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Bang�bang trajetories with a double swithing time:suffiient strong loal optimality onditionsLaura Poggiolini Maro Spadini∗AbstratThis paper gives su�ient onditions for a lass of bang-bang extremals withmultiple swithes to be loally optimal in the strong topology. The onditions arethe natural generalizations of the ones onsidered in [5, 14℄ and [16℄. We requireboth the strit bang-bang Legendre ondition, and the seond order onditions for the�nite dimensional problem obtained by moving the swithing times of the referenetrajetory.1 IntrodutionWe onsider a Mayer problem, where the ontrol funtions are bounded and enter linearlyin the dynamis. minimize C(ξ, u) := c0(ξ(0)) + cf (ξ(T )) (1.1a)subjet to ξ̇(t) = f0(ξ(t)) +

m∑

s=1

usfs(ξ(t)) (1.1b)
ξ(0) ∈ N0 , ξ(T ) ∈ Nf (1.1)
u = (u1, . . . , um) ∈ L∞([0, T ], [−1, 1]m). (1.1d)Here T > 0 is given, the state spae is a n-dimensional manifold M , N0 and Nf aresmooth sub-manifolds of M . The vetor �elds f0, f1, . . . , fm and the funtions c0, cf are

C2 on M , N0 and Nf , respetively.We aim at giving seond order su�ient onditions for a referene bang-bang extremalouple (ξ̂, û) to be a loal optimizer in the strong topology; the strong topology beingthe one indued by C([0, T ],M) on the set of admissible trajetories, regardless of anydistane of the assoiated ontrols. Therefore, optimality is with respet to neighboringtrajetories, independently of the values of the assoiated ontrols. In partiular, if theextremal is abnormal, we prove that ξ̂ is isolated among admissible trajetories.We reall that a ontrol û (a trajetory ξ̂) is bang-bang if there is a �nite number ofswithing times 0 < t̂1 < · · · < t̂r < T suh that eah omponent ûi of the refereneontrol û is onstantly either −1 or 1 on eah interval (t̂k, t̂k+1). A swithing time t̂k isalled simple if only one ontrol omponent hanges value at t̂k, while it is alled multipleif at least two ontrol omponents hange value.
∗Dipartimento di Matematia Appliata, Università degli Studi di Firenze, via di Santa Marta, 3,I-50139 Firenze (laura.poggiolini�math.unifi.it and maro.spadini�math.unifi.it) 1
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Laura Poggiolini and Maro SpadiniSeond order onditions for the optimality of a bang-bang extremal with simple swithesonly are given in [5, 11, 14, 16℄ and referenes therein, while in [18℄ the author gives suf-�ient onditions, in the ase of the minimum time problem, for L1-loal optimality - anintermediate ondition between strong and loal optimality - of a bang-bang extremalhaving both simple and multiple swithes with the extra assumption that the Lie braketsof the swithing vetor �elds is annihilated by the adjoint ovetor.All the above ited papers require regularity assumptions on the swithes (see thesubsequent Assumptions 2.1, 2.2 and 2.3 whih are the natural strengthening of neessaryonditions) and the positivity of a suitable seond variation.Here we onsider the problem of strong loal optimality in the ase of a Mayer problem,when at most one double swith ours, but there are �nitely many simple ones and noommutativity assumptions on the involved vetor �elds. More preisely we extend theonditions in [5, 14, 16℄ by requiring the su�ient seond order onditions for the �nitedimensional sub-problems that are obtained by allowing the swithing times to move.The addition of a double swith is not a trivial extension of the known single-swithases. In fat, as explained in Setion 2.2, any perturbation of the swithing time (of adouble swith) of the omponents of û generially reates two simple swithes, that is ita bang ar is generated. On the ontrary, the small perturbations of a single swith donot hange the struture of the referene ontrol.We believe that the tehniques employed here ould be extended to the more generalase when there are more than one double swith. However, suh an extension may notbe straightforward as the tehnial and notational omplexities grow quikly with thenumber of double swithes.Preliminary results were given in [17℄, where the authors exploit a study ase and in[15℄ that deals with a Bolza problem in the so-alled non-degenerate ase. Also stabilityanalysis under parameter perturbations for this kind of bang-bang extremals was studiedin [8℄.We point out that, while in the ase of simple swithes the only variables are theswithing times, eah time a double swith ours one has to onsider the two possibleombinations of the swithing ontrols. The investigation of the invertibility of theinvolved Lipshitz ontinuous, pieewise C1 operators has been done via some topologialmethods desribed in the Appendix, or via Clarke's impliit funtion theorem (see [7,Thm 7.1.1.℄) in some partiular degenerate ase.The paper is organized as follows: Setion 2.1 introdues the notation and the regu-larity hypotheses that are assumed through the paper. In Setion 2.2, where our mainresult Theorem 2.3 is stated, we introdue a �nite dimensional subproblem of (1.1) andits �seond variations� (indeed this subproblem is C1,1 but not C2 so that the lassial�seond variation� is not well de�ned). The essene of the paper will be to show that thesu�ient onditions for the optimality of an extremum of this subproblem are atuallysu�ient also for the optimality of the referene pair (ξ̂, û) in problem (1.1). In Setion 3we brie�y desribe the Hamiltonian methods the proof is based upon. Setion 4 ontainsthe maximized Halmiltonian of the ontrol system and its �ow. In Setion 5, we writethe �seond variations� of the �nite-dimensional subproblem and study their sign on ap-propriate spaes. Setion 6 is the heart of the paper and onstitutes its more original2
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Strong loal optimalityontribution; here we prove that the the projetion onto a neighborhood of the graph of
ξ̂ in R ×M of the maximized �ow de�ned in Setion 4 is invertible (whih is neessaryfor our Hamiltonian methods to work). Setion 7 ontains the onlusion of the proof ofTheorem 2.3. In the Appendix we treat from an abstrat viewpoint the problem, raisedin Setion 6, of loal invertibility of a pieewise C1 funtion.2 The resultThe result is based on some regularity assumption on the vetor �elds assoiated tothe problem and on a seond order ondition for a �nite dimensional sub-problem. Theregularity Assumptions 2.2 and 2.3 are natural, sine we look for su�ient onditions.In fat Pontryagin Maximum Priniple yields the neessity of the same inequalities butin weak form.2.1 Notation and regularityWe assume we are given an admissible referene ouple (ξ̂, û) satisfying Pontryagin Max-imum Priniple (PMP) with adjoint ovetor λ̂ and that the referene ontrol û is bang-bang with swithing times t̂1, . . . , t̂r suh that only two kinds of swithings appear:

• t̂i is a simple swithing time i.e. only one of the ontrol omponents û1, . . . , ûmswithes at time t̂i;
• t̂i is a double swithing time i.e. exatly two of the ontrol omponents û1, . . . , ûmswith at time t̂i.We assume that there is just one double swithing time, whih we denote by τ̂ . Withoutloss of generality we may assume that the ontrol omponents swithing at time τ̂ are û1and û2 and that they both swith from the value −1 to the value +1, i.e.

lim
t→τ̂−

ûν = −1 lim
t→τ̂+

ûν = 1 ν = 1, 2.In the interval (0, τ̂ ), J0 simple swithes our (if no simple swith ours in (0, τ̂ ), then
J0 = 0), and J1 simple swithes our in the interval (τ̂ , T ) (if no simple swith ours in
(τ̂ , T ), then J1 = 0). We denote the simple swithing times ourring before the doubleone by θ̂0j , j = 1, . . . , J0, and by θ̂1j , j = 1, . . . , J1 the simple swithing times ourringafterwards. In order to simplify the notation, we also de�ne θ̂00 := 0, θ̂0,J0+1 := θ̂10 := τ̂ ,
θ̂1,J1+1 := T , i.e. we have
θ̂00 := 0 < θ̂01 < . . . < θ̂0J0 < τ̂ := θ̂0,J0+1 := θ̂10 < θ̂11 < . . . < θ̂1J1 < T := θ̂1,J1+1.We shall use some basi tools and notation from di�erential geometry. For any sub-manifold N ofM , and any x ∈ N , TxN and T ∗

xN denote the tangent spae to N at x andthe otangent spae to N at x, respetively while T ∗N denotes the otangent bundle.3
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Laura Poggiolini and Maro Spadini
0 θ̂01

. . .
θ̂0J0

τ̂ θ̂10
. . .

