

MULTIPLICITY OF FORCED OSCILLATIONS ON MANIFOLDS AND APPLICATIONS TO MOTION PROBLEMS WITH ONE-DIMENSIONAL CONSTRAINTS

MASSIMO FURI, MARIA PATRIZIA PERA, AND MARCO SPADINI

ABSTRACT. This paper illustrates through some pysical examples how the notion of *ejecting set* ([3]) can be used to get multiplicity results for forced oscillations. The motion problem of a mass point constrained to one-dimensional manifold and acted on by a periodic force is treated.

1. INTRODUCTION

In this paper we continue the research of [3], where we obtained qualitative results for forced oscillations on differentiable (boundaryless) manifolds that cannot be deduced via variational or implicit function methods. More precisely, in [3] we considered "small" periodic perturbations of autonomous second order differential equations on differentiable manifolds and, under suitable assumptions, we established the existence of multiple forced oscillations.

In [3] we framed the problem in an abstract topological setting, so that the results arose from a combination of analytical and topological tools as well as from local and global results on the set of the so-called T-pairs (see below for a precise definition). In that framework the key notion was that of *ejecting set*.

In this paper we focus on some applications of the results of [3] and illustrate, through some physical examples, how the notion of ejecting set can be used to get multiplicity results. We treat in some detail the motion problem of a mass point constrained to a 1-dimensional manifold M and acted on by a periodic force. We consider therefore the two cases $M = S^1$ and $M = \mathbb{R}$, which are, up to a diffeomorphism, the only connected 1-dimensional boundaryless differentiable manifolds.

A particular attention is devoted to the second order scalar equation

$$\ddot{x} = g(x) - \mu \dot{x} + \lambda f(t, x, \dot{x}), \quad \lambda \ge 0,$$

where $g : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R}^3 \to \mathbb{R}$ are continuous, f is *T*-periodic in t (T > 0 is given), and $\mu \ge 0$. When the parameter λ is small enough, we establish multiplicity results for the *T*-periodic solutions of the above equation in two cases: when the force g vanishes and the frictional coefficient μ is arbitrary, and when g has isolated zeros and μ is positive. The remaining case when $\mu = 0$ and g does not vanish identically requires a more careful treatment and will be the subject of a forthcoming paper.

2. Ejecting sets and T-pairs

Let M be a differentiable manifold embedded in \mathbb{R}^k . Given T > 0, we denote by $C^1_T(M)$ the metric subspace of the Banach space $C^1_T(\mathbb{R}^k)$ of all the T-periodic C^1 maps $x : \mathbb{R} \to M$ with the usual C^1 norm. Observe that $C^1_T(M)$ is not complete,

unless M is complete (i.e. closed in \mathbb{R}^k). Nevertheless, since M is locally compact, $C^1_T(M)$ is always locally complete.

Given $q \in M, T_q M \subset \mathbb{R}^k$ denotes the tangent space to M at q. By

$$TM = \left\{ (q, v) \in \mathbb{R}^k \times \mathbb{R}^k : q \in M, v \in T_q M \right\}$$

we mean the tangent bundle of M.

 $\mathbf{2}$

We consider second order differential equations on M of the form

(2.1)
$$\ddot{x}_{\pi} = h(x, \dot{x}) + \lambda f(t, x, \dot{x}), \quad \lambda \ge 0,$$

where λ is a parameter, $h: TM \to \mathbb{R}^k$ and $f: \mathbb{R} \times TM \to \mathbb{R}^k$ are tangent to M, in the sense that h(q, v) and f(t, q, v) belong to T_qM for all $(t, q, v) \in \mathbb{R} \times TM$. Here the map f is assumed T-periodic in t. A solution of (2.1) is a C^2 map $x: J \to M$, defined on a nontrivial interval J, such that

$$\ddot{x}_{\pi}(t) = h\left(x(t), \dot{x}(t)\right) + \lambda f\left(t, x(t), \dot{x}(t)\right), \quad \forall t \in J,$$

where $\ddot{x}_{\pi}(t)$ denotes the orthogonal projection of $\ddot{x}(t) \in \mathbb{R}^k$ onto $T_{x(t)}M$. A solution of (2.1) is called a *forced oscillation* if it is periodic of the same period T as that of the forcing term f.

