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Abstract. The controllability behavior of nonlinear control systems is de-
scribed by associating semigroups to locally maximal subsets of complete
controllability, i.e., local control sets. Periodic trajectories are called equiv-
alent if there is a ‘homotopy’ between them involving only trajectories. The
resulting object is a semigroup, which we call the dynamic index of the local
control set. It measures the different ways the system can go through the
local control set. A number of examples are considered.
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1. Introduction.

The aim of this paper is to contribute to the (formidable) task to classify
the controllability behavior of nonlinear control systems. More precisely, we
restrict our attention to certain subsets of complete controllability, local con-
trol sets as introduced in [3]. These are locally maximal subsets of complete
controllability. They are composed of periodic trajectories.

The basic idea for the classification of local control sets is to call periodic
trajectories equivalent if there is a ‘homotopy’ between them; however, these
homotopies should involve only trajectories in order to capture the dynamic
properties of the considered system. This leads to considerable technical
difficulties. The resulting object is a semigroup, which we call the dynamic
index of the local control set. It measures the “different“ ways the system
can go through the local control set. It turns out, that for linear systems with
controllable (A,B) and admissible control range U the index is always trivial.
If the control range is small enough, the same is true for local control sets
around a hyperbolic equilibrium of the uncontrolled system. Furthermore, if
the control range is small enough, we can also show that for a local control set
around an attracting periodic solution of the uncontrolled system the index
is isomorphic to the natural numbers N. The index can distinguish such
control sets from those occurring around a homoclinic orbit. Compare also
San Martin and Santana [10], where the homotopy type of Lie semigroups
and invariant control sets is studied. We remark that in our construction the
direction of the trajectories plays a decisive role. This is a decisive difference
of our semigroup from homotopy groups. Katok and Hasselblatt [6, p. 117]
briefly discuss other constructions of topological invariants using trajectories
of dynamical systems.
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Perhaps closest in spirit to our paper are the papers [11, 12] by A.
Sarychev. He studied homotopy properties of the space of trajectories. How-
ever, he was interested in the case, where the systems are completely control-
lable or, in our terminology, where the control set coincides with the whole
state space.

In Section 2 we specify our assumptions on the considered control systems
and recall some basic notions. In Section 3 we define the key notion for
the construction of the index, the so-called ‘strong inner pairs’, and show
some of their relevant properties. Section 4 is devoted to the construction
of the index and some simple examples are provided, whereas in Section 5
we investigate the relation between the indices of nested local control sets.
Section 6, finally, presents the explicit computation of the index in the case
of the control set which arises, for a small control range, around an attracting
periodic orbit of the uncontrolled system.

2. Preliminaries.

In this section we specify the considered class of control systems and
recall some basic notions.

Throughout all the paper we will let U be a compact convex neighbor-
hood of the origin in Rm and for 0 ≤ ρ ≤ 1, we put ρU = {ρ · x : x ∈ U}.
Moreover we denote by Uρ the set of all L∞(R, Rm) control functions taking
values in ρU . For simplicity, when ρ = 1, we shall simply omit it. If not
specified otherwise, the space U will be considered in the weak∗ topology
inherited from the inclusion U ⊂ L∞(R, Rm) =

(
L1(R, Rm)

)∗
. Notice that

U is in this topology a compact and separable metrizable space (see, e.g.,
Dunford/Schwartz [4]); an appropriate metric will be denoted by ‘d’.

We will consider the following control-affine system in Rd

(2.1) ẋ(t) = f
(
x(t), u(t)

)
:= f0(x(t)) +

m∑

i=1

ui(t)fi(x(t)), u ∈ Uρ.

with sufficiently smooth vector fields fi, i = 0, 1, ...,m. We assume that for
every control u ∈ U and every initial condition x(0) = x0 ∈ Rd there exists
a unique trajectory which we denote by ϕ(t, x, u), t ∈ R. Our results will
also hold –with some technical modifications– for systems on manifolds. Note
that for control affine systems, the trajectories ϕ(t, x, u) depend continuously
on (t, x, u), uniformly on bounded time intervals; here U is endowed with the
weak∗ topology; see [1, Lemma 4.3.2].

The following definitions specify subsets of complete approximate con-
trollability, which are our primary concern in this paper.

Definition 2.1. A subset D with nonempty interior of the state space Rd

is a precontrol set if for all x, y ∈ D and every ε > 0 there exist T > 0 and
u ∈ U such that

ϕ(t, x, u) ∈ D for all t ∈ [0, T ] and |ϕ(T, x, u) − y| < ε.
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Definition 2.2. A precontrol set D of Rd is a local control set if there
exists a neighborhood V of cl D such that for every precontrol set D ′ with
D ⊂ D′ ⊂ V one has D′ = D.

Thus a local control set is a locally maximal precontrol set. Note also that
control sets (with nonvoid interior) as discussed in [1] are globally maximal
precontrol sets. The sets of reachable points from x and controllable to
x ∈ Rd in time T > 0 are denoted by

O+
≤T (x) =

{

y ∈ Rd, there are 0 ≤ t ≤ T and u ∈ U with y = ϕ(t, x, u)
}

and

O−
≤T (x) =

{

y ∈ Rd, there are 0 ≤ t ≤ T and u ∈ U with x = ϕ(t, y, u)
}

,

respectively. Furthermore let

O+(x) =
⋃

T>0

O+
≤T (x) and O−(x) =

⋃

T>0

O−
≤T (x)

denote the reachable set from x and the set controllable to x, respectively.
We also call O±(x) the positive and negative orbits of x, respectively.

Throughout this paper we require local accessibility, that is, O+
≤T (x) and

O−
≤T (x) have nonvoid interiors for all x ∈ Rd and all T > 0. Recall also that

local accessibility is guaranteed by the following accessibility rank condition:

(2.2) dim∆L(x) = d for all x ∈ Rd,

where L denotes the Lie algebra generated by the vector fields f0, ..., fm, and
∆L(x) is the subspace of the tangent space (identified with Rd) generated
by the vector fields in L.

