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Abstract. This paper illustrates through some pysical examples how the no-
tion of ejecting set ([3]) can be used to get multiplicity results for forced oscil-
lations. The motion problem of a mass point constrained to one-dimensional
manifold and acted on by a periodic force is treated.

1. Introduction

In this paper we continue the research of [3], where we obtained qualitative re-
sults for forced oscillations on differentiable (boundaryless) manifolds that cannot
be deduced via variational or implicit function methods. More precisely, in [3] we
considered “small” periodic perturbations of autonomous second order differential
equations on differentiable manifolds and, under suitable assumptions, we estab-
lished the existence of multiple forced oscillations.

In [3] we framed the problem in an abstract topological setting, so that the
results arose from a combination of analytical and topological tools as well as from
local and global results on the set of the so-called T -pairs (see below for a precise
definition). In that framework the key notion was that of ejecting set.

In this paper we focus on some applications of the results of [3] and illustrate,
through some physical examples, how the notion of ejecting set can be used to get
multiplicity results. We treat in some detail the motion problem of a mass point
constrained to a 1-dimensional manifold M and acted on by a periodic force. We
consider therefore the two cases M = S1 and M = R, which are, up to a diffeomor-
phism, the only connected 1-dimensional boundaryless differentiable manifolds.

A particular attention is devoted to the second order scalar equation

ẍ = g(x) − µẋ + λf(t, x, ẋ), λ ≥ 0,

where g : R → R and f : R
3 → R are continuous, f is T -periodic in t (T >

0 is given), and µ ≥ 0. When the parameter λ is small enough, we establish
multiplicity results for the T -periodic solutions of the above equation in two cases:
when the force g vanishes and the frictional coefficient µ is arbitrary, and when g

has isolated zeros and µ is positive. The remaining case when µ = 0 and g does
not vanish identically requires a more careful treatment and will be the subject of
a forthcoming paper.

2. Ejecting sets and T -pairs

Let M be a differentiable manifold embedded in R
k. Given T > 0, we denote by

C1
T (M) the metric subspace of the Banach space C1

T (Rk) of all the T -periodic C1

maps x : R → M with the usual C1 norm. Observe that C1
T (M) is not complete,
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unless M is complete (i.e. closed in R
k). Nevertheless, since M is locally compact,

C1
T (M) is always locally complete.
Given q ∈ M , TqM ⊂ R

k denotes the tangent space to M at q. By

TM =
{

(q, v) ∈ R
k × R

k : q ∈ M, v ∈ TqM
}

we mean the tangent bundle of M .

We consider second order differential equations on M of the form

(2.1) ẍπ = h(x, ẋ) + λf(t, x, ẋ), λ ≥ 0,

where λ is a parameter, h : TM → R
k and f : R× TM → R

k are tangent to M , in
the sense that h(q, v) and f(t, q, v) belong to TqM for all (t, q, v) ∈ R × TM . Here
the map f is assumed T -periodic in t. A solution of (2.1) is a C2 map x : J → M ,
defined on a nontrivial interval J , such that

ẍπ(t) = h (x(t), ẋ(t)) + λf (t, x(t), ẋ(t)) , ∀t ∈ J,

where ẍπ(t) denotes the orthogonal projection of ẍ(t) ∈ R
k onto Tx(t)M . A solution

of (2.1) is called a forced oscillation if it is periodic of the same period T as that
of the forcing term f .

For a more extensive treatment of second-order ODEs on manifolds from this
embedded viewpoint see e.g. [1].

A pair (λ, x) ∈ [0,∞) × C1
T (M) is called a T -pair for the second-order equation

(2.1) if x is a solution of (2.1) corresponding to λ. In particular we will say that
(λ, x) is trivial if λ = 0 and x is constant. Note that, in general, there may exist
nontrivial T -pairs of (2.1) even for λ = 0, as in the case of the inertial motion on
S1.