For a more extensive treatment of second-order ODEs on manifolds from this embedded viewpoint see e.g. [1].

A pair $(\lambda, x) \in [0, \infty) \times C_T^1(M)$ is called a *T*-pair for the second-order equation (2.1) if x is a solution of (2.1) corresponding to λ . In particular we will say that (λ, x) is trivial if $\lambda = 0$ and x is constant. Note that, in general, there may exist nontrivial *T*-pairs of (2.1) even for $\lambda = 0$, as in the case of the inertial motion on S^1 .

One can show that, no matter whether or not M is closed in \mathbb{R}^k , the subset X of $[0, \infty) \times C_T^1(M)$ consisting of all the *T*-pairs of (2.1) is always closed and locally compact (see e.g. [2] or [4]). Moreover, by Ascoli's theorem, when M is closed in \mathbb{R}^k , any bounded closed set of *T*-pairs is compact.

As in [5], we tacitly assume some natural identifications. That is, we will regard every space as its image in the following diagram of closed embeddings:

where the horizontal arrows are defined by regarding any point q in M as the constant map $\hat{q}(t) \equiv q$ in $C_T^1(M)$, and the two vertical arrows are the natural identifications $q \mapsto (0, q)$ and $x \mapsto (0, x)$.

According to these embeddings, if Ω is an open subset of $[0, \infty) \times C_T^1(M)$, by $\Omega \cap M$ we mean the open subset of M given by all $q \in M$ such that the pair $(0, \hat{q})$ belongs to Ω . If U is an open subset of $[0, \infty) \times M$, then $U \cap M$ represents the open set $\{q \in M \mid (0, q) \in U\}$.

We need some basic facts about the topological degree of tangent vector fields on manifolds.

Let $w: M \to \mathbb{R}^k$ be a continuous tangent vector field on M, and let U be an open subset of M in which we assume w admissible for the degree, that is $w^{-1}(0) \cap U$ compact. Then, one can associate to the pair (w, U) an integer, $\deg(w, U)$,

(2.2)

called the degree (or characteristic) of the vector field w in U, which, roughly speaking, counts (algebraically) the number of zeros of w in U (see e.g. [6, 7] and references therein). When $M = \mathbb{R}^k$, $\deg(w, U)$ is just the classical Brouwer degree, $\deg(w, V, 0)$, of w at 0 in any bounded open neighborhood V of $w^{-1}(0) \cap U$ whose closure is in U. Moreover, when M is a compact manifold, the celebrated Poincaré-Hopf Theorem states that $\deg(v, M)$ coincides with the Euler-Poincaré characteristic of M and, therefore, is independent of v.

We recall that when q is an isolated zero of w, the index i(w,q) of w at q is given by deg(w, U), where U is any isolating open neighborhood of q. If w is C^1 and q is a non-degenerate zero of w (i.e. the Fréchet derivative $w'(q) : T_q M \to \mathbb{R}^k$ is injective), then q is an isolated zero of w, w'(q) maps $T_q M$ into itself, and i(w,q) = sign det w'(q) (see e.g. [7]).

The following result of [5] concerns the global structure of the set of T-pairs of (2.1).

Theorem 2.1. Let Ω be an open subset of $[0, \infty) \times C_T^1(M)$. Assume that deg $(h(\cdot, 0), \Omega \cap M)$ is well defined and nonzero. Then Ω contains a connected set Γ of nontrivial T-pairs for (2.1) whose closure in Ω meets M in $h(\cdot, 0)^{-1}(0)$ and is not contained in any compact subset of Ω . Consequently, if M is closed in \mathbb{R}^k , then Γ is not contained in any bounded and complete subset of Ω .

Corollary 2.2. Assume that M is closed in \mathbb{R}^k . If $q \in M$ is an isolated zero of $h(\cdot,0)$ with $i(h(\cdot,0),q) \neq 0$, then (2.1) admits a connected set Γ of nontrivial T-pairs whose closure meets q and is either unbounded or intersects $h(\cdot,0)^{-1}(0) \setminus \{q\}$. The assertion is true, in particular, if h is C^1 and the Fréchet derivative $h(\cdot,0)'(q): T_q M \to \mathbb{R}^k$ of $h(\cdot,0)$ at q is injective.