θ̂1J1
TFigure 1: The sequene of swithing timesFor any w ∈ T ∗

xM and any δx ∈ TxM , 〈w , δx〉 denotes the duality produt between aform and a tangent vetor.
π : T ∗M →M denotes the anonial projetion from the tangent bundle onto the basemanifold M . In oordinates ℓ := (p, x):

π : ℓ = (p, x) ∈ T ∗M 7→ x ∈M.Throughout the paper, for any vetor �eld f : x ∈ M 7→ f(x) ∈ TxM , we shall denotethe assoiated Hamiltonian obtained by lifting f to T ∗M by the orresponding apitalletter, i.e.
F : ℓ ∈ T ∗M 7→ 〈ℓ , f(πℓ)〉 ∈ R,and −→

F will denote the Hamiltonian vetor �eld assoiated to F . In partiular for any
s = 0, 1, . . . ,m Fs(ℓ) := 〈ℓ , fs(πℓ)〉 is the Hamiltonian assoiated to the drift (s = 0)and to the ontrolled vetor �elds of system (1.1b).If f, g : x ∈ M 7→ f(x) ∈ TxM , are di�erentiable vetor �elds, we denote their Liebraket as [f, g]:

[f, g](x) := Dg(x) f(x) −Df(x) g(x)The anonial sympleti two-form between two Hamiltonian vetor �elds −→F and −→
G ata point ℓ is denoted as σ (−→F ,−→G) (ℓ). In oordinates ℓ := (p, x):

σ

(−→
F ,

−→
G
)
(ℓ) := −〈pDg(x) , f(x)〉+ 〈pDf(x) , g(x)〉.For any m-tuple u = (u1, . . . , um) ∈ R

m let us denote the ontrol-dependent Hamiltonian
hu : ℓ ∈ T ∗M 7→ 〈ℓ , f0(πℓ) +

m∑

s=1

usfs(πℓ)〉 ∈ R.Let f̂t and F̂t be the referene vetor �eld and the referene Hamiltonian, respetively:
f̂t(x) := f0(x) +

m∑

s=1

ûs(t)fs(x) , F̂t(ℓ) := 〈ℓ , f̂t(πℓ)〉 = hû(t)(ℓ)and let
H(ℓ) := max {hu(ℓ) : u ∈ [−1, 1]m}be the maximized Hamiltonian of the ontrol system. Also, let x̂0 := ξ̂(0), x̂d := ξ̂(τ̂)and x̂f := ξ̂(T ).4
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Strong loal optimalityThe referene �ow, that is the �ow assoiated to f̂t, is de�ned on the whole interval
[0, T ] at least in a neighborhood of x̂0. We denote it as

Ŝ : (t, x) 7→ Ŝt(x).Thus, in our situation PMP reads as follows:There exist p0 ∈ {0, 1} and an absolutely ontinuous funtion λ̂ : [0, T ] → T ∗M suh that
(p0, λ̂(0)) 6= (0, 0) (2.1)
πλ̂(t) = ξ̂(t) ∀t ∈ [0, T ]

˙̂
λ(t) =

−→̂
F t(λ̂(t)) a.e. t ∈ [0, T ],

λ̂(0)|Tx̂0N0
= p0 dc0(x̂0), λ̂(T )|Tx̂fNf

= −p0 dcf (x̂f ) (2.2)
F̂t(λ̂(t)) = H(λ̂(t)) a.e. t ∈ [0, T ]. (2.3)We shall denote ℓ̂0 := λ̂(0) and ℓ̂f := λ̂(T ).Maximality ondition (2.3) implies ûs(t)Fs(λ̂(t)) = ûs(t)〈λ̂(t) , fs(ξ̂(t))〉 ≥ 0 for any

t ∈ [0, T ] and any s = 1, . . . ,m. We assume the following regularity ondition holds:Assumption 2.1 (Regularity). Let s ∈ {1, . . . ,m}. If t is not a swithing time for theontrol omponent ûs, then
us(t)Fs(λ̂(t)) = ûs(t)〈λ̂(t) , fs(ξ̂(t))〉 > 0. (2.4)In terms of the swithing funtions σs : t ∈ [0, T ] 7→ Fs ◦ λ̂(t) ∈ R, s = 1, . . . ,mAssumption 2.1 means ûs(t) = sgn (σs(t)) whenever t is not a swithing time of thereferene ontrol omponent ûs.Notie that Assumption 2.1 implies that argmax{hu(λ̂(t)) : u ∈ [−1, 1]m} = û(t) forany t that is not a swithing time.Let
kij := f̂t|(θ̂ij ,θ̂i,j+1)

, j = 0, . . . , Ji, i = 0, 1,be the restritions of f̂t to eah of the time intervals where the referene ontrol û isonstant and let Kij(ℓ) := 〈ℓ , kij(πℓ)〉 be the assoiated Hamiltonian. Then, frommaximality ondition (2.3) we get
d

dt
(Kij −Ki,j−1) ◦ λ̂(t)

∣∣∣∣
t=θ̂ij

≥ 0for any i = 0, 1, j = 1, . . . , Ji, i.e. if ûs(ij) is the ontrol omponent swithing at time
θ̂ij and ∆ij ∈ {−2, 2} is its jump, then

d

dt
∆ijσs(ij)(t)

∣∣∣∣
t=θ̂ij

≥ 0We assume that the strong inequality holds at eah simple swithing time θ̂ij : 5
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Laura Poggiolini and Maro SpadiniAssumption 2.2.
d

dt
(Kij −Ki,j−1) ◦ λ̂(t)

∣∣∣∣
t=θ̂ij

> 0 i = 0, 1, j = 1, . . . , Ji. (2.5)Assumption 2.2 is known as the Strong bang-bang Legendre ondition forsimple swithing times.In geometri terms Assumption 2.2 means that at time t = θ̂ij the trajetory t 7→ λ̂(t)rosses transversally the hypersurfae of T ∗M de�ned by Kij = Ki,j−1, i.e. by the zerolevel set of Fs(ij).
Kij = Ki,j−1

−→
K i,j−1

(
λ̂(θ̂ij)

)

λ̂(t)

−→
K ij

(
λ̂(θ̂ij)

)

b
λ̂(θ̂ij)

Figure 2: Behaviour at a simple swithing timeAs already said, without any loss of generality we an assume that the double swithingtime involves the �rst two omponents, û1 and û2 of the referene ontrol û and thatthey both swith from −1 to +1, so that
k10 = k0J0 + 2f1 + 2f2.De�ne the new vetor �elds

kν := k0J0 + 2fν , ν = 1, 2,with assoiated Hamiltonians Kν(ℓ) := 〈ℓ , kν(πℓ)〉. Then, from maximality ondition(2.3) we get
d

dt
2σν(t)

∣∣∣∣
t=τ̂−

=
d

dt
2Fν ◦ λ̂(t)

∣∣∣∣
t=τ̂−

=
d

dt
(Kν −K0J0) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

≥ 0,

d

dt
2σν(t)

∣∣∣∣
t=τ̂+

=
d

dt
2Fν ◦ λ̂(t)

∣∣∣∣
t=τ̂+

=
d

dt
(K10 −Kν) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

≥ 0,

ν = 1, 2.We assume that the strit inequalities hold:Assumption 2.3.
d

dt
(Kν −K0J0) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

> 0,
d

dt
(K10 −Kν) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

> 0, ν = 1, 2. (2.6)6
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Strong loal optimalityAssumption 2.3 means that at time τ̂ the �ow arrives the hypersurfaes F1 = 0 and
F2 = 0 with transversal veloity −→

K 0J0 and leaves with veloity −→
K10 whih is againtransversal to both the hypersurfaes. We shall all Assumption 2.3 the Strong bang-bang Legendre ondition for double swithing times.

b

F1 = 0F2 = 0

λ̂(τ̂ )

λ̂(t)

−→
K0J0

(
λ̂(τ̂)

)

−→
K10

(
λ̂(τ̂ )

)

Figure 3: Behaviour at the double swithing timeEquivalently, onditions (2.5) and (2.6) an be expressed in terms of the Lie braketsof vetor �elds or in terms of the anonial sympleti struture σ (·, ·) on T ∗M :Proposition 2.1. Assumption 2.2 is equivalent to
〈λ̂(θ̂ij) , [ki,j−1, kij ] (ξ̂(θ̂ij))〉 = σ