3. Strong Inner Pairs.

In this section we specify the subclass of periodic trajectories which will
be used for the construction of the dynamic index.

First note that for a control u ∈ U = U 1 there is δ0 > 0 such that
d(u(t), ∂U) > δ0 for almost all t > 0 iff u ∈ U ρ for some ρ < 1.

Definition 3.1. A pair (u, x) ∈ U × Rd is called a strong inner pair, if:

(i) there is ρ < 1 such that u ∈ U ρ;

(ii) the control u is piecewise constant and there is δ > 0 such that for all
y ∈ Rd with |x − y| < δ and all τ > 0 small enough, the following
property holds:
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For all 0 < t ≤ τ there are neighborhoods N±
t (y) of ϕ(±t, y, u) such

that for any curve λ 7→ z+
λ ∈ N+

t (y) and λ 7→ z−λ ∈ N−
t (y), with

z±0 = ϕ(±t, y, u), there are continuous maps

λ 7→ (±t±λ , u±
λ ) : [0, 1]→ (0, T )× U ,

with u±
λ piecewise constant for λ ∈ [0, 1], and

(±t±0 , u±
0 ) = (±t, u) and ϕ(±t±λ , y, u±

λ ) = z±λ .

Moreover, we say that a strong inner pair is T -periodic if (u, ϕ(·, x, u))
is T -periodic.

Remark 3.2. Observe that for the point (ii) in Definition 3.1, one has

ϕ(±t±0 , y, u±
0 ) = ϕ(±t, y, u);

and the neighborhoods N±
t (y) are contained in the reachable sets O±(y) from

y provided they are connected.

Remark 3.3. In [1], inner pairs were defined as those pairs (u, x) satisfying

ϕ(±t, x, u) ∈ intO±(x)

for some t > 0. Here, in order to construct the dynamic index, we need the
stronger properties required in Definition 3.1.

It is convenient to introduce the following notation (compare e.g. [1, 9]):
When u is a constant control, we shall write etXx, with X = f(·, u), in place
of ϕ(t, x, u).

We now note that strong inner pairs are abundant provided that local
accessibility holds.

Proposition 3.4. Consider a pair (u, x) ∈ U × Rd with piecewise con-

stant control u ∈ Uρ with ρ < 1 which, on the intervals [0,
∑d

i=1 s+
i ] and

[−
∑d

i=1 s−i , 0], with s±i > 0, takes the values

u(t) = u+
i ∈ intU for t ∈ (s1 + ... + si, s1 + ... + si+1),

u(−t) = u−
i ∈ intU for t ∈ (−s1 − ...− si − si+1,−s1 − ...− si).

Suppose that there is ε > 0 such that s±1 , ..., s±d ∈ (0, ε) and for X±
i :=

f(·, u±
i ) the two maps

(td, ..., t1) 7→ e±sdX±

d · · · e±s1X±

1 x

have full rank on (0, ε) × ...× (0, ε). Then (u, x) is a strong inner pair.



Fritz Colonius and Marco Spadini 5

Proof. Obviously, property (i) of strong inner pairs holds. Property (ii) is
satisfied, because the rank condition holds for y in a neighborhood of x and
neighborhoods of ϕ(±t, y, u) are of the form

{e±tdXd ...e±t1X1x, with t1, ..., td ∈ (0, ε)}.

Hence the required continuous families are obtained by changing the times
ti. �

Remark 3.5. Assume that accessibility rank condition (2.2) holds and fix
x ∈ Rd. Then, as in the proof of Krener’s Theorem (cp. [7] or [1,Th. A.4.4]),
one can show that there exist constants u1, . . . , ud ∈ int U with the property
that the two maps

(td, ..., t1) 7→ e±tdXd · · · e±t1X1x,

Xi = f(·, ui), have full rank on (0, ε) × · · · × (0, ε). Therefore, one can
construct a piecewise constant function u as in Proposition 3.4, so that (u, x)
is a strong inner pair.

A further class of strong inner pairs is obtained when the linearized
control system is controllable. Recall that for two vector fields X, Y one
defines ad0

XY = Y and for k = 1, 2, ... one defines adk
XY as the Lie bracket

adk
XY := [X, adk−1Y ].

Proposition 3.6. Let x ∈ Rd and assume that

(3.1) span {adk
f0

fi(x), i = 1, ...,m, k = 0, 1, ...} = Rd.

Then for ρ > 0, small enough, each (u, y) ∈ U ρ×Rd with u piecewise constant

and u ∈ Uρ′, for some ρ′ < ρ and |y − x| < ρ′, is a strong inner pair.

Proof. The stated Lie algebraic assumption also holds for all ϕ(T, y, u) with
‖u‖∞ < ρ and all y in a neighborhood of x provided that ρ > 0 and T > 0
are small enough. It guarantees, for all 0 < τ ≤ T , controllability for the
linearized control system

ż(t) = D1f(ϕ(t, y, u), u(t))z(t) + D2f(ϕ(t, y, u), u(t))v(t), t ∈ [0, τ ],

with unbounded controls v ∈ L∞([0, τ ], Rm). Then a standard result in
nonlinear control theory, see, e.g. [1, Theorem A.4.11 and Remark A.4.12]
guarantees that the nonlinear control system with controls in U ρ is locally
controllable about the trajectory ϕ(t, y, u), provided that u ∈ U ρ′ for some
ρ′ < ρ. This is based on an application of the inverse function theorem,
which also provides the existence of neighborhoods N±

t as in Definition 3.1.
�

Remark 3.7. A slight modification of [1, Proposition 4.5.19] shows that in
Proposition 3.6 one may consider, instead of condition (3.1), the following:

span {f0(x), adk
f0

fi(x), i = 1, ...,m, k = 0, 1, ...} = Rd.
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This is based on a controllability condition due to Nam and Araposthatis [8].

We will need that the set of periodic strong inner pairs is open in the
following sense.