One can show that, no matter whether or not M is closed in R
k, the subset X

of [0,∞)×C1
T (M) consisting of all the T -pairs of (2.1) is always closed and locally

compact (see e.g. [2] or [4]). Moreover, by Ascoli’s theorem, when M is closed in
R

k, any bounded closed set of T -pairs is compact.
As in [5], we tacitly assume some natural identifications. That is, we will regard

every space as its image in the following diagram of closed embeddings:

(2.2)

[0,∞) × M −−−−→ [0,∞) × C1
T (M)

x





x





M −−−−→ C1
T (M),

where the horizontal arrows are defined by regarding any point q in M as the
constant map q̂(t) ≡ q in C1

T (M), and the two vertical arrows are the natural
identifications q 7→ (0, q) and x 7→ (0, x).

According to these embeddings, if Ω is an open subset of [0,∞) × C1
T (M), by

Ω ∩ M we mean the open subset of M given by all q ∈ M such that the pair (0, q̂)
belongs to Ω. If U is an open subset of [0,∞)×M , then U ∩M represents the open
set {q ∈ M | (0, q) ∈ U}.

We need some basic facts about the topological degree of tangent vector fields
on manifolds.

Let w : M → R
k be a continuous tangent vector field on M , and let U be an

open subset of M in which we assume w admissible for the degree, that is w−1(0)∩
U compact. Then, one can associate to the pair (w, U) an integer, deg(w, U),
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called the degree (or characteristic) of the vector field w in U , which, roughly
speaking, counts (algebraically) the number of zeros of w in U (see e.g. [6, 7]
and references therein). When M = R

k, deg(w, U) is just the classical Brouwer
degree, deg(w, V, 0), of w at 0 in any bounded open neighborhood V of w−1(0)∩U

whose closure is in U . Moreover, when M is a compact manifold, the celebrated
Poincaré-Hopf Theorem states that deg(v, M) coincides with the Euler-Poincaré
characteristic of M and, therefore, is independent of v.

We recall that when q is an isolated zero of w, the index i(w, q) of w at q is
given by deg(w, U), where U is any isolating open neighborhood of q. If w is C1

and q is a non-degenerate zero of w (i.e. the Fréchet derivative w′(q) : TqM → R
k

is injective), then q is an isolated zero of w, w′(q) maps TqM into itself, and
i(w, q) = signdet w′(q) (see e.g. [7]).

The following result of [5] concerns the global structure of the set of T -pairs of
(2.1).

Theorem 2.1. Let Ω be an open subset of [0,∞)×C1
T (M). Assume that deg

(

h(·, 0),

Ω∩M
)

is well defined and nonzero. Then Ω contains a connected set Γ of nontrivial

T -pairs for (2.1) whose closure in Ω meets M in h(·, 0)−1(0) and is not contained

in any compact subset of Ω. Consequently, if M is closed in R
k, then Γ is not

contained in any bounded and complete subset of Ω.

Corollary 2.2. Assume that M is closed in R
k. If q ∈ M is an isolated zero

of h(·, 0) with i
(

h(·, 0), q
)

6= 0, then (2.1) admits a connected set Γ of nontrivial

T -pairs whose closure meets q and is either unbounded or intersects h(·, 0)−1(0) \
{q}. The assertion is true, in particular, if h is C1 and the Fréchet derivative

h(·, 0)′(q) : TqM → R
k of h(·, 0) at q is injective.

Proof. Apply Theorem 2.1 taking as Ω the complement in [0,∞) × C1
T (M) of the

closed set h(·, 0)−1(0) \ {q}, and observe that, being M closed, any bounded and
closed subset of [0,∞) × C1

T (M) is complete. �

We point out that the set Γ might be completely “vertical”. That is, contained
in {0} × C1

T (M), as it happens for the following differential equation in M = R

(with q = 0 and T = 2π):

ẍ = −x + λ sin t, λ ≥ 0.

In order to find multiplicity results for the forced oscillations of (2.1) it is nec-
essary to avoid such a “degenerate” situation. We tackle this problem from an
abstract viewpoint.

We need some notation. Let Y be a metric space and C a subset of [0,∞)× Y .
Given λ ≥ 0, we denote by Cλ the slice

{

y ∈ Y | (λ, y) ∈ C
}

. In what follows, Y

will be identified with the subset {0} × Y of [0,∞) × Y .