(−→
K i,j−1,

−→
K ij

)
(λ̂(θ̂ij)) > 0 (2.7)for any i = 0, 1, j = 1, . . . , Ji.Assumption 2.3 is equivalent to

〈λ̂(τ̂) , [k0J0 , kν ] (x̂d)〉 = σ

(−→
K 0J0 ,

−→
Kν

)
(λ̂(τ̂ )) > 0,

〈λ̂(τ̂) , [kν , k10] (x̂d)〉 = σ

(−→
K ν ,

−→
K10

)
(λ̂(τ̂)) > 0

ν = 1, 2. (2.8)In what follows we shall also need to reformulate Assumptions 2.2 and 2.3 in terms ofthe pull-baks along the referene �ow of the vetor �elds kij and kν . De�ne
gij(x) := Ŝ−1

θ̂ij ∗
kij ◦ Ŝθ̂ij(x), hν(x) := Ŝ−1

τ̂ ∗kν ◦ Ŝτ̂ (x)and let Gij , Hν be the assoiated Hamiltonians. We an restate Assumptions 2.2 and2.3 as follows:Proposition 2.2. Assumption 2.2 is equivalent to
〈ℓ̂0 , [gi,j−1, gij ] (x̂0)〉 = σ

(−→
G i,j−1,

−→
G ij

)
(ℓ̂0) > 0 (2.9)7
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Laura Poggiolini and Maro Spadinifor any i = 0, 1, j = 1, . . . , Ji.Assumption 2.3 is equivalent to
〈ℓ̂0 , [g0J0 , hν ] (x̂0)〉 = σ

(−→
G0J0 ,

−→
H ν

)
(ℓ̂0) > 0,

〈ℓ̂0 , [hν , g10] (x̂0)〉 = σ

(−→
H ν ,

−→
G10

)
(ℓ̂0) > 0

ν = 1, 2. (2.10)2.2 The �nite dimensional sub-problemBy allowing the swithing times of the referene ontrol funtion to move we an de�ne a�nite dimensional sub-problem of the given one. In doing so we must distinguish betweenthe simple swithing times and the double swithing time. Moving a simple swithingtime θ̂ij to time θij := θ̂ij+δij amounts to using the values û|(θ̂i,j−1,θ̂ij) and û|(θ̂ij ,θ̂i,j+1) ofthe referene ontrol in the time intervals (θ̂i,j−1, θij
) and (θi j , θ̂i,j+1

), respetively. Onthe other hand, when we move the double swithing time τ̂ we hange the swithing timeof two di�erent omponents of the referene ontrol and we must allow for eah of them tohange its swithing time independently of the other. This means that between the valuesof û|(θ̂0J0 ,τ̂) and û|(τ̂ ,θ̂01) we introdue a value of the ontrol whih is not assumed bythe referene one - at least in a neighborhood of τ̂ - and whih may assume two di�erentvalues aording to whih omponent swithes �rst between the two available ones. Let
τν := τ̂ + εν , ν = 1, 2. We move the swithing time of the �rst ontrol omponent û1from τ̂ to τ1 := τ̂ + ε1, and the swithing time of the seond ontrol omponent û2 from
τ̂ to τ2 := τ̂ + ε2.Inspired by [5℄, let us introdue C2 funtions α : M → R and β : M → R suh that
α|N0

= p0c0, dα(x̂0) = ℓ̂0 and β|Nf
= p0cf , dβ(x̂f ) = −ℓ̂f .De�ne θij := θ̂ij + δij , j = 1, . . . , Ji, i = 0, 1; θ0,J0+1 := min{τν , ν = 1, 2}, θ10 :=

max{τν , ν = 1, 2}, θ00 := 0 and θ1,J1+1 := T . We have a �nite-dimensional sub-problem(FP) given byminimize α(ξ(0)) + β(ξ(T )) (FPa)subjet to ξ̇(t) =





k0j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J0,

kν(ξ(t)) t ∈ (θ0,J0+1, θ10),

k1j(ξ(t)) t ∈ (θ1j , θ1,j+1) j = 0, . . . , J1

(FPb)and ξ(0) ∈ N0, ξ(T ) ∈ Nf . (FP)where θ00 = 0, θ1,J1+1 = T (FPd)
θij = θ̂ij + δij, i = 0, 1, j = 1, . . . , Ji, (FPe)
θ0,J0+1 := τ̂ +min{ε1, ε2}, θ10 := τ̂ +max{ε1, ε2} (FPf)and {
ν = 1 if ε1 ≤ ε2,

ν = 2 if ε2 ≤ ε1.
(FPg)We shall denote the solution, evaluated at time t, of (FPb) emanating from a point

x ∈M at time 0, as St(x, δ, ε). Observe that St(x, 0, 0) = Ŝt(x).8
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(ε1 ≤ ε2)

0 θ̂01

θ01

. . .

. . .

θ̂0J0

θ0J0

τ̂

τ1 τ2
f0J0 + 2f1

θ̂11

θ11

. . . θ̂1J1

. . .
θ1J1

T

(ε2 ≤ ε1)

θ01
. . .

θ0J0

τ2 τ1
f0J0 + 2f2

θ11
. . .

θ1J1

T

Figure 4: The di�erent sequenes of vetor �elds in the �nite-dimensional sub-problem.Notie that the referene ontrol is ahieved along ε1 = ε2, that is the referene �owis attained by (FP) on a point of non-di�erentiability of the funtions
θ0,J0+1 := τ̂ +min{ε1, ε2}, θ10 := τ̂ +max{ε1, ε2}.We are going to prove (see Remark 5.1 in Setion 5) that despite this lak of di�erentia-bility of the swithing times θ0J0 , θ10, (FP) is C1 (indeed C1,1) at δij = ε1 = ε2 = 0We an thus onsider, on the kernel of the �rst variation of (FP), its seond variation,piee-wisely de�ned as the seond variation of the restritions of (FP) to the half-spaes

{(δ, ε) : ε1 ≤ ε2} and {(δ, ε) : ε2 ≤ ε1}. Beause of the struture of (FP), this seondvariation is oerive if and only if both restritions are positive-de�nite quadrati forms.In partiular any of their onvex ombinations is positive-de�nite on the kernel of the�rst variation, i.e. Clarke's generalized Hessian at (x, δ, ε) = (x̂0, 0, 0) is positive-de�niteon that kernel, see Remark 5.2 in Setion 5.In Setion 5 we give expliit formulas both for the �rst and for the seond variations.We shall ask for suh seond variations to be positive de�nite and prove the followingtheorem:Theorem 2.3. Let (ξ̂, û) be a bang-bang regular extremal (in the sense of Assumption2.1) for problem (1.1) with assoiated ovetor λ̂. Assume all the swithing times of (ξ̂, û)but one are simple, while the only non-simple swithing time is double.Assume the strong Legendre onditions, Assumptions 2.2 and 2.3, hold. Assume alsothat the seond variation of problem (FP) is positive de�nite on the kernel of the �rstvariation. Then (ξ̂, û) is a strit strong loal optimizer for problem (1.1). If the extremalis abnormal (p0 = 0), then ξ̂ is an isolated admissible trajetory.3 Hamiltonian methodsThe proof will be arried out by means of Hamiltonian methods, whih allow us to reduethe problem to a �nite dimensional one de�ned in a neighborhood of the �nal point ofthe referene trajetory. For a general introdution to suh methods see e.g. [3℄. Werepeat here the argument for the sake of ompleteness.In Setion 4 we prove that the maximized Hamiltonian of the ontrol system, H, is wellde�ned and Lipshitz ontinuous on the whole otangent bundle T ∗M . Its Hamiltonianvetor �eld −→
H is pieewise smooth in a neighborhood of the range of λ̂ and its �ow, whih9
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H : (t, ℓ) ∈ [0, T ]× T ∗M 7→ Ht(ℓ) ∈ T ∗M,is well de�ned in a neighborhood of [0, T ] × {ℓ̂0} and λ̂ is a trajetory of −→H : d

dt
λ̂(t) =

−→
H (λ̂(t)), i.e. λ̂(t) = Ht(ℓ̂0).In Setions 5-6 we prove that there exist a C2 funtion α suh that α|N0