Proof. Apply Theorem 2.1 taking as Ω the complement in $[0, \infty) \times C_T^1(M)$ of the closed set $h(\cdot, 0)^{-1}(0) \setminus \{q\}$, and observe that, being M closed, any bounded and closed subset of $[0, \infty) \times C_T^1(M)$ is complete. \Box

We point out that the set Γ might be completely "vertical". That is, contained in $\{0\} \times C^1_T(M)$, as it happens for the following differential equation in $M = \mathbb{R}$ (with q = 0 and $T = 2\pi$):

 $\ddot{x} = -x + \lambda \sin t, \quad \lambda \ge 0.$

In order to find multiplicity results for the forced oscillations of (2.1) it is necessary to avoid such a "degenerate" situation. We tackle this problem from an abstract viewpoint.

We need some notation. Let Y be a metric space and C a subset of $[0, \infty) \times Y$. Given $\lambda \geq 0$, we denote by C_{λ} the slice $\{y \in Y \mid (\lambda, y) \in C\}$. In what follows, Y will be identified with the subset $\{0\} \times Y$ of $[0, \infty) \times Y$.

Definition 2.3. Let C be a subset of $[0, \infty) \times Y$. We say that a subset A of C_0 is an *ejecting set* (for C) if it is relatively open in C_0 and there exists a connected subset of C which meets A and is not included in C_0 .

We shall simply say that $q \in C_0$ is an *ejecting point* if $\{q\}$ is an ejecting set. In this case, being $\{q\}$ open in C_0 , q is clearly isolated in C_0

In [3] we proved the following theorem which relates ejecting sets and multiplicity results.

Theorem 2.4. Let Y be a metric space and let C be a locally compact subset of $[0, \infty) \times Y$. Assume that C_0 contains n pairwise disjoint ejecting sets, n-1 of which are compact. Then, there exists $\delta > 0$ such that the cardinality of C_{λ} is greater than or equal to n for any $\lambda \in [0, \delta)$.

In [3] we provided examples showing that in Theorem 2.4 the assumption that n-1 ejecting sets are compact cannot be dropped.

Let q be a zero of $h(\cdot, 0)$. If h is C^1 , we give a condition which ensures that q (regarded as a trivial T-pair) is an ejecting point for the subset X of $[0, \infty) \times C_T^1(M)$ consisting of the T-pairs of (2.1).

We say that a point $q \in h(\cdot, 0)^{-1}(0)$ is *T*-resonant for the equation (2.1) if the linearized equation

(2.3)
$$\ddot{x} = D_1 h(q, 0) x + D_2 h(q, 0) \dot{x}$$

which corresponds to $\lambda = 0$, admits nonzero *T*-periodic solutions. Here $D_1h(q,0)$ and $D_2h(q,0)$ denote the partial derivatives at (q,0) of *h* with respect to the first and the second variable. One can check that both $D_1h(q,0)$ and $D_2h(q,0)$ are endomorphisms of T_qM (see e.g. [3]), thus (2.3) is a differential equation on the subspace $T_q(M)$ of \mathbb{R}^k .

If q is non-*T*-resonant, then there is only one constant solution of (2.3). This implies det $(D_1h(q,0)) \neq 0$. That is, q is a non-degenerate zero of $h(\cdot,0)$. As a consequence of this fact and of Corollary 2.2 we get the following:

Corollary 2.5 ([3]). If $q \in h(\cdot, 0)^{-1}(0)$ is non-*T*-resonant, then it is an ejecting point for *X*.

When the unperturbed force h reduces to a purely frictional force, it is convenient to substitute X with a more significative subset. In this case we obtain other examples of ejecting sets. Consider the equation (2.1) with $h(q, v) = -\mu v$, $\mu \ge 0$. That is

(2.5)

4

 $\ddot{x}_{\pi} = -\mu \dot{x} + \lambda f(t, x, \dot{x}), \quad \lambda \ge 0.$

Define the average force $w: M \to \mathbb{R}^k$ by

$$w(q) = \frac{1}{T} \int_0^T f(t, q, 0) \,\mathrm{d}t,$$

and observe that w is a tangent vector field on M.