Proposition 3.8. Let (u0, x0) be a T0-periodic strong inner pair. Then there
exists δ > 0 such that for every T1-periodic strong inner pair (u1, x1) ∈ U×Rd

with |T0 − T1| < δ, d(u0, u1) < δ, and |x0 − x1| < δ there exists a continuous
map H : [0, 1] → R+ × U × Rd, H(α) = (Tα, xα, uα) with the following
properties:

1. for all α ∈ [0, 1], (uα, xα) is a Tα-periodic strong inner pair;

2. H(0) = (T0, u0, x0) and H(1) = (T1, u1, x1).

Proof. As a first step we construct a ‘homotopy’ from (T0, u0, x0) to an
appropriate triple (T, v, x0) where ϕ(t, x0, v), t ∈ [0, T ], is a T -periodic tra-
jectory satisfying

ϕ(t, x0, v0) = ϕ(t, x1, u1)

for t ∈ [τ, T0 − τ ] for a suitable time τ > 0.
Let τ > 0 and N±

t (x0), for 0 < t < τ , be as in Definition 3.1. Take for
short

N+ = N+
τ (x0) and N− = N−

τ (x0).

Since N+ and N− are neighborhoods of ϕ(τ, x0, u0) and ϕ(T0− τ, x0, u0) re-
spectively, by continuous dependence on the control function (cp. [1, Lemma
4.3.2]), choosing δ > 0 small enough, we can assume

sup
t∈[0,max{T0,T1}]

|ϕ(t, x0, u0)− ϕ(t, x1, u1)|

as small as we please. Therefore we can take

x−
λ := ϕ(T0 − τ, x1, uλ) ∈ N− and x+

λ := ϕ(τ, x1, uλ) ∈ N+,

where uλ := λu1 + (1 − λ)u0. (Recall that also |T0 − T1| < δ.) As in
Definition 3.1 (ii), there are continuous maps λ 7−→ (±t±λ , v±λ ), with v±λ
piecewise constant for λ ∈ [0, 1], and

(±t±0 , v±0 ) = (±τ, u0) and ϕ(±t±λ , x0, v
±
λ ) = x±

λ for all λ ∈ [0, 1].

The concatenations

λ 7→ v−λ ◦ uλ|[t
+
λ , T0 − t−λ ] ◦ v+

λ , and λ 7→ T0 − τ + t+λ + t−λ ,

yield the desired continuous family of periodic trajectories.
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As a second step, reducing δ if necessary, we essentially repeat the con-
struction above and connect (T1, u1, x1) with the triple (T, v, x0) that we
have just constructed. More precisely, if δ is small enough, we can find
a point z = ϕ(τ, x1, u1) near x0 lying on ϕ([0, T ], x0, v) and such that
(ϕ(τ, x1, u1), u1(τ + ·)) is a strong inner pair. Moreover, reducing δ if neces-
sary, one can find τ− > 0 such that for λ ∈ [0, 1] one has

xλ := ϕ(T − τ − τ−, z, vλ) ∈ N−
τ (z) and vλ := λu1 + (1− λ)v.

Then using property (ii) in the definition of strong inner pairs, one finds a
continuous family of controls connecting these points to z. Concatenating
the elements of this family with vλ as in the first step, one gets a homotopy
between (T1, u1, x1) and (T, v, x0).

The two steps together yield the desired homotopy. �

The following lemma establishes a local controllability property around
the trajectory of a periodic strong inner pair.

Lemma 3.9. Let (u, x) be a T -periodic strong inner pair. Then every
neighborhood V of {ϕ(t, x, u), t ∈ [0, T ]} contains a neighborhood D which
is a precontrol set.

Proof. First observe that, trivially, the periodic trajectory is a precontrol
set. By assumption, there are T ≥ τ > 0, arbitrarily small, and open neigh-
borhoods N± of ϕ(±τ, x, u) contained in O±(x), respectively. By continuous
dependence on initial values, we may assume that for every x1 ∈ N+ one
has ϕ(T − 2τ, x1, u(τ + ·)) ∈ N−. Hence, one can steer x into every point
of N+ and one can steer every point of N+ into N− (using the control u)
and from there into x. By continuous dependence on the initial value, the
piece of the periodic trajectory {ϕ(t, x, u), t ∈ [τ, T − τ ]} is contained in a
precontrol set contained in V . Now consider {ϕ(t, x, u), t ∈ [−τ, τ ]}. Again,
by continuous dependence on the initial value, the set N− is mapped via the
shifted control u(T − τ + ·) onto a neighborhood of any point ϕ(t, x, u) in
time τ + t, and similarly, a neighborhood of this point is mapped into N +

via u(t + ·) in time τ − t. We conclude that V contains a precontrol set D
which is a neighborhood of {ϕ(t, x, u), t ∈ [0, T ]}. �

Lemma 3.10. Let D be a local control set for (2.1) and assume that the
accessibility rank condition holds in D. Then, for any x, y ∈ int D, there are
T > 0 and a T -periodic control function u ∈ U such that (u, x) is a strong
inner pair and y ∈ ϕ([0, T ], x, u).

Proof. By the accessibility rank condition, as in the proof of Krener’s
Theorem, it follows that there exist u1, . . . , ud ∈ int U and δ > 0 such that,

N+ = int
{
etdXd · · · et1X1x : 0 ≤ ti ≤ δ, i = 1, ..., d

}
6= ∅,

N− = int
{
etdXd · · · et1X1x : −δ ≤ ti ≤ 0, i = 1, ..., d

}
6= ∅,

where Xi = f(·, ui) for i = 1, ..., d.
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Take x+ ∈ N+. Since in the interior of D approximate controllability
holds, one can find a control function v0 and a time S0 such that x− :=
ϕ(S0, x

+, v) ∈ N−. By continuous dependence we can assume that v is a
piecewise constant function belonging to U ρ for some ρ < 1. Let v+, v− ∈ U
and S+, S− > 0 be such that

x+ = ϕ(S+, x, v+) and x = ϕ(S−, x−, v−).