Definition 2.3. Let C be a subset of [0,∞) × Y . We say that a subset A of C0

is an ejecting set (for C) if it is relatively open in C0 and there exists a connected
subset of C which meets A and is not included in C0.

We shall simply say that q ∈ C0 is an ejecting point if {q} is an ejecting set. In
this case, being {q} open in C0, q is clearly isolated in C0

In [3] we proved the following theorem which relates ejecting sets and multiplicity
results.
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Theorem 2.4. Let Y be a metric space and let C be a locally compact subset of

[0,∞)×Y . Assume that C0 contains n pairwise disjoint ejecting sets, n−1 of which

are compact. Then, there exists δ > 0 such that the cardinality of Cλ is greater than

or equal to n for any λ ∈ [0, δ).

In [3] we provided examples showing that in Theorem 2.4 the assumption that
n − 1 ejecting sets are compact cannot be dropped.

Let q be a zero of h(·, 0). If h is C1, we give a condition which ensures that q

(regarded as a trivial T -pair) is an ejecting point for the subset X of [0,∞)×C1
T (M)

consisting of the T -pairs of (2.1).
We say that a point q ∈ h(·, 0)−1(0) is T -resonant for the equation (2.1) if the

linearized equation

(2.3) ẍ = D1h(q, 0)x + D2h(q, 0)ẋ ,

which corresponds to λ = 0, admits nonzero T -periodic solutions. Here D1h(q, 0)
and D2h(q, 0) denote the partial derivatives at (q, 0) of h with respect to the first
and the second variable. One can check that both D1h(q, 0) and D2h(q, 0) are
endomorphisms of TqM (see e.g. [3]), thus (2.3) is a differential equation on the
subspace Tq(M) of R

k.
If q is non-T -resonant, then there is only one constant solution of (2.3). This

implies det (D1h(q, 0)) 6= 0. That is, q is a non-degenerate zero of h(·, 0). As a
consequence of this fact and of Corollary 2.2 we get the following:

Corollary 2.5 ([3]). If q ∈ h(·, 0)−1(0) is non-T -resonant, then it is an ejecting

point for X.

When the unperturbed force h reduces to a purely frictional force, it is convenient
to substitute X with a more significative subset. In this case we obtain other
examples of ejecting sets. Consider the equation (2.1) with h(q, v) = −µv, µ ≥ 0.
That is

(2.4) ẍπ = −µẋ + λf(t, x, ẋ), λ ≥ 0.

Define the average force w : M → R
k by

(2.5) w(q) =
1

T

∫ T

0

f(t, q, 0) dt,

and observe that w is a tangent vector field on M .
Consider the set w−1(0) regarded as a subset of [0,∞)×C1

T (M) according to the
diagram (2.2), and denote by Ξ the union of w−1(0) and of the set of the T -pairs
of (2.4) with λ > 0. In other words,

Ξ = w−1(0) ∪ (X \ X0),

where, we recall, X denotes the set of T -pairs of (2.4).
In [2] it was shown that, when µ = 0, the closure of X \X0 in [0,∞)×C1

T (M) is
contained in w−1(0). This is true also when µ > 0 since the same argument applies.
Consequently Ξ, being a closed subset of X , is locally compact. As in Corollary
2.3 of [2] one obtains the following result.

Theorem 2.6. Let q be an isolated zero of w such that i(w, q) 6= 0. Then q is an

ejecting point for Ξ. This occurs, in particular, if w is C1 and q is a non-degenerate

zero of w.
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3. Application to multiplicity results

This section is devoted to illustrating how the notions and results previously
discussed can be used to prove the existence of multiple forced oscillations. As
before, X will stand for the set of T -pairs of (2.1).

We begin with two physical examples.

Example 3.1. Consider the following forced pendulum equation:

(3.1) θ̈ = − sin θ + λf(t, θ, θ̇),

where f : R
3 → R is continuous, 2π-periodic with respect to θ and T -periodic in t.

Since the right hand side of (3.1) is 2π-periodic in θ, the above equation (which is
in R) can be regarded on the unit circle M = S1 of R

2 (the solutions from R to S1

correspond under the transformation θ 7→ (sin θ,− cos θ)). In this way, the “north
pole” N = π and the “south pole” S = 0 are the unique zeros of the tangential
component − sin θ of the gravitational vector field.