= p0c0,
dα(x0) = ℓ̂0 and enjoying the following property: the map

id×πH : (t, ℓ) ∈ [0, T ]× Λ 7→ (t, πHt(ℓ)) ∈ [0, T ]×Mis one�to�one onto a neighborhood of the graph of ξ̂, where Λ := {dα(x) : x ∈ O(x0)}.Indeed the proof of this invertibility is the main ore of the paper and its main novelty.Under the above onditions the one�form ω := H∗(p dq −H dt) is exat on [0, T ]×Λ,hene there exists a C1 funtion
χ : (t, ℓ) ∈ [0, T ] × Λ 7→ χt(ℓ) ∈ Rsuh that dχ = ω. Also it may be shown (see, e.g. [5℄) that d(χt◦(πHt)

−1) = Ht◦(πHt)
−1for any t ∈ [0, T ]. Moreover we may assume χ0 = α ◦ πObserve that (t, ξ̂(t)) = (id×πH)(t, ℓ̂0) and let us show how this onstrution leads tothe redution. De�ne

V := (id×πH)([0, T ] × Λ), ψ := (id×πH)−1 : V → [0, T ]× Λand let (ξ, u) be an admissible pair (i.e. a pair satisfying (1.1b)�(1.1)�(1.1d)) suh thatthe graph of ξ is in V. We an obtain a losed path Γ in V with a onatenation of thefollowing paths:
• Ξ: t ∈ [0, T ] 7→ (t, ξ(t)) ∈ V,
• ΦT : s ∈ [0, 1] 7→ (T, ϕT (s)) ∈ V, where ϕT : s ∈ [0, 1] 7→ ϕT (s) ∈ M is suh that
ϕT (0) = ξ(T ), ϕT (1) = x̂f ,

• Ξ̂ : t ∈ [0, T ] 7→ (t, ξ̂(t)) ∈ V, ran bakward in time,
• Φ0 : s ∈ [0, 1] 7→ (0, ϕ0(s)) ∈ V, where ϕ0 : s ∈ [0, 1] 7→ ϕ0(s) ∈ M is suh that
ϕ0(0) = x̂0, ϕ0(1) = ξ(0).Sine the one-form ω is exat we get

0 =

∮

Γ
ω =

∫

ψ(Ξ)
ω +

∫

ψ(ΦT )
ω −

∫

ψ(Ξ̂)
ω +

∫

ψ(Φ0)
ω.From the de�nition of ω and the maximality properties of H we get

∫

ψ(Ξ̂)
ω = 0,

∫

ψ(Ξ)
ω ≤ 0 (3.1)10
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Λ

t

(0, ℓ̂)

ψ
(
0, ξ(0)

)

(T, ℓ̂)

ψ
(
T, ξ(T )

)

(t, ℓ̂)

(t, λ(t))

(πH)−1

M

t

(0, x̂0)

(0, ξ(0)) (T, xf )

(T, ξ(T ))Figure 5: The losed path Γ and its preimageso that ∫

ψ(ΦT )
ω +

∫

ψ(Φ0)
ω ≥ 0. (3.2)Sine

∫

ψ(ΦT )
ω =

∫

(πHT )−1◦ΦT

d(χT ◦ (πHT )
−1) = χT ◦ (πHT )

−1(x̂f )− χT ◦ (πHT )
−1(ξ(T )),

∫

ψ(Φ0)
ω =

∫ 1

0
〈dα(ϕ0(s)) , ϕ̇0(s)〉ds = α(ξ(0)) − α(x̂0),inequality (3.2) yields

α(ξ(0)) − α(x̂0) + χT ◦ (πHT )
−1(x̂f )− χT ◦ (πHT )

−1(ξ(T )) ≥ 0. (3.3)Thus
α(ξ(0)) + β(ξ(T ))− α(x̂0)− β(x̂f ) ≥

≥
(
χT ◦ (πHT )

−1 + β
)
(ξ(T ))−

(
χT ◦ (πHT )

−1 + β
)
(x̂f ) (3.4)that is: we only have to prove the loal minimality at x̂f of the funtion

F : x ∈ Nf ∩ O(x̂f ) 7→
(
χT ◦ (πHT )

−1 + β
)
(x) ∈ R.where O(x̂f ) is a small enough neighborhood of x̂f .In proving both the invertibility of id×πH and the loal minimality of x̂f for F weshall exploit the positivity of the seond variations of problem (FP). See [1, 2, 3℄ for amore general introdution to Hamiltonian methods. 11
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Laura Poggiolini and Maro Spadini4 The maximized �owWe are now going to prove the properties of the maximized Hamiltonian H and of the�ow - given by lassial solutions - of the assoiated Hamiltonian vetor �eld −→
H . Suh�ow will turn out to be Lipshitz ontinuous and pieewise-C1. In suh onstrution weshall use only the regularity assumptions 2.1-2.2-2.3 and not the positivity of the seondvariations of problems (FP).We shall proeed as follows:Step 1: we �rst onsider the simple swithes ourring before the double one. We shallexplain the proedure in details for the �rst simple swith. The others are treatediterating suh proedure [5℄;Step 2: we deouple the double swith obtaining two simple swithes that might oinideand that give rise to as many �ows;Step 3: We onsider the simple swithes that our after the double one. For eah of the�ows originating from the double swith we apply the same proedure of Step 1.Step 1: Regularity Assumption 2.1 implies that loally around ℓ̂0, the maximized Hamilto-nian is K00 and that λ̂(t), i.e. the �ow of −→K00 evaluated in ℓ̂0, intersets the levelset {ℓ ∈ T ∗M : K01(ℓ) = K00(ℓ)} at time θ̂01. Assumption 2.2 yields that suhintersetion is transverse. This suggests us to de�ne the swithing funtion θ01(ℓ)as the time when the �ow of −→K00, emanating from ℓ, intersets suh level set andto swith to the �ow of −→K 01 afterwards. To be more preise, we apply the impliitfuntion theorem to the map

Φ01(t, ℓ) := (K01 −K00) ◦ exp t
−→
K00(ℓ)in a neighborhood of (t, ℓ) := (θ̂01, ℓ̂0) in [0, T ] × T ∗M , so that H(ℓ) = K00(ℓ) forany t ∈ [0, θ01(ℓ)]. We then iterate this proedure and obtain the swithing surfaes

{(θ0j(ℓ), ℓ) : ℓ ∈ O(ℓ̂0)}, j = 1, . . . , J0 where:
θ00(ℓ) := 0 ϕ00(ℓ) := ℓand, for j = 1, . . . , J0, we have� θ0j(ℓ) is the unique solution to

(K0j −K0,j−1) ◦ exp θ0j(ℓ)
−→
K 0,j−1 (ϕ0,j−1(ℓ)) = 0de�ned by the impliit funtion theorem in a neighborhood of (t, ℓ) = (θ̂0j, ℓ̂0);� ϕ0j(ℓ) is de�ned by

ϕ0j(ℓ) := exp
(
− θ0j(ℓ)

−→
K0j

)
◦ exp θ0j(ℓ)

−→
K 0,j−1 (ϕ0,j−1(ℓ)) . (4.1)

12
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0 θ01(ℓ)

−→
K00

−→
K01

θ02(ℓ)
. . .. . .Figure 6: Constrution of the maximized �ow.Step 2: Let us now show how to deouple the double swithing time in order to de�ne themaximized Hamiltonian H(ℓ) in a neighborhood of (τ̂ , λ̂(τ̂)). In this we departfrom [5℄ in that we introdue the new vetor �elds k1, k2 in the sequene of valuesassumed by the referene vetor �eld. We do this in �ve stages:� for ν = 1, 2 let τν(ℓ) be the unique solution to

2Fν ◦ exp τν(ℓ)
−→
K 0J0(ϕ0J0(ℓ)) = (Kν −K0J0) ◦ exp τν(ℓ)

−→
K0J0(ϕ0J0(ℓ)) = 0de�ned by the impliit funtion theorem in a neighborhood of (τ̂ , ℓ̂0);� hoose

θ0,J0+1(ℓ) := min {τ1(ℓ), τ2(ℓ)} ;� for ν = 1, 2, de�ne
ϕν0,J0+1(ℓ) := exp

(
− τν(ℓ)