Consider the set $w^{-1}(0)$ regarded as a subset of $[0, \infty) \times C_T^1(M)$ according to the diagram (2.2), and denote by Ξ the union of $w^{-1}(0)$ and of the set of the *T*-pairs of (2.4) with $\lambda > 0$. In other words,

$$\Xi = w^{-1}(0) \cup (X \setminus X_0).$$

where, we recall, X denotes the set of T-pairs of (2.4).

In [2] it was shown that, when $\mu = 0$, the closure of $X \setminus X_0$ in $[0, \infty) \times C_T^1(M)$ is contained in $w^{-1}(0)$. This is true also when $\mu > 0$ since the same argument applies. Consequently Ξ , being a closed subset of X, is locally compact. As in Corollary 2.3 of [2] one obtains the following result.

Theorem 2.6. Let q be an isolated zero of w such that $i(w,q) \neq 0$. Then q is an ejecting point for Ξ . This occurs, in particular, if w is C^1 and q is a non-degenerate zero of w.

3. Application to multiplicity results

This section is devoted to illustrating how the notions and results previously discussed can be used to prove the existence of multiple forced oscillations. As before, X will stand for the set of T-pairs of (2.1).

We begin with two physical examples.

(3.1)

Example 3.1. Consider the following forced pendulum equation:

$$\theta = -\sin\theta + \lambda f(t,\theta,\theta)$$

where $f: \mathbb{R}^3 \to \mathbb{R}$ is continuous, 2π -periodic with respect to θ and T-periodic in t. Since the right hand side of (3.1) is 2π -periodic in θ , the above equation (which is in \mathbb{R}) can be regarded on the unit circle $M = S^1$ of \mathbb{R}^2 (the solutions from \mathbb{R} to S^1 correspond under the transformation $\theta \mapsto (\sin \theta, -\cos \theta)$). In this way, the "north pole" $\mathbb{N} = \pi$ and the "south pole" $\mathbb{S} = 0$ are the unique zeros of the tangential component $-\sin \theta$ of the gravitational vector field.

We want to show that for λ small enough equation (3.1), if regarded on S^1 , admits at least two forced oscillations (observe that a solution of (3.1) on S^1 produces infinitely many solutions on \mathbb{R}). Corollary 2.5 implies that N, being non-*T*-resonant, is ejecting (for X). Thus, our claim follows from Theorem 2.4 if we prove that $X_0 \setminus \{\mathbb{N}\}$ is an ejecting set, which means that there exists a connected subset of *T*-pairs intersecting the relatively open subset $X_0 \setminus \{\mathbb{N}\}$ of X_0 and not included in X_0 .

Corollary 2.2 implies that there exists a connected set Γ of nontrivial *T*-pairs whose closure $\overline{\Gamma}$ meets $\mathbf{S} \in X_0 \setminus \{\mathbf{N}\}$ and is either unbounded or contains \mathbf{N} . Let us show that $\overline{\Gamma} \not\subset \{0\} \times C_T^1(S^1)$. If this were not the case, then $\overline{\Gamma} = \{0\} \times \overline{\Gamma}_0$. Since $\overline{\Gamma}_0$ cannot meet the relatively open subset $\{\mathbf{N}\}$ of X_0 , it would be unbounded. But this is false since, given any $x(\cdot) = (\sin \theta(\cdot), -\cos \theta(\cdot)) \in X_0$, the *T*-periodicity of $x(\cdot)$ implies

$$\|\dot{x}(t)\| = |\dot{\theta}(t)| < T$$
 for any $t \in [0, T]$.

Example 3.2. Consider the so-called *parametrically excited pendulum*. That is, a pendulum moving in a vertical plane and whose pivot is subject to a vertical periodic driving. The motion equation can be written in the form

$$\theta + \mu\theta + (1 + \lambda\omega(t))\sin\theta = 0,$$

where ω is a *T*-periodic function and $\mu \geq 0$. As in the example above, this equation can be seen on S^1 and, from this viewpoint, we show that it admits at least two forced oscillations for small values of $\lambda \geq 0$. In fact, in the case when the frictional coefficient $\mu \neq 0$, both the north and the south poles are non-*T*-resonant and, consequently, ejecting points. When $\mu = 0$, the equation is of the form considered in the previous example.