Concatenating v−, v+ and v0, and taking T = S+ + S0 + S− one gets a
T -periodic trajectory driven by some T -periodic piecewise constant control
function u. One can also construct u as a control function which connects
x+ to y and y to x−, in a way that essentially follows the line of the first
part of the proof. �

1. The Dynamic Index.

In this section we construct a dynamic index for local control sets.
We consider a local control set D for (2.1) and assume throughout that

the accessibility rank condition holds. Define the set

P(D) =






(T, u, x) ∈ (0,∞)× U × Rd :

(u, x) is a T -periodic
strong inner pair, T > 0, and
ϕ(t, x, u) ∈ D, ∀t ∈ [0, T ]






,

endowed with the metric topology given by

dist
(
(T, u, x), (S, v, y)

)
= |T − S|+ ‖x− y‖ �

d + d(u, v).

Remark 4.1. Although the above definition is valid for any subset of the
state space Rd, the theory that we are developing is relevant only for (local
and global) control sets in which the accessibility rank condition holds. In
fact, by Lemma 3.10, if D is such a control set, then P(D) 6= ∅; and, by
Lemma 3.9, for every T -periodic strong inner pair (u, x) the point x is in
some control set.

Below, when no confusion can possibly arise, we shall omit the explicit
dependence on the base set D.

Let us now introduce a relation on P.

Definition 4.2. (T, u, x) ∼ (S, v, y) in P if there are k + 1 elements
(T0, u0, x0), . . . , (Tk, uk, xk) in P with the following properties:

(i) (T0, u0, x0) = (T, u, x) and (Tk, uk, xk) = (S, v, y);

(ii) for i = 0, ..., k there are

0 = τ0
i < ... < τki

i = Ti and 0 = σ0
i+1 < ... < σki

i+1 = Ti+1,

such that ϕ(τ j
i , xi, ui) = xi and ϕ(σj

i+1, xi+1, ui+1) = xi+1 for all i and
all j;
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(iii) there are continuous maps H j
i : [0, 1] → P such that for i = 0, ..., k

and j = 0, ..., ki − 1

Hj
i (0) =

(
τ j+1
i − τ j

i , ui(τ
j
i + ·), xi

)
, and

Hj
i (1) =

(
σj+1

i+1 − σj
i+1, ui+1(σ

j
i+1 + ·), xi+1

)
.

In other words, (Ti, ui, xi) and (Ti+1, ui+1, xi+1) are chopped into ki pe-

riodic pieces of period τ j+1
i − τ j

i and σj+1
i+1 − σj

i+1 respectively, and the cor-
responding pieces are homotopic via trajectories.

Notice that the relation introduced above is an equivalence relation.
Then, consider on P/ ∼, the set Q of all the formal (juxtaposition) prod-
ucts, i.e. the free semigroup on P/ ∼. (See, e.g., Howie [5] for some general
facts about the algebraic theory of semigroups.) As usual, we write [T, u, x]n

instead of
[T, u, x] · · · [T, u, x]
︸ ︷︷ ︸

n times

,

for any n ≥ 0. Here the square parentheses denote the equivalence classes.
Clearly Q is a semigroup which, besides its non-commutativity, is far

too large for being of any use. Below we factorize it over the congruence
induced by two families of equations among the elements of Q. Recall that
a congruence on a semigroup (S, ·) is an equivalence relation ‘≡’ such that

a ≡ a′ and b ≡ b′ imply a · b ≡ a′ · b′,

for any a, a′, b, b′ ∈ S.
Consider the following families of relations:

F =
{

[T, u, x][S, v, x] = [T + S, u ◦ v, x] : (T, u, x), (S, v, x) ∈ P
}

,

G =
{

[T, u, x][S, v, y] = [S, v, y][T, u, x] : (T, u, x), (S, v, y) ∈ P
}

.

Notice that the elements of F are well defined. In fact, by the definition of
‘∼’ one has that

(T, u, x) ∼ (T̄ , ū, x̄) and (S, v, x) ∼ (S̄, v̄, x̄)

imply
(T + S, u ◦ v, x) ∼ (T̄ + S̄, ū ◦ v̄, x̄).

The union of the families F and G clearly can be seen as a relation on Q,
i.e., as a subset of Q×Q. Now, since the intersection of congruences is again
a congruence, it makes sense to consider the congruence (F ∪G)# generated
by the set F ∪ G, namely the intersection of all the congruences containing
F ∪ G (see e.g. [5]).
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Remark 4.3. An alternative definition for the congruence (F ∪ G)# is the
following (see [5, Proposition 5.9]):

Let Q1 be the semigroup obtained from Q by formally adjoining (if nec-
essary) a unity element, and define the relation in Q given by

R =
{
(ξαη, ξβη) : ξ, η ∈ Q1, (α, β) ∈ F ∪ G

}
.

Then (F∪G)# is the equivalence relation generated by R (i.e. the intersection
of all the equivalence relations containing R).

Finally, we define the dynamic index I(D) of D as the quotient

I(D) := Q(D)/(F ∪ G)# .

Notice that, I(D) is a commutative semigroup.

Remark 4.4. Instead of the family G above, we could take

G′ =
{

[T, u, x][S, v, y] = [S, v, y][T, u, x] : (T, u, x), (S, v, y) ∈ P, x 6= y
}

.

In fact, for (T, u, x), (S, v, x) ∈ P, it follows that

(T + S, u ◦ v, x) ∼ (S + T, v ◦ u, x),

as one can see with the ‘homotopy’

H(λ) =
(
T + S, (u ◦ v)(λT + ·), ϕ(λT, p, u)

)
, λ ∈ [0, 1].

Example 4.5. (Linear Systems) Consider the following linear control
system with restricted control range

ẋ(t) = Ax(t) + Bu(t) in Rd, u ∈ U ,

where U ⊂ Rm is convex and compact with 0 ∈ int U and A and B are
constant matrices of dimensions d × d and d×m, respectively. We assume
that the pair (A,B) is controllable, i.e., that rank [B,AB, ...Ad−1B] = d.
Then the index I(D) of the unique control set D reduces to the unity.