−→
K ν

)
◦ exp τν(ℓ)

−→
K 0J0 (ϕ0J0(ℓ)) ,and let θν10(ℓ) be the unique solution to

2F3−ν ◦ exp θ10(ℓ)
−→
K ν

(
ϕν0,J0+1(ℓ)

)
=

= (K10 −Kν) ◦ exp θ10(ℓ)
−→
Kν

(
ϕν0,J0+1(ℓ)

)
= 0de�ned by the impliit funtion theorem in a neighborhood of (τ̂ , ℓ̂0);� for ν = 1, 2 de�ne

ϕν10 := exp
(
− θν10(ℓ)

−→
K10

)
◦ exp θν10(ℓ)

−→
Kν

(
ϕν0,J0+1(ℓ)

)
;� hoose

θ10(ℓ) =

{
θ110(ℓ) if τ1(ℓ) ≤ τ2(ℓ),

θ210(ℓ) if τ2(ℓ) < τ1(ℓ).Notie that if τ1(ℓ) = τ2(ℓ), then θ110(ℓ) = θ210(ℓ) = τ1(ℓ) = τ2(ℓ) so that θ10(·) isontinuous. To be more preise, the funtion θ10(·) is Lipshitz ontinuous on itsdomain and is atually C1 on its domain but with the only possible exeption ofthe set {ℓ ∈ T ∗M : τ1(ℓ) = τ2(ℓ)}.Step 3: Finally we de�ne analogous quantities for the simple swithing times that followthe double one. For eah j = 1, . . . , J1 we proeed in three stages: 13
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Laura Poggiolini and Maro Spadini� for ν = 1, 2 let θν1j(ℓ) be the unique solution to
(K1j −K1,j−1) ◦ exp θν1j(ℓ)

−→
K 1,j−1

(
ϕν1,j−1(ℓ)

)
= 0de�ned by the impliit funtion theorem in a neighborhood of (θ̂ν1j , ℓ̂0);� de�ne

ϕν1j(ℓ) := exp
(
− θν1j(ℓ)

−→
K1j

)
◦ exp θν1j(ℓ)

−→
K 1,j−1

(
ϕνi,j−1(ℓ)

)
;� hoose

θ1j(ℓ) =

{
θ11j(ℓ) if τ1(ℓ) ≤ τ2(ℓ)

θ21j(ℓ) if τ2(ℓ) < τ1(ℓ).We onlude the proedure de�ning θ1,J1+1(ℓ) = θ11,J1+1(ℓ) = θ21,J1+1(ℓ) := T .To justify the previous proedure we have to show that we an atually apply the impliitfuntion theorem to de�ne the swithing times θij(ℓ) and that they are ordered as follows:
θ0,j−1(ℓ) < θ0j(ℓ) . . . < θ0J0(ℓ) < θ0,J0+1(ℓ) ≤ θ10(ℓ) < θ11(ℓ) < . . . .We prove it with an indution argument. The funtions θ00(·) and ϕ00(·) are obviouslywell de�ned. Assume that θ0j , ϕ0j are well de�ned for some j ≥ 1 and let

Φ0,j+1(t, ℓ) = (K0,j+1 −K0,j) ◦ exp t
−→
K0j ◦ ϕ0j(ℓ).Then one an ompute

∂Φ0,j+1

∂t

∣∣∣∣
(θ̂0,j+1,ℓ̂0)

= σ

(−→
K0j ,

−→
K0,j+1

)
(λ̂(θ̂0,j+1))whih is positive by Assumption 2.2, so that the impliit funtion theorem yields the C1funtion θ0,j+1. Thus, we also get a C1 funtion ϕ0,j+1 by equation (4.1). By indution,the θ0j 's are well de�ned for any j = 1, . . . , J0 and, by ontinuity, the order is preservedfor ℓ in a neighborhood of ℓ̂0. Also, the impliit funtion theorem yields a reursiveformula for the linearizations of θ0j and ϕ0j at ℓ̂0:

〈dθ0j(ℓ̂0) , δℓ〉 =
−σ

(
exp(θ̂0j

−→
K0,j−1)∗ϕ0,j−1 ∗(δℓ), (

−→
K 0j −

−→
K 0,j−1)(λ̂(θ̂0j))

)

σ

(−→
K 0,j−1,

−→
K 0j

)
(λ̂(θ̂0j))

(4.2)
ϕ0j∗(δℓ) = exp(−θ̂0j

−→
K 0j)∗

{
− 〈dθ0j(ℓ̂0) , δℓ〉(

−→
K 0j −

−→
K0,j−1)(λ̂(θ̂0j))+

+ exp(θ̂0j
−→
K0,j−1)∗ϕ0,j−1 ∗(δℓ)

}
. (4.3)14
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Ψν(t, ℓ) = (Kν −K0J0) ◦ exp t

−→
K0J0 ◦ ϕ0J0(ℓ) ν = 1, 2.Then

∂Ψν

∂t

∣∣∣∣
(τ̂ ,ℓ̂0)

= σ

(−→
K0J0 ,

−→
K ν

)
(λ̂(τ̂)) ν = 1, 2whih are positive by Assumption 2.3, so that τ1(·) and τ2(·) are both well de�ned againby means of the impliit funtion theorem.Now let

Φν10(t, ℓ) = (K10 −Kν) ◦ exp t
−→
Kν ◦ ϕν0,J0+1(ℓ), ν = 1, 2then

∂Φν10
∂t

∣∣∣∣
(τ̂ ,ℓ̂0)

= σ

(−→
Kν ,

−→
K10

)
(λ̂(τ̂)), ν = 1, 2whih are positive again by Assumption 2.3, and the same argument applies.As already mentioned, by assumption θ̂0,j−1 < θ̂0j and θ̂0J0 < τ̂ so that, by ontinuity,

θ0,j−1(ℓ) < θ0j(ℓ) and θ0J0(ℓ) < θ0,J0+1(ℓ) = min{τ1(ℓ), τ2(ℓ)} for any ℓ in a su�ientlysmall neighborhood of ℓ̂0.Let us now show that θ0,J0+1(ℓ) ≤ θ10(ℓ). We examine all the possibilities for τ1(ℓ)and τ2(ℓ):
• assume ℓ is suh that θ0,J0+1(ℓ) = τ1(ℓ) < τ2(ℓ). Sine Ψ2(τ2(ℓ), ℓ) = 0 one has

Ψ2(t, ℓ) =
∂Ψ2

∂t
(τ2(ℓ), ℓ)(t − τ2(ℓ)) + o(t− τ2(ℓ)) =

= (t− τ2(ℓ))

(
σ

(−→
K0J0 ,

−→
K 2

)∣∣∣
exp τ2(ℓ)

−→
K 0J0

◦ϕ0J0
(ℓ)

+ o(1)

)
.In partiular, hoosing t = θ0,J0+1(ℓ) = τ1(ℓ), by Assumption 2.3 and by ontinuity,when ℓ is su�iently lose to ℓ̂0, we have Υℓ(θ0,J0+1(ℓ)) < 0, that is:

Ψ2(θ0,J0+1(ℓ), ℓ) = (K2 −K0J0) ◦ exp θ0,J0+1(ℓ)
−→
K 0J0 ◦ ϕ0J0(ℓ) < 0. (4.4)Sine K2 −K0J0 = 2F2 = K10 −K1, equation (4.4) an also be written as

0 > (K10 −K1) ◦ exp 0
−→
K1 ◦ exp θ0,J0+1(ℓ)

−→
K0J0 ◦ ϕ0J0(ℓ),i.e. the swith of the omponent u2 has not yet ourred at time τ1(ℓ), so that

θ110(ℓ)− τ1(ℓ) > 0.
• Analogous proof holds if θ0,J0+1(ℓ) = τ2(ℓ) < τ1(ℓ),
• If ℓ is suh that τ1(ℓ) = τ2(ℓ), then θ10(ℓ) = θ0,J0+1(ℓ). 15
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Laura Poggiolini and Maro SpadiniFor the simple swithes ourring after the double one, by ontinuity, we have:
θ1j(ℓ) ≤ max{θ11j(ℓ), θ21j(ℓ)} < min{θ11,j+1(ℓ), θ

