse
Function Theorem, there exist n pairwise disjoint neighborhoods U1, U2, . . . , Un
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of x1, x2, . . . , xn which are mapped diffeomorphically onto neighborhoods V1,
V2, . . . , Vn of y. We may assume that each Vi is contained in W and that in
each Ui the sign of det(f ′(x)) is constant. Therefore, if z ∈ V := V1∩V2∩· · ·∩Vn

and Ω := U1 ∪ U2 ∪ · · · ∪ Un, the equation f(x) = z has exactly n solutions in
Ω and

deg(f, U, y) = deg(f, Ω, z).

Observe now that, when z ∈ Rk is sufficiently close to y, the equation f(x) = z
has no solutions in C = U \ Ω. Indeed, this happens if z does not belong to
f(C), which is a closed subset of Rk not containing y. Thus, if z belongs to the
neighborhood V \ f(C) of y, we obtain

deg(f, U, z) = deg(f, Ω, z) = deg(f, U, y),

and the assertion is proved.

Before proving the Homotopy Invariance Property for regular triples we re-
call some important facts regarding the family of (ordered) bases in a finite
dimensional vector space.

Let Σk = (e1, e2, · · · , ek) denote the standard basis of Rk; that is,

e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), . . . , ek = (0, · · · , 0, 1).

A basis B of Rk is said to be positively oriented (in Rk) if it is equivalent to Σk;
meaning that the transition matrix from Σk to B has positive determinant. If
this is not the case, B is negatively oriented. The status of a basis B of being
positively or negatively oriented is obviously stable, since the transition matrix
depends continuously on B in the topology of (Rk)k. Moreover, replacing just
one vector of a basis B with its opposite makes B pass from one status to the
other one (from positively oriented to negatively oriented or vice-versa). Finally,
we point out that an ordered basis B of Rk is positively oriented if and only if
so is the basis (B, ek+1) of Rk+1 obtained by adding to B (regarded as a basis
of the subspace Rk ×{0} of Rk+1) the last vector of the standard basis Σk+1 of
Rk+1.

Given a k-dimensional vector space E and a linear isomorphism L : E → Rk,
by L−1(Σk) we mean the preimage under L of the standard basis Σk. This, of
course, is a basis of E. It is important to observe that, if L is an automorphism
of Rk, det(L) > 0 if and only if L−1(Σk) is a positively oriented basis of Rk.
This elementary fact turns out to be crucial in the following proof.

Proof of the Homotopy Invariance Property for regular triples. Recall first that
a triple (f, U, y) is regular if and only if so is (f − y, U, 0), and in this case

deg(f, U, y) = deg(f − y, U, 0).

Therefore, putting G(x, λ) = H(x, λ) − α(λ), it is enough to show that the
degree of the two regular triples (G0, U, 0) and (G1, U, 0) is the same, where, as
usual, Gλ denotes the partial map G(·, λ).

Apply Lemma 5.1 to find an open neighborhood V of 0 ∈ Rk made up of
regular values for both G0 and G1 and such that

deg(G0, U, z) = deg(G0, U, 0) and deg(G1, U, z) = deg(G1, U, 0),
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for all z ∈ V . Because of Sard’s Lemma, there exists a regular value y ∈ V for
G in U × [0, 1], and not only for the restriction of G to the boundary (in the
sense of manifolds)

δ(U × [0, 1]) = (U × {0}) ∪ (U × {1}).

The assertion now follows if we show that

deg(G0 − y, U, 0) = deg(G1 − y, U, 0).

Therefore, we are reduced to proving that if (F, U, 0) is a smooth admissible
homotopy of triples, and 0 is a regular value for F and for the partial maps F0

and F1, then deg(F0, U, 0) = deg(F1, U, 0).

Assume that F is such a homotopy. Since 0 is a regular value both for F and
the restriction of F to δ(U × [0, 1]), the Regularity Theorem (see e.g. [5, 6, 8])
for manifolds with boundary ensures that F−1(0) is a compact 1-dimensional
manifold whose boundary is given by

δF−1(0) = F−1(0) ∩ δ(U × [0, 1]).