This follows from the uniqueness proof of D (cp. [1]): Consider a T -
periodic strong inner pair (u, x) in the interior of D. Define a homotopy to
the origin via

H(α) := (T, αu, αx), α ∈ [0, 1].

Linearity implies that ϕ(T, αx, αu) = αx for all α ∈ [0, 1]. Hence this is a
periodic solution, and for α = 0 one obtains the equilibrium.

It is also of interest to consider the following pointed notion of the index.
For x in a local control set D define

Ix(D) = {[T, u, x] : [T, u, x] ∈ I(D)} .
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Clearly Ix is a subsemigroup of I. An important property enjoyed by this
new object is the following.

Theorem 4.6. If x0 ∈ D is an equilibrium for f , i.e., there exists a constant
ū ∈ int U such that f(x0, ū) = 0, then Ix0

is a monoid (i.e. admits unity).

Proof. The unity can be written as [1, ū, x0]. In fact, if [T, u, x0] is any
element of Ix0

, then the homotopy H(λ) = (T + λ, uλ, x0), where uλ is the
(T + λ)-periodic extension to R of the following function:

{
ū for t ∈ [0, λ]
u(t− λ) for t ∈ [λ, T + λ],

shows that

[1, ū, x0][T, u, x0] = [T + 1, ū ◦ u, x0] = [T, u, x0].

Analogously, one can see that [T, u, x0][1, ū, x0] = [T, u, x0]. �

5. Changing the base set.

If D and D′ are local control sets with D ⊂ D′ then the inclusion i : D ↪→
D′ determines a natural homomorphism i∗ : I(D)→ I(D′). Analogously, if
x0 ∈ D one has a natural homomorphism i∗,x0

: Ix0
(D)→ Ix0

(D′). Indeed,
it is easy to see that the following diagram is commutative:

I(D′)
⊃

←−−−− Ix0
(D′)

i∗

x



x

i∗,x0

I(D)
⊃

←−−−− Ix0
(D)

By commutativity of this diagram, injectivity of i∗ implies that i∗.x0
is in-

jective as well. Furthermore, the following fact holds.

Theorem 5.1. Let D and D′ be local control sets for (2.1) such that D ⊂ D ′.
Then i∗ is injective and, if D 6= D′, then i∗ is not surjective.

The proof is based on the following lemma

Lemma 5.2 Take (T, u, x) ∈ P(D′) \ P(D). Then, if (T ′, u′, x′) ∼ (T, u, x),
one necessarily has (T ′, u′, x′) ∈ P(D′) \ P(D).

Proof. By the definition of local control sets, there exists an open neighbor-
hood V of cl D such that D is the maximal subset of complete controllability
of V . Without loss of generality, we can assume that cl D ⊂ V (and, clearly,
D′ 6⊂ V ). Assume by contradiction that (T ′, u′, x′) ∈ P(D). Since the
relation

(T ′, u′, x′) ∼ (T, u, x)
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holds, by our definition of ‘∼’, there exists a continuous H : [0, 1]→ P(D ′),
λ 7→ (Tλ, uλ, xλ), such that H(0) ∈ P(D) and H(1) ∈ P(D ′) \ P(D).

Put Oλ = ϕ([0, Tλ], xλ, uλ). By continuity, there exists some λ̄ ∈ [0, 1]
such that Oλ ⊂ V for all 0 ≤ λ ≤ λ̄ and Oλ̄ 6⊂ D. Let δ > 0 be the distance
between

⋃

λ≤λ̄ Oλ and the boundary of V . Lemma 3.9 implies that there
exists a neighborhood W of this union that is a precontrol set contained in⋃

λ≤λ̄ Oλ + B(0, δ/2). Obviously, W ∪D ⊂ V is a precontrol set containing
D properly. This contradicts the choice of V . �

Proof of Theorem 5.1. If D = D′ there is nothing to prove, thus we
assume D 6= D′. To prove that i∗ is injective we have to show that given any
(T, u, x) and (T ′, u′, x′) in P(D), with [T, u, x] 6= [T ′, u′, x′] in I(D), they
cannot be joined by a continuous curve in P(D ′).

In fact, if they were connected by some H : [0, 1] → P(D ′), λ 7→
(Tλ, uλ, xλ), there would exist λ0 ∈ [0, 1] such that (Tλ0

, uλ0
, xλ0

) ∈ P(D′) \
P(D), but this is impossible by Lemma 5.2.

As for the non-surjectivity of i∗, it is enough to notice that, by Lemma
5.2, no element of P(D′) \ P(D) can be joined to any one of P(D) by a
continuous curve in P(D′). This means that, given any (T, u, x) ∈ P(D ′) \
P(D) one has [T, u, x] /∈ i∗

(
I(D)

)
. �

The above theorem allows us to drop the ‘i∗’ and consider I(D) as a
subsemigroup of I(D′). When D $ D′, Theorem 5.1 just says that I(D) is
a proper subsemigroup of I(D).

6. The index of a control set near a periodic orbit.

This section is devoted to the computation of the index of the control
set for (2.1) which arise for a small control range around an isolated attract-
ing periodic orbit γ = ϕ([0, T ], x0, 0), with (minimal) period T > 0, of the
uncontrolled system, assuming that the linearized system along γ is control-
lable. Recall that a periodic orbit (of an autonomous differential equation)
is called attracting, if the eigenvalues of the linearized Poincaré map are
strictly smaller than one in modulus; compare [9].

Proposition 6.1. Let γ be a attracting orbit of the uncontrolled system, and
let A be a neighborhood of γ. Assume that the controllability rank condition
(3.1) holds. Then there exist ρ0 such that for any 0 < ρ ≤ ρ0 there exists a
unique control set Dρ with γ ⊂ Dρ ⊂ A.