2
1,j+1(ℓ)} ≤ θ1,j+1(ℓ)for ℓ in a su�iently small neighborhood of ℓ̂0.For the purpose of future referene we report here the expression for the di�erentials ofthe θ0j 's, τν 's and θν1j 's, and of the ϕ0j ∗'s ϕν∗ 's and ϕν1j ∗'s. Suh formulas an be provedwith an indution argument.Lemma 4.1. For any j = 1, . . . , J0 onsider the following endomorphism of T

ℓ̂0
(T ∗M):

∆0jδℓ = δℓ−
j∑

s=1

〈dθ0s(ℓ̂0) , δℓ〉(
−→
G0s −

−→
G0,s−1)(ℓ̂0). (4.5)Then

〈dθ0j(ℓ̂0) , δℓ〉 =
−σ

(
∆0,j−1δℓ, (

−→
G0j −

−→
G0,j−1)(ℓ̂0)

)

σ

(−→
G0,j−1,

−→
G0j

)
(ℓ̂0)

, (4.6)
ϕ0j∗(δℓ) = exp(−θ̂0j

−→
K 0j)∗Ĥθ̂0j ∗

∆0jδℓ, (4.7)
〈dτν(ℓ̂0) , δℓ〉 =

−σ

(
∆0J0δℓ, (

−→
H ν −

−→
G0J0)(ℓ̂0)

)

σ

(−→
G0J0 ,

−→
H ν

)
(ℓ̂0)

, (4.8)
〈dθν10(ℓ̂0) , δℓ〉 =

−1

σ

(−→
H ν ,

−→
G10

)
(ℓ̂0)

σ

(
∆0J0δℓ− 〈dτν(ℓ̂0) , δℓ〉(

−→
H ν −

−→
G0J0)(ℓ̂0) , (

−→
G10 −

−→
H ν)(ℓ̂0)

) (4.9)and
ϕν0,J0+1 ∗(δℓ) = exp(−τ̂−→Kν)∗Ĥτ̂∗

(
∆0J0δℓ− 〈dτν(ℓ̂0) , δℓ〉(

−→
H ν −

−→
G0J0)(ℓ̂0)

)
. (4.10)Moreover

〈dθ110(ℓ̂0) , δℓ〉 = 〈dτ1(ℓ̂0) , δℓ〉 − 〈d(τ1 − τ2)(ℓ̂0) , δℓ〉
σ

(−→
G0J0 ,

−→
H 2

)
(ℓ̂0)

σ

(−→
H 1,

−→
G10

)
(ℓ̂0)

,

〈dθ210(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 − 〈d(τ2 − τ1)(ℓ̂0) , δℓ〉
σ

(−→
G0J0 ,

−→
H 1

)
(ℓ̂0)

σ

(−→
H 2,

−→
G10

)
(ℓ̂0)

.

(4.11)Also, for ν = 1, 2 and j = 0, . . . , J1 onsider the endomorphisms
∆ν

1jδℓ = ∆0J0δℓ− 〈dτν(ℓ̂0) , δℓ〉(
−→
H ν −

−→
G0J0)(ℓ̂0)−

− 〈dθν10(ℓ̂0) , δℓ〉(
−→
G10 −

−→
H ν)(ℓ̂0)−

j∑

s=1

〈dθν1s(ℓ̂0) , δℓ〉
(−→
G1s −

−→
G1,s−1

)
(ℓ̂0)

(4.12)
16
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ϕν10 ∗(δℓ) = exp(−θ̂10

−→
K 10)∗Ĥθ̂10 ∗

∆ν
10δℓ, (4.13)

〈dθν1j(ℓ̂0) , δℓ〉 =
−σ

(
∆ν

1,j−1δℓ, (
−→
G1j −

−→
G1,j−1)(ℓ̂0)

)

σ

(−→
G1,j−1,

−→
G1j

)
(ℓ̂0)

, (4.14)and
ϕν1j ∗(δℓ) = exp(−θ̂1j

−→
K1j)∗Ĥθ̂1j ∗

∆ν
1jδℓ. (4.15)Thus we get that the �ow of the maximized Hamiltonian oinides with the �ow of theHamiltonian H : (t, ℓ) ∈ [0, T ] × T ∗M 7→ Ht(ℓ) ∈ T ∗M :

H : (t, ℓ) ∈ [0, T ]× T ∗M 7→ H(ℓ) ∈ T ∗M (4.16)
Ht(ℓ) :=





K0j(ℓ) t ∈ (θ0j(ℓ), θ0,j+1(ℓ)], j = 0, . . . , J0

Kν(ℓ) t ∈ (θ0,J0+1(ℓ), θ10(ℓ)], θ0,J0+1(ℓ) = τν(ℓ)

K1j(ℓ) t ∈ (θ1j(ℓ), θ1,j+1(ℓ)], j = 0, . . . , J1.5 The seond variationTo hoose an appropriate horizontal Lagrangian manifold Λ we need to write the seondvariations of sub-problem (FP) and exploit their positivity. To write an invariant seondvariation, as introdued in [4℄, we write the pull-bak ζt(x, δ, ε) of the �ows St along thereferene �ow Ŝt, whih also permits us to analyze the in�uene of the double swith onthe �nal point of trajetories.For the sake of greater larity we �rst lear the �eld of all the notational di�ulties byperforming our analysis in the ase when only the double swith ours. Only afterwardswe will disuss the general ase.Let δ0,J0+1 := min{ε1, ε2}, δ10 := max{ε1, ε2}. At time t = T we have
ζT (x, δ, ε) = Ŝ−1

T ◦ ST (x, δ, ε) = exp (−δ10) g10◦
◦ exp (δ10 − δ01)hν ◦ exp (δ01 − δ00) g0J0(x)where ν = 1 if ε1 ≤ ε2, ν = 2 otherwise. Let f̃1 and f̃2 be the pull�baks of f1 and f2from time τ̂ to time t = 0, i.e.,̃

fν := Ŝ−1
τ̂ ∗ fν ◦ Ŝτ̂ , ν = 1, 2so that

hν = g0J0 + 2f̃ν , ν = 1, 2, g10 = g0J0 + 2f̃1 + 2f̃2.The linearized �ow at time T has the following form:
L(δx, δ, ε) = δx+ (δ11 − δ01)g01(x) + 2(δ11 − ε1)f̃1(x) + 2(δ11 − ε2)f̃2(x), 17
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Laura Poggiolini and Maro Spadiniwhih shows that the �ow is C1.Let us now go bak to the general ase: at time t = T we have
ζT (x, δ, ε) = Ŝ−1

T ◦ ST (x, δ, ε) = exp (−δ1J1) g1J1 ◦ . . . ◦ exp (δ11 − δ10) g10◦
◦ exp (δ10 − δ0,J0+1) hν ◦ exp (δ0,J0+1 − δ0J0) g0J0 ◦ . . . ◦ exp δ01g00(x)where ν = 1 if ε1 ≤ ε2, ν = 2 otherwise.De�ne

a00 := δ01;

a0j := δ0,j+1 − δ0j j = 1, . . . , J0;

b := δ10 − δ0,J0+1;

a1j := δ1,j+1 − δ1j j = 0, . . . , J1 − 1;

a1J1 := −δ1J1 .Then b+ 1∑

i=0

Ji∑

j=0

aij = 0 and, with a slight abuse of notation, we may write
ζT (x, a, b) = exp a1J1g1J1 ◦ . . . ◦ exp a11g11 ◦ exp a10g10
◦ exp bhν ◦ exp a0J0g0J0 ◦ . . . ◦ exp a01g01 ◦ exp a00g00(x),- where ν = 1 if ε1 ≤ ε2, ν = 2 otherwise. Heneforward we will denote by a the

(J0 + J1 + 2)-tuple (a00, . . . , a0J0 , a10, . . . , a1J1).The referene �ow is the one assoiated to (a, b) = (0, 0). The �rst order approximationof ζT at a point (x, 0, 0) is given by
L(δx, a, b) = δx+ bhν(x) +

1∑

i=0

Ji∑

j=0

aijgij(x) =

= δx+

J0−1∑

j=0

a0jg0j(x) + (δ0,J0+1 − δ0J0)g0J0(x)+

+ (δ10 − δ0,J0+1)hν(x) + (δ11 − δ10)g10(x) +

J1∑

j=1

a1jg1j(x)where ν = 1 if ε1 ≤ ε2, ν = 2 otherwise. Introdue the pull-baks of f1 and f2 from time
τ̂ to time t = 0:

f̃ν := Ŝ−1
τ̂ ∗fν ◦ Ŝτ̂ ν = 1, 2.Then hν = g0J0 + 2f̃ν , ν = 1, 2, and g10 = g0J0 + 2f̃1 + 2f̃2. Thus

L(δx, a, b) = δx+

J0−1∑

j=0

a0jg0j(x) + (δ0,J0+1 − δ0J0)g0J0(x)+

+ (δ10 − δ0,J0+1)(g0J0 + 2f̃ν)(x) + (δ11 − δ10)(g0J0 + 2f̃1 + 2f̃2)(x) +

J1∑

j=1

a1jg1j(x) =18
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= δx+

J0−1∑

j=0

a0jg0j(x) + (δ11 − δ0J0)g0J0(x) + 2(δ11 − ε1)f̃1(x)+

+ 2(δ11 − ε2)f̃2(x) +

J1∑

j=1

a1jg1j(x).