The points of δF−1(0) can be divided in two classes: A0 = F−1
0 (0) × {0} and

A1 = F−1
1 (0) × {1}, both finite since 0 ∈ Rk is a regular value for the partial

maps F0 and F1.
Any point in δF−1(0) can be given a sign +1 or −1 as follows: if p = (x, λ) ∈

δF−1(0), we put sign(p) = sign(det(F ′
λ(x))). Thus, we need to prove that

∑

p∈A0

sign(p) =
∑

p∈A1

sign(p).

This will be done by showing that any point p ∈ δF−1(0) has a unique compan-
ion c(p) ∈ δF−1(0) with the property that sign(p) = − sign(c(p)) if and only if
both p and c(p) belong to the same side (A0 or A1).

Recall that any smooth, compact, connected 1-dimensional real manifold
with nonempty boundary (called an arc) is diffeomorphic to the interval [0, 1].2

Therefore, any p ∈ δF−1(0) is an endpoint of an arc (the connected component
of δF−1(0) containing p) having the other endpoint c(p) still in δF−1(0). Inci-
dentally, observe that the self-map c of δF−1(0) is a bijection (in fact, c−1 = c).

Consider, for example, the case when the endpoints p0 and p1 of an arc M
contained in F−1(0) are both in A0. We need to show that these two points
have opposite sign. The other two cases (both the endpoints in A1, or one in
A0 and the other in A1) can be treated in a similar way, and their discussion
will be omitted.

Roughly speaking, in order to prove that the two endpoints p0 = (x0, 0) and
p1 = (x1, 0) of M have opposite sign we move, continuously, a basis Bt of Rk+1

along M in such a way that at the departure (for t = 0) the basis coincides with

(F ′
0(x0)

−1(Σk), ek+1)

and at the arrival (for t = 1) coincides with

(F ′
0(x1)

−1(Σk),−ek+1),

2This is a consequence of a well-known classification theorem for smooth 1-dimensional
real manifolds with (possibly empty) boundary. See e.g., [5, 8].
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where, we recall, F0 stands for the partial map F (·, 0). Since Bt is a basis
for all t ∈ [0, 1], the determinant of the transition matrix from Bt to Σk+1

has constant sign. Thus, the two bases B0 and B1 turn out to be either both
positively oriented or both negatively oriented. As a consequence of this, if, for
example, the basis F ′

0(x0)
−1(Σk) of Rk is positively oriented, the other basis

F ′
0(x1)

−1(Σk) must be negatively oriented, and this implies

sign(det(F ′
0(x0))) = − sign(det(F ′

0(x1))),

showing that the two endpoints of the arc M have opposite sign.
Let γ(t) = (x(t), λ(t)), t ∈ [0, 1], be a parametrization of the arc M . In

other words, γ : [0, 1] → M is a diffeomorphism from [0, 1] onto M , that we may
assume to be oriented from p0 to p1 (i.e. γ(0) = p0 and γ(1) = p1).

Since F (γ(t)) ≡ 0, we have F ′(γ(t))γ′(t) ≡ 0. Moreover, the assumption
that γ is a diffeomorphism implies γ ′(t) 6= 0 for all t ∈ [0, 1]. Therefore,
given t, the kernel of the surjective operator F ′(γ(t)) : Rk+1 → Rk, which is
1-dimensional, is spanned by γ ′(t). This implies that the restriction of F ′(γ(t))
to any k-dimensional subspace E of Rk+1 not containing γ′(t) is an isomor-
phism, and, consequently, the preimage of the standard basis Σk of Rk under
this isomorphism is a basis of E.

To simplify the notation, given a point p in U × [0, 1] and a subspace E of
Rk+1, if the restriction F ′(p)|E of F ′(p) to E is an isomorphism, the preimage
(F ′(p)|E)−1(Σk) of the standard basis Σk will be denoted by Σ(p, E).