Proof. The controllability rank condition implies by Proposition 3.6 that
all pairs (x, 0) ∈ γ × Uρ are strong inner pairs, hence inner pairs. Then
Corollary 4.7.6 in [1] implies the assertion. �

We shall prove that, when ρ is small enough, the index of the control
set Dρ, relative to system (2.1) containing γ, is isomorphic to N. To prove
this result we need to show that when (T1, u1, x1) ∈ P(Dρ) is such that
ϕ([0, T1], x1, u1) goes n times around γ, then (T1, u1, x1) ∼ (nT, 0, x0) and
therefore [T1, u1, x1] = [T, 0, x0]

n. To make this precise we shall introduce
Definition 6.3 below.
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However, it is first necessary to establish some preliminaries on the
Poincaré map for control systems. We begin the following notion from Colo-
nius/Sieveking [2].

Definition 6.2. Let x0 ∈ Rn, L : Rn → R linear and α > 0. If Lf(x, u) > α
for all x in a neighborhood W of x0 and all u ∈ ρU then the connected
component of W ∩L−1(x0) containing x0 is called a local transversal section
through x0.

The definition above allows us to formulate precisely what is meant by
saying that an orbit goes n times around another.

Definition 6.3. Let Ω be a neighborhood of γ. We say that a closed orbit
γ1 = ϕ([0, T1], x1, u1) ⊂ Ω goes n times around γ (relatively to Ω) if there
exists a linear map L as in Definition 6.2 such that

1. S := Ω ∩ L−1(x0) is a local transversal section to γ,

2. γ ∩ S = {x0},

3. x1 ∈ S, and

4. there exist exactly n times ti ∈ (0, T1], i = 1, ..., n, such that

ϕ(ti, x1, u1) ∈ S.

An important fact about local transversal sections is the following (see
[2, Proposition 2.14]).

Lemma 6.4. If 0 /∈ f(x0, ρU) then x0 admits a local transversal section.

Therefore, if 0 6= f(x0, 0) then x0 admits a local transversal section for ρ
small enough. Another useful notion from [2] is that of a flow box for control
systems.

Definition 6.5. Let S be a local transversal section through x0, and let
V1 ⊂ V0 be neighborhoods of x0. The triple (V0, V1, S) is a flow box around
x0 if it has the following property:

If ϕ(·, x0, u) satisfies

ϕ(t0, x0, u) /∈ V0, ϕ(t1, x0, u) ∈ V1, ϕ(t2, x0, u) /∈ V0

for some 0 ≤ t0 < t1 < t2, then there exists t ∈ (t0, t2) such that ϕ(t, x0, u) ∈
S and ϕ(s, x0, u) ∈ V0 for all s between t and t1.

From the proof of Theorem 2.16 in [2], one immediately gets the following
result.

Lemma 6.6. Let S be a local transversal section through x0. Then, for any
neighborhood W of S there are neighborhoods V0 and V1 of x0 contained in
W such that (V0, V1, S) is a flow box around x0.

We now turn to the Poincaré map.
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Proposition 6.7. Let S be a local transversal section through x0 ∈ γ. If
ρ is small enough, there exists a neighborhood V of x0 in S such that the
Poincaré first return map P : V × U ρ → S is well-defined and continuous.
Moreover, the map that takes (x, u) into the ‘first return time’ τ(x, u) is
continuous.

Proof. Let us first show that P is well-defined. Notice that the orbits can
cross S only from one side; therefore it is sufficient to show that there exists
a neighborhood V ⊂ S of x0 such that the orbits return to S after a finite
time.

Let W be a neighborhood of x0 in Rd and (V0, V1, S) be a flow box around
x0 with cl V0 ⊂ W . Taking if necessary a smaller W , we can assume that
there are times t0 and t1, with 0 < t0 < T < t1, for which ϕ(t0, x0, 0) and
ϕ(t1, x0, 0) are in W \ cl V0.

By continuous dependence on initial data there exist a neighborhood
V ⊂ V1 of x0 in S and ρ0 > 0 such that, if 0 < ρ < ρ0

ϕ(t0, x, u) ∈W \ cl V0

ϕ(t1, x, u) ∈W \ cl V0

ϕ(T, x, u) ∈ V1






for every (x, u) ∈ V × Uρ.

Since (V0, V1, S) is a flow box, for each (x, u) ∈ V × U ρ there exists a time
τ(x, u), with t0 < τ(x, u) < t1 such that ϕ

(
τ(x, u), x, u

)
∈ S. For W small

enough this time is unique proving that P (x, u) := ϕ
(
τ(x, u), x, u

)
is well-

defined.
We shall now prove continuity of the map (x, u) 7→ P (x, u). Consider a

sequence {(ξn, un)} in S×Uρ converging to (ξ0, u0). Fix a neighborhood W

of P (ξ0, u0) in S and let Ŵ be a neighborhood of P (ξ0, u0) in Rd such that

W = Ŵ ∩ S. Let (V0, V1, S) be a flow box around P (ξ0, u0) with cl V0 ⊂ Ŵ .
Let τ = τ(ξ0, u0). As in the first part of the proof, taking W smaller if

necessary, one can find times 0 < τ0 < τ < τ1 such that

ϕ(τ0, x0, u0), ϕ(τ1, x0, u0) ∈W \ cl V1.

From [1, Lemma 4.3.2] one has

lim
n→∞

ϕ(τ, ξn, un) = ϕ(τ, ξ0, u0) = P (ξ0, u0),

lim
n→∞

ϕ(τ0, ξn, un) = ϕ(τ0, ξ0, u0),

lim
n→∞

ϕ(τ1, ξn, un) = ϕ(τ1, ξ0, u0).

Therefore, for n large enough,

ϕ(τ0, xn, un), ϕ(τ1, xn, un) /∈ V0 and ϕ(τ, xn, un) ∈ V1.

Since (V0, V1, S) is a flow box there exists τn ∈ (τ0, τ1) such that P (xn, un) =
ϕ(τn, xn, un) ∈ S ∩W . This proves that, for n large, P (xn, un) ∈ W and
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continuity follows. Notice also that, in the construction above, τn = τ(ξn, un)
satisfies

τ1 − τ0 > |τ − τn|,

and that, by shrinking W , we can make the differences τ1 − τ0 as small as
we please, therefore proving the continuity of the map (x, u) 7→ τ(x, u). �

Given a control function u and a time T > 0 it is convenient to denote
by [u]T the function u | [0, T ] extended periodically to R.