(5.1)Remark 5.1. Equation 5.1 shows that in L(δx, a, b) we have the same �rst order expan-sion, whatever the sign of ε2 − ε1. This proves that the �nite-dimensional problem (FP)is C1.Let β̂ := β ◦ ŜT and γ̂ := α+ β̂. Then the ost (FPa) an be written as
J(x, a, b) = α(x) + β ◦ ST (x, a, b) = α(x) + β̂ ◦ ζT (x, a, b)By PMP dγ̂(x̂0) = 0, thus the �rst variation of J at (x, a, b) = (x̂0, 0, 0) is given by

J ′(δx, a, b) =
(
bhν +

1∑

i=0

Ji∑

j=0

aijgij

)
· β̂(x̂0)whih, by (5.1), does not depend on ν, i.e. it does not depend on the sign of ε2 − ε1.On the other hand, the seond order expansion of ζνT (x, ·, ·) at (a, b) = (0, 0) is givenby

exp

(
bhν +

1∑

i=0

Ji∑

j=0

aijgij +
1

2

{
J0∑

j=0

a0j

[
g0j ,

J0∑

s=j+1

a0sg0s + bhν +

J1∑

j=0

a1jg1j

]
+

+ b
[
hν ,

J1∑

j=0

a1jg1j

]
+

J1∑

j=0

a1j

[
g1j ,

J1∑

s=j+1

a1sg1s

]})
(x).where ν = 1 if ε1 ≤ ε2, ν = 2 otherwise. Proeeding as in [5℄ we get for all (δx, a, b) ∈

ker J ′,
J ′′
ν [(δx, a, b)]

2 =
1

2

{
d2γ̂(x̂0)[δx]

2 + 2 δx ·
( 1∑

i=0

Ji∑

j=0

aij gij + bhν

)
· β̂(x̂0)+

+
( 1∑

i=0

Ji∑

j=0

aij gij + bhν

)2
· β̂(x̂0) +

J0∑

j=0

j−1∑

i=0

a0ia0j [g0i, g0j ] · β̂(x̂0)+

+ b

J0∑

i=0

a0i[g0i, hν ] · β̂(x̂0) +
J1∑

j=0

a1j

( J0∑

i=0

a0i[g0i, g1j ] + b[hν , g1j ]+

+

j−1∑

i=0

a1i[g1i, g1j ]
)
· β̂(x̂0)

}where, again, ν = 1 if ε1 ≤ ε2, ν = 2 otherwise. 19
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1 = J ′′

2 on {(δx, a, b) : b = 0},i.e. on {(δx, δ, ε) : ε1 = ε2}. The seond variation is J ′′
1 if ε1 ≤ ε2, J ′′

2 otherwise. Itsoerivity means that both J ′′
1 and J ′′

2 are oerive quadrati forms.Remark 5.3. Isolating the addenda where a0J0 , b, a10 appear, as in (5.1), one an easilysee that J ′′
1 = J ′′

2 if and only if [f̃1, f̃2] · β̂(x̂0) = 0, i.e. if and only if 〈λ̂(τ̂) , [f1, f2](x̂d)〉 =
0. In other words: problem (FP) is twie di�erentiable at (x, δ, ε) = (x̂0, 0, 0) if and onlyif 〈λ̂(τ̂ ) , [f1, f2](x̂d)〉 = 0.The bilinear form assoiated to eah J ′′

ν is given by
J ′′
ν ((δx, a, b), (δy, c, d)) =

1

2

{
d2γ̂(x̂0)(δx, δy)+ (5.2)

+ δy ·
( J0∑

i=0

a0i g0i + bhν +

J1∑

i=0

a1i g1i

)
· β̂(x̂0)+

+ δx ·
( J0∑

i=0

c0i g0i + dhν +

J1∑

i=0

c1i g1i

)
· β̂(x̂0)+

+
( J0∑

i=0

c0i g0i + dhν +

J1∑

i=0

c1i g1i

)
·
( J0∑

i=0

a0i g0i + bhν +

J1∑

i=0

a1i g1i

)
· β̂(x̂0)+

+

J0∑

j=0

j−1∑

i=0

a0ic0j [g0i, g0j ] · β̂(x̂0) + d

J0∑

i=0

a0i[g0i, hν ] · β̂(x̂0)+

+

J1∑

j=0

c1j

( J0∑

i=0

a0i[g0i, g1j ] + d[hν , g1j ] +

j−1∑

i=0

a1i[g1i, g1j ]
)
· β̂(x̂0)

}By assumption, for eah ν = 1, 2, J ′′
ν is positive de�nite on

N0 :=
{
(δx, a, b) ∈ Tx̂0N0 × R

J0+J1+2 × R :

b+

1∑

i=0

Ji∑

j=0

aij = 0, L(δx, a, b) ∈ Tx̂fNf

}
.Again following the proedure of [5℄ we may rede�ne α by adding a suitable seond-orderpenalty at x̂0 (see e.g. [9℄, Theorem 13.2) and we may assume that eah seond variation

J ′′
ν is positive de�nite on

N :=
{
(δx, a, b) ∈ Tx̂0M × R

J0+J1+2 × R :

b+
1∑

i=0

Ji∑

j=0

aij = 0, L(δx, a, b) ∈ Tx̂fNf

}
,i.e. we an remove the onstraint on the initial point of admissible trajetories.Let

Λ := {dα(x) : x ∈M}20
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i : (δp, δx) ∈ T ∗

x̂0
M × Tx̂0M 7→ −δp+ d(−β̂)∗δx ∈ T (T ∗M) . (5.3)De�ne −→

G ′′
ij = i−1

(−→
G ij(ℓ̂0)

), −→H ′′
ν = i−1

(−→
H ν(ℓ̂0)

). The Hamiltonian �elds −→G ′′
ij and −→

H ′′
νare assoiated to the following linear Hamiltonians de�ned in T ∗

x̂0
M × Tx̂0M

G′′
ij(ω, δx) = 〈ω , gij(x̂0)〉+ δx · gij · β̂(x̂0) (5.4)

H ′′
ν (ω, δx) = 〈ω , hν(x̂0)〉+ δx · hν · β̂(x̂0). (5.5)Moreover L′′

0 := i−1T
ℓ̂0
Λ =

{
δℓ ∈ T ∗

x̂0
M × Tx̂0M : δℓ =

(
−D2γ̂(x̂0)(δx, ·)

)}. With suhnotation, the bilinear form J ′′
ν assoiated to the seond variation an be written in arather ompat form, see, e.g. [5℄ or [14℄.For any δe := (δx, a, b) ∈ N let

ω0 := −D2γ̂(x̂0)(δx, ·), δℓ := (ω0, δx) = i−1 (dα∗δx) ,

(ων , δxν) := δℓ+

1∑

i=0

Ji∑

j=0

aij
−→
G ′′
ij + b

−→
H ′′
ν and δℓν := (ων , δxν).Then J ′′

ν an be written as
J ′′
ν

(
(δx, a, b), (δy, c, d)