We want to show that for λ small enough equation (3.1), if regarded on S1, admits
at least two forced oscillations (observe that a solution of (3.1) on S1 produces
infinitely many solutions on R). Corollary 2.5 implies that N, being non-T -resonant,
is ejecting (for X). Thus, our claim follows from Theorem 2.4 if we prove that
X0 \ {N} is an ejecting set, which means that there exists a connected subset of
T -pairs intersecting the relatively open subset X0 \ {N} of X0 and not included in
X0.

Corollary 2.2 implies that there exists a connected set Γ of nontrivial T -pairs
whose closure Γ meets S ∈ X0 \ {N} and is either unbounded or contains N. Let us
show that Γ 6⊂ {0} × C1

T (S1). If this were not the case, then Γ = {0} × Γ0. Since

Γ0 cannot meet the relatively open subset {N} of X0, it would be unbounded. But
this is false since, given any x(·) =

(

sin θ(·),− cos θ(·)
)

∈ X0, the T -periodicity of
x(·) implies

‖ẋ(t)‖ = |θ̇(t)| ≤ T for any t ∈ [0, T ].

Example 3.2. Consider the so-called parametrically excited pendulum. That is,
a pendulum moving in a vertical plane and whose pivot is subject to a vertical
periodic driving. The motion equation can be written in the form

θ̈ + µθ̇ +
(

1 + λω(t)
)

sin θ = 0,

where ω is a T -periodic function and µ ≥ 0. As in the example above, this equation
can be seen on S1 and, from this viewpoint, we show that it admits at least two
forced oscillations for small values of λ ≥ 0. In fact, in the case when the frictional
coefficient µ 6= 0, both the north and the south poles are non-T -resonant and,
consequently, ejecting points. When µ = 0, the equation is of the form considered
in the previous example.

In what follows we will be concerned with the scalar equation

(3.2) ẍ = g(x) − µẋ + λf(t, x, ẋ), λ ≥ 0,

where g : R → R and f : R
3 → R are continuous, f is T -periodic in t, and µ ≥ 0.

Observe that, as in the above examples, when the functions g and f are 2π-periodic
in x, the equation (3.2) can be interpreted on S1.

In the case when g vanishes we get the following multiplicity result.
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Theorem 3.3. Consider in R the equation

(3.3) ẍ = −µẋ + λf(t, x, ẋ), λ ≥ 0.

Assume that the average force w, defined as in (2.5), changes sign in n isolated

zeros. Then there exists δ > 0 such that (3.3) has at least n forced oscillations for

λ ∈ [0, δ).

Proof. Let q be an isolated zero in which w changes sign. The homotopy property
of the degree implies that i(w, q) = ±1. The assertion follows from Theorems 2.4
and 2.6. �

In the case when g does not vanish, the average force plays no role. Clearly, if
the frictional coefficient µ is nonzero, g is C1 and changes sign in n non-degenerate
zeros, then it is clear that, for λ sufficiently small, the equation (3.2) admits at
least n forced oscillations. In fact, all those zeros turn out to be non-T -resonant
and, in particular, ejecting points.

Actually, still when the frictional coefficient is non-zero, a better result can be
obtained.

Theorem 3.4. Assume that in equation (3.2) the frictional coefficient µ is non-

zero and the force g changes sign in n isolated zeros. Then there exists δ > 0 such

that (3.2) has at least n forced oscillations for λ ∈ [0, δ).

Proof. Let q1, . . . qn be isolated zeros in which g changes sign. For any i ∈ {1, . . . n},
the homotopy property of the degree yields i(g, qi) = ±1. Thus, by Corollary 2.2,
for i = 1, . . . n, there exists a connected set Γi of nontrivial T -pairs for (3.2) whose

closure Γi meets qi and is either non-compact or intersects g−1(0) \ {qi}.
Clearly, due to the presence of friction, only constant periodic solution to (3.2)

may exist for λ = 0. Therefore the connected component of
(

Γi
)

0
containing qi

reduces to {qi}. This means that, for i = 1, . . . n, the points qi are ejecting.
The assertion now follows from Theorem 2.4. �
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