Proposition 6.8. Let λ 7→ Tλ : [0, 1] → R be continuous. For a (fixed)
control function u ∈ Uρ, the map λ 7→ uλ := λ[u]Tλ

is continuous.

Proof. Suppose λn → λ as n → ∞. For notational simplicity, assume
that Tλn

< Tλ and ρ = 1. In order to show that uλn
→ uλ let W be

a neighborhood of uλ; we shall show that uλn
belongs to W for n large

enough.
There are ε > 0 and x1, ..., xN ∈ L1(R, Rm) with

{

v ∈ L∞(R, Rm),

∣
∣
∫

� 〈uλ(t)− v(t), xj(t)〉dt
∣
∣ < ε for

j = 1, ..., N and v(t) ∈ U a.e.

}

⊂W,

because the sets of this form constitute a subbase of the neighborhoods of
uλ in the weak* topology (see, e.g., Dunford/Schwartz [4]).

Since xj ∈ L1(R, Rm) there is k ∈ N such that for j = 1, ..., N

∫

�
\[−kTλ,kTλ]

|xj(t)|dt <
ε

2 diamU
,

where diamU = sup{|u1 − u2|, u1, u2 ∈ U}. Then, for j = 1, ..., N ,

∣
∣
∣
∣

∫

�
〈uλn

(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ kTλ

−kTλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

�
\[−kTλ,kTλ]

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
∣

The second summand is bounded from above by

diamU

∫

�
\[−kTλ,kTλ]

|xj(t)|dt < ε/2.

The first summand is

∣
∣
∣
∣

∫ kTλ

−kTλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
≤

k−1∑

i=−k

Si,
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where

Si :=

∣
∣
∣
∣
∣

∫ (i+1)Tλ

iTλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
∣
.

We have, for n large enough, that

S0 =

∣
∣
∣
∣

∫ Tλ

0
〈uλn

(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ Tλn

0
〈uλn

(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ Tλ

Tλn

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
∣

≤ [Tλ |λn − λ|+ |Tλ − Tλn
| (λn + |λ− λn|) diamU ] max

j=1,...,N
‖xj‖L1

<
ε

4k
.

Now consider S1. By definition

uλ(t) = λu(t− Tλ) for t ∈ [Tλ, 2Tλ],

and

uλn
(t) =

{
λnu(t− Tλn

) for t ∈ [Tλn
, 2Tλn

],
λnu(t− 2Tλn

) for t ∈ [2Tλn
, 3Tλn

].

For n large enough, one has Tλ < 2Tλn
. Thus

S1 =

∣
∣
∣
∣

∫ 2Tλ

Tλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ 2Tλn

Tλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ 2Tλ

2Tλn

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ 2Tλn

Tλ

〈λnu(t− Tλn
)− λu(t− Tλ), xj(t)〉dt

∣
∣
∣
∣

+2|Tλ − Tλn
| (λn + |λ− λn|) diamU max

j=1,...k
‖xj‖L1

.

For n large enough, the first summand can be made less than ε/(8k) since
the shift in U is continuous (see [1, Lemma 4.2.4]); and, as in the case of S0,
we can assume

2|Tλ − Tλn
| (λn + |λ− λn|) diamU max

j=1,...,N
‖xj‖L1

<
ε

8k
.

Hence, one has S1 < ε/(4k).
Proceeding analogously for all summands Si, i = −k, ..., k − 1, we see

that for n large enough Si < ε/(4k). Thus

∣
∣
∣
∣

∫ kTλ

−kTλ

〈uλn
(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
≤

k−1∑

i=−k

Si ≤
2kε

4k
= ε/2.
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We have proved that, for j = 1, ..., N and n large enough,
∣
∣
∣
∣

∫

�
〈uλn

(t)− uλ(t), xj(t)〉dt

∣
∣
∣
∣
< ε.

This implies that, for n large enough, uλn
belongs to the neighborhood W .

�

We also need the following fact which can be proved by standard argu-
ments.

Lemma 6.9. The set of continuous functions is dense in U ρ.

The next fact is crucial for the construction of the homotopy between
the orbits that wind n times around γ and [T, 0, x]n. We shall make use of
the following parametrized version of the Implicit Function Theorem:

Theorem 6.10. Let T , X and Y be Banach spaces and let F be a topological
space. For any u ∈ F let Ψu : T ×X → Y be C1 and let (t, x, u) 7→ Ψu(t, x)
and (t, x, u) 7→ Ψ′

u(t, x) be continuous. Assume in addition that:

1. there exist x0 ∈ X such that Ψu (0, x0) = 0 for all u ∈ F ;

2. there exists δ > 0 such that for every u ∈ F , D1Ψu (0, x0) is invertible,
and ∥

∥
∥

(
D1Ψu (0, x0)

)−1
∥
∥
∥ ≤ δ for any u ∈ F ,

3. it holds
lim

(t,x)→(0,x0)

∥
∥Ψ′

u(t, x)−Ψ′
u(0, x0)

∥
∥ = 0

uniformly in u.

Then, there exist an open neighborhood W of x0 in X and a (unique) C1

function τu : W → Y such that τu(x0) = 0 and Ψu (τu(x), x) = 0, for any
u ∈ F .

Lemma 6.11. Assume that the T -periodic orbit γ = ϕ([0, T ], x0, 0) is at-
tracting, and let S be a local transversal section for γ through x0. Then there
exists ρ > 0 and a neighborhood V of x0 such that P (·, u) is a contraction,
uniformly for u ∈ Uρ.