In what follows we will be concerned with the scalar equation

$$\ddot{x} = g(x) - \mu \dot{x} + \lambda f(t, x, \dot{x}), \quad \lambda \ge 0$$

where $g : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R}^3 \to \mathbb{R}$ are continuous, f is T-periodic in t, and $\mu \ge 0$. Observe that, as in the above examples, when the functions g and f are 2π -periodic in x, the equation (3.2) can be interpreted on S^1 .

In the case when g vanishes we get the following multiplicity result.

(3.2)

Theorem 3.3. Consider in \mathbb{R} the equation

(3.3)

6

$$\ddot{x} = -\mu \dot{x} + \lambda f(t, x, \dot{x}), \quad \lambda \ge 0.$$

Assume that the average force w, defined as in (2.5), changes sign in n isolated zeros. Then there exists $\delta > 0$ such that (3.3) has at least n forced oscillations for $\lambda \in [0, \delta).$

Proof. Let q be an isolated zero in which w changes sign. The homotopy property of the degree implies that $i(w,q) = \pm 1$. The assertion follows from Theorems 2.4 and 2.6. \square

In the case when g does not vanish, the average force plays no role. Clearly, if the frictional coefficient μ is nonzero, q is C^1 and changes sign in n non-degenerate zeros, then it is clear that, for λ sufficiently small, the equation (3.2) admits at least n forced oscillations. In fact, all those zeros turn out to be non-T-resonant and, in particular, ejecting points.

Actually, still when the frictional coefficient is non-zero, a better result can be obtained.

Theorem 3.4. Assume that in equation (3.2) the frictional coefficient μ is nonzero and the force q changes sign in n isolated zeros. Then there exists $\delta > 0$ such that (3.2) has at least n forced oscillations for $\lambda \in [0, \delta)$.

Proof. Let q_1, \ldots, q_n be isolated zeros in which g changes sign. For any $i \in \{1, \ldots, n\}$, the homotopy property of the degree yields $i(g, q_i) = \pm 1$. Thus, by Corollary 2.2, for i = 1, ..., n, there exists a connected set Γ^i of nontrivial T-pairs for (3.2) whose closure $\overline{\Gamma^i}$ meets q_i and is either non-compact or intersects $g^{-1}(0) \setminus \{q_i\}$.

Clearly, due to the presence of friction, only constant periodic solution to (3.2)may exist for $\lambda = 0$. Therefore the connected component of $(\overline{\Gamma^i})_0$ containing q_i reduces to $\{q_i\}$. This means that, for i = 1, ..., n, the points q_i are ejecting.

The assertion now follows from Theorem 2.4.

References

- [1] Furi M., Second order differential equations on manifolds and forced oscillations, Proc. Conference on "Topological methods in differential equations and inclusions", Université de Montreal, 1994, NATO-ASI series C, Kluwer Acad. Publ., Dordrecht NL.
- Furi M. and Pera M. P., A continuation principle for periodic solutions of forced motion [2]equations on manifolds and applications to bifurcation theory, Pacific J. of Math. 160 (1993) 219-244.
- [3] Furi M., Pera M.P. and Spadini M., Forced oscillations on manifolds and multiplicity results for periodically perturbed autonomous systems, Journal of computational and applied mathematics **113** (2000), 241-254.
- Furi M. and Spadini M., Multiplicity of forced oscillations for the spherical pendulum, Topo-[4]logical Methods in Nonlinear Analysis 11 (1998), 147–157.
- Furi M. and Spadini M., Branches of forced oscillations for periodically perturbed second-order autonomous ODE's on manifolds, Journal of Differential Equations 154 (1999) 96-106.
- Hirsch M.W., Differential Topology, Graduate Texts in Math. Vol. 33, Springer-Verlag, Berlin, 1976.
- Milnor J.W., Topology from the differentiable viewpoint, Univ. press of Virginia, Char-[7]lottesville, 1965.

DIPARTIMENTO DI MATEMATICA APPLICATA "G. SANSONE", VIA S. MARTA 3, 50139 FIRENZE, ITALY