Since γ′(t) = (x′(t), λ′(t)) is a nonzero vector for any t ∈ [0, 1] and the
partial derivatives ∂1F (x(0), λ(0)) and ∂1F (x(1), λ(1)) are invertible (recall that
λ(0) = λ(1) = 0, and 0 is a regular value for the partial map F (·, 0) ), the identity

∂1F (x(t), λ(t))x′(t) + λ′(t)∂2F (x(t), λ(t)) ≡ 0

yields λ′(0) 6= 0 and λ′(1) 6= 0. The fact that λ(t) ∈ [0, 1] for all t ∈ [0, 1]
actually implies λ′(0) > 0 and λ′(1) < 0. In other words, denoting by 〈·, ·〉 the
inner product in Rk+1, we have 〈γ′(0), ek+1〉 > 0 and 〈γ′(1), ek+1〉 < 0.

Define a point pt moving along the arc M by

pt =











p0 if t ∈ [0, 1/3]

γ(3t − 1) if t ∈ [1/3, 2/3]

p1 if t ∈ [2/3, 1]

For any t ∈ [0, 1], define the vector vt ∈ Rk+1 by

vt =











(1 − 3t)ek+1 + 3tγ′(0) if t ∈ [0, 1/3]

γ′(3t − 1) if t ∈ [1/3, 2/3]

(3 − 3t)γ′(1) − (3t − 2)ek+1 if t ∈ [2/3, 1]

Observe that vt 6= 0 for any t ∈ [0, 1]. Thus the orthogonal space v⊥
t to vt is

always k-dimensional. Let us prove that the restriction of the derivative F ′(pt)
to v⊥t is an isomorphism for all t ∈ [0, 1]. For this purpose, given t ∈ [0, 1], we
need to show that v⊥

t does not contain the one dimensional kernel of F ′(pt).
Since 0 ∈ Rk is a regular value for F , this kernel coincides with the tangent
space to M at pt, which is spanned by γ′(0) if t ∈ [0, 1/3], by γ ′(3t − 1) if
t ∈ [1/3, 2/3] and by γ ′(1) if t ∈ [2/3, 1].
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Consider first the case of t ∈ [0, 1/3]. We need to show that γ ′(0) does not
belong to v⊥

t , which means 〈vt, γ
′(0)〉 6= 0. In fact, since λ′(0) > 0, we have

〈vt, γ
′(0)〉 = (1 − 3t)λ′(0) + 3t‖γ′(0)‖2 > 0.

If t ∈ [1/3, 2/3],

〈vt, γ
′(3t − 1)〉 = ‖γ′(3t − 1)‖2 > 0.

Finally, it t ∈ [2/3, 1], λ′(1) being negative, one gets

〈vt, γ
′(1)〉 = (3 − 3t)‖γ ′(1)‖2 − (3t − 2)λ′(1) > 0.

Let t ∈ [0, 1]. Since, as claimed, the restriction of F ′(pt) to v⊥t is an isomor-
phism, it makes sense to define the following basis of R

k+1:

Bt = (Σ(pt, v
⊥
t ), vt).

Clearly Bt depends continuously on t ∈ [0, 1], as a map into
(

Rk+1
)k+1

.
Observe also that the spaces v⊥

0 and v⊥1 coincide with Rk × {0}. Therefore,
identifying Rk with the subspace Rk × {0} of Rk+1, we have

B0 = (F ′
0(x0)

−1(Σk), ek+1) and B1 = (F ′
0(x1)

−1(Σk),−ek+1).

Now, as already pointed out, the fact that Bt is always a basis for Rk+1 implies
that B0 and B1 are either both positively oriented or both negatively oriented.
Consequently, B0 and

B−
1 = (F ′

0(x1)
−1(Σk), ek+1)

have opposite orientation, which implies that also the two bases

F ′
0(x0)

−1(Σk) and F ′
0(x1)

−1(Σk)

have opposite orientation. Thus,

sign(det(F ′
0(x0))) = − sign(det(F ′

0(x1))),

and the two endpoints p0 and p1 of the arc M have opposite sign, as claimed.
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