Proof. Without loss of generality we can assume that S lies on the hyper-
plane X := {xd = 0} ⊂ Rd. Here and along all this proof the exponent d
denotes the d-th component in Rd. Take T = R, Y := R and

F := Uρ ∩ C1(R, Rm)

with the L∞ topology, and define the C1 function Ψu : T ×X → Y as

Ψu(t, y) := ϕd(t + tu, y, u)− yd,
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where tu = τ(x0, u). One has Ψu (0, x0) = 0. Moreover, reducing ρ if
necessary, one can find δ > 0 such that

D1Ψu (0, x0) = fd
(
τ(x0, u), u) ≥ 1/δ.

Continuous dependence, ensures that also condition 3 in Theorem 6.10 is
satisfied. Therefore we get the existence of a neighborhood V of x0 in S and
of a C1 function τu : V → R such that Ψu

(
τu(x), x

)
= 0 for every x ∈ V .

Clearly, if ρ is small enough and x ∈ V , then the time τ(x, u) for the
Poincaré map coincides with τu(x) + tu. Thus D1τ(x, u) is well defined and
the map

(x, u) 7→ D1P (x, u) = D1ϕ
(
τ(x, u), x, u

)
D1τ(x, u) + D2ϕ

(
τ(x, u), x, u

)

is continuous. Since γ is attracting, the eigenvalues of D1P (x0, 0) are strictly
smaller than one in modulus. Thus there exists a norm on S such that
the operator D1P (x0, 0) has norm smaller than one. By continuity and
restricting V and ρ if necessary, we can assume that the same is true for
D1P (x, u) for every x ∈ V and u ∈ U ρ ∩C1(R, Rm). Whence it follows that
P (·, u) is a contraction with constant

k = sup
(ξ,µ)∈V ×Uρ

‖D1P (ξ, µ)‖ < 1.

Let us show that P (·, u) remains a k-contraction when u is a general (not
necessarily continuous) element of U ρ. Since the C1 functions are dense in
Uρ in the weak* topology, there is a sequence {un} of C1 functions in Uρ

converging to u0 in the weak* topology. Take x and y in V , by Proposition
6.7 we know that P is continuous when U ρ is endowed with the weak*
topology. Therefore, for ε > 0, one has

|P (x, u)− P (x, un)|+ |P (y, u) − P (y, un)| < ε,

for n sufficiently large. Therefore

|P (x, u) − P (y, u)| ≤ |P (x, u)− P (x, un)|+ |P (x, un)− P (y, un)|

+|P (y, un)− P (y, u)|

≤ k|x− y|+ ε.

Since ε > 0 is arbitrary, this proves the assertion. �

Proposition 6.12. Assume that the T -periodic orbit γ = ϕ([0, T ], x0, 0) is
attracting, and let S be a local transversal section for γ through x0. Then
there exists ρ > 0 and a neighborhood V of x0 such that for every n ∈ N and
every (x, u) ∈ V × Uρ the map (x, u)→ P n(x, u) is well defined.

Moreover, for every u ∈ U ρ, there exists a Tu > 0 and a unique Tu-
periodic solution ϕ(·, xu, [u]Tu) winding n times around γ, and the functions
u 7→ Tu and u 7→ xu are continuous.
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Proof. In Lemma 6.11 we proved that for u ∈ U ρ, with ρ sufficiently
small, P (·, u) is a contraction on cl V . Consequently, we can assume that
P

(
cl V, u

)
⊂ cl V for any u ∈ Uρ. In particular P n(·, u) is well-defined for

any n ∈ N and u ∈ Uρ. Notice also that for every n ∈ N and u ∈ U ρ also
P n(·, u) is a contraction. Therefore, given n and u as above, there exist a
unique fixed point xu for P n(·, u) in N which depends continuously on u.
Define Tu as the time needed for ϕ(·, xu, u) to reach xu after winding n times
around γ. Continuous dependence of Tu on u follows from continuity of the
first return time as shown in Proposition 6.7. �

Notice that in P n(x, u) the control u restricted to [0, Tu] is applied n
times. We are finally in a position to prove the claim we made at the
beginning of this section.

Theorem 6.13. Assume that the uncontrolled system has an attracting T -
periodic solution ϕ(·, x0, 0) with T > 0, and that the controllability condition
(3.1) is satisfied. Then, when ρ is small enough, the dynamic index I(Dρ)
of the control set Dρ containing γ := ϕ([0, T ], x0, 0) is isomorphic to N.

Proof. Let N = cl V be the compact neighborhood of x0 found in the
proof of Proposition 6.12 above. Consider a T1-periodic orbit ϕ(·, x, u) with

x ∈ N , u ∈ Uρ′ for some 0 < ρ′ < ρ and u piecewise constant. There exists
n such that ϕ(T1, x, u) = P n(x, u). By Proposition 6.12, there exist Tλ > 0
and a unique Tλ-periodic solution ϕ(·, xλ, [λu]Tλ

) winding n times around γ.
By Proposition 6.8 the map λ 7→ uλ := [λu]Tλ

is continuous. Hence, again
by Proposition 6.12, it follows that Tλ and xλ depend continuously on λ. In
particular, T0 = nT . Since, by Proposition 3.6, ([v]Tλ

, xλ) is a strong inner
pair for each λ, this yields the desired homotopy between (T1, u1, x1) and
(T0, 0, x0). �

We conclude the paper with a remark showing that the dynamic index
allows us to distinguish control sets around an attracting periodic orbit as
above from control sets around a homoclinic orbit.

Remark 6.14. Suppose that the uncontrolled system has a homoclinic orbit
given by

ϕ(t, x1, u1), t ∈ R, with lim
t→±∞

ϕ(t, x1, u1) = x0,

where x0 is an equilibrium of the uncontrolled system. If the controllability
condition (3.1) holds for all points in γ := {x0} ∪ {ϕ(t, x1, u1), t ∈ R} and
this is a chain recurrent component of the uncontrolled system, then for every
ρ > 0 there is a control set Dρ containing this set in its interior and

⋂

ρ>0

Dρ = γ;

see Corollary 4.7.6 in [1]. For any small ρ, the index I(Dρ) contains an
element [T, x0, 0] which is idempotent, i.e., [T, x0, 0]

2 = [T, x0, 0]. Hence
I(Dρ) is not isomorphic to N.
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