)
= −〈ων , δy +

J0∑

s=0

c0sg0s + dhν +

J1∑

s=0

c1sg1s〉

+

J0∑

j=0

c0j G
′′
0j

(
δℓ+

j−1∑

s=0

a0s
−→
G ′′

0s

)
+ dH ′′

ν

(
δℓ+

J0∑

s=0

a0s
−→
G ′′

0s

)

+

J1∑

j=0

c1jG
′′
1j

(
δℓ+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑

s=0

a1s
−→
G ′′

1s

)

(5.6)
We shall study the positivity of J ′′

ν as follows: onsider
V :=

{
(δx, a, b) ∈ N : L(δx, a, b) = 0

}and the sequene
V01 ⊂ . . . ⊂ V0J0 ⊂ V10 ⊂ . . . ⊂ V1J1 = Vof sub-spaes of V , de�ned as folllows

V0j := {(δx, a, b) ∈ V : a0s = 0 ∀s = j + 1, . . . , J0, a1s = 0}
V1j := {(δx, a, b) ∈ V : a1s = 0 ∀s = j + 1, . . . , J1}.Observe that V 1
0j = V 2

0j for any j = 0, . . . , J0, so we denote these sets as V0j . Moreover
dim

(
V0j ∩ V

⊥J′′
ν

0,j−1

)
= dim

(
V1k ∩ V

⊥J′′
ν

1,k−1

)
= 1, dim

(
V10 ∩ V

⊥J′′
ν

0J0

)
= 2 21
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ν is positive de�nite on N if andonly if it is positive de�nite on eah Vij ∩ V ⊥J′′

ν

i,j−1, V10 ∩ V ⊥J′′
ν

0J0
and N ∩ V ⊥J′′

ν .As in [5℄ one an prove a haraterization, in terms of the maximized �ow, of theintersetions above. We state here suh haraterization without proofs whih an befound in the aforementioned paper.Lemma 5.1. Let j = 1, . . . , J0 and δe = (δx, a, b) ∈ V0j . Assume J ′′
ν is positive de�niteon V0,j−1. Then δe ∈ V0j ∩ V

⊥J′′
ν

0,j−1 if and only if
G′′

0s(δℓ+
s−1∑

r=0

a0r
−→
G ′′

0r) = G′′
0,j−1(δℓ+

j−2∑

s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , j − 2 (5.7)i.e. if and only if
a0s = 〈d(θ0,s+1 − θ0s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , j − 2. (5.8)In this ase

J ′′
ν [δe]

2 = a0j
(
G′′

0j −G′′
0,j−1

)
(δℓ+

j−1∑

s=0

a0s
−→
G ′′

0s) =

= a0j σ
(
δℓ+

j−1∑

s=0

a0s
−→
G ′′

0s,
−→
G ′′

0j −
−→
G ′′

0,j−1

)

= −a0j σ
(
dα∗δx+

j−1∑

s=0

a0s
−→
G0s(ℓ̂0), (

−→
G0j −

−→
G0,j−1)(ℓ̂0)

)
.

(5.9)
Lemma 5.2. Let ν = 1, 2 and δe = (δx, a, b) ∈ V10. Assume J ′′

ν is positive de�nite on
V0,J0. Then δe ∈ V10 ∩ V

⊥J′′
ν

0J0
if and only if

G′′
0s(δℓ+

s−1∑

µ=0

a0µ
−→
G ′′

0µ) = G′′
0,J0(δℓ+

J0−1∑

s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , J0 − 1 (5.10)i.e. if and only if
a0s = 〈d(θ0,s+1 − θ0s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , J0 − 1. (5.11)22
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J ′′
ν [δe]

2 = b
(
H ′′
ν −G′′

0J0

)
(δℓ +

J0∑

s=0

a0s
−→
G ′′

0s)

+ a10
(
G′′

10 −H ′′
ν

)
(δℓ+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν) =

= bσ
(
δℓ+

J0∑

s=0

a0s
−→
G ′′

0s,
−→
H ′′
ν −

−→
G ′′

0,J0

)
+

+ a10 σ
(
δℓ+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν ,
−→
G ′′

10 −
−→
H ′′
ν

)
=

= − bσ
(
dα∗δx+

J0∑

s=0

a0s
−→
G0s(ℓ̂0), (

−→
H ν −

−→
G0,J0)(ℓ̂0)

)
−

− a10 σ
(
dα∗δx+

J0∑

s=0

a0s
−→
G0s(ℓ̂0) + b

−→
H ν(ℓ̂0), (

−→
G10 −

−→
H ν)(ℓ̂0)

)
.

(5.12)
Lemma 5.3. Let ν = 1, 2, j = 1, . . . , J1 and δe = (δx, a, b) ∈ V1j . Assume J ′′

ν is positivede�nite on V1,j−1. Then δe ∈ V1j ∩ V
⊥J′′

ν

1,j−1 if and only if
G′′

0s(δℓ+

s−1∑

i=0

a0i
−→
G ′′

0i) = G′′
1,j−1(δℓ+

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

j−2∑

i=0

a1i
−→
G ′′

1i) =

= H ′′
ν (δℓ+

J0∑

i=0

a0i
−→
G ′′

0i) = G′′
1k(δℓ+

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑

i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , j − 2i.e. if and only if
a0s = 〈d(θ0,s+1 − θ0s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , J0

b = 〈d(θ10 − θ0,J0+1) (ℓ̂0) , dα∗δx〉
a1s = 〈d(θ1,s+1 − θ1s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , j − 2.In this ase

J ′′
ν [δe]

2 = a1j
(
G′′

1j −G′′
1,j−1

)
(δℓ+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑

i=0

a1i
−→
G ′′

1i)

= a1j σ
(
δℓ+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑

i=0

a1i
−→
G ′′

1i ,
−→
G ′′

1j −
−→
G ′′

1,j−1

)

= −a1j σ
(
dα∗δx+

J0∑

s=0

a0s
−→
G0s(ℓ̂0) + b

−→
H ν(ℓ̂0) +

j−1∑

i=0

a1i
−→
G1i(ℓ̂0), (

−→
G1j −

−→
G1,j−1)(ℓ̂0)

)
.

23
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ν is positive de�nite on

V1J1 . Then δe ∈ N ∩ V ⊥J′′
ν

1J1
if and only if

G′′
0s(δℓ+

s−1∑

i=0

a0i
−→
G ′′

0i) = G′′
1,J1(δℓ +

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

J1−1∑

i=0

a1i
−→
G ′′

1i) =

= H ′′
ν (δℓ+

J0∑

i=0

a0i
−→
G ′′

0i) = G′′
1k(δℓ+

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑

i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , J1i.e. if and only if δe ∈ N and
a0s = 〈d(θ0,s+1 − θ0s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , J0

b = 〈d(θ10 − θ0,J0+1) (ℓ̂0) , dα∗δx〉
a1s = 〈d(θ1,s+1 − θ1s) (ℓ̂0) , dα∗δx〉 ∀s = 0, . . . , J1 − 1.In this ase

J ′′
ν [δe]

2 = −〈ων , δx+
1∑

i=0

Ji∑

s=0

aisgis(x̂0) + b hν(x̂0)〉 =

= σ

((
0, δx +

1∑

i=0

Ji∑

s=0

aisgis(x̂0) + bhν(x̂0)
)
,

−D2γ̂(x̂0)(δx, ·) +
1∑

i=0

Ji∑

s=0

ais
−→
G ′′
is + b

−→
H ′′
ν

)
=

= −σ

(
d(−β̂)∗

(
δx+

1∑

i=0

Ji∑

s=0

aisgis(x̂0) + bhν(x̂0)
)
,

dα∗δx+
1∑

i=0

Ji∑

s=0

ais
−→
G is(ℓ̂0) + b

−→
H ν(ℓ̂0)

)
.6 The invertibility of the �owWe are now going to prove that the map

id×πH : (t, ℓ) ∈ [0, T ]× Λ 7→ (t, πHt(ℓ)) ∈ [0, T ]×Mis one-to-one onto a neighborhood of the graph of ξ̂. Sine the time interval [0, T ] is om-pat and by the properties of �ows, it su�es to show that πH
θ̂ij
, i = 1, 2, j = 1, . . . , Jiand πHτ̂ are one-to-one onto a neighborhood of ξ̂(θ̂ij) and ξ̂(τ̂) in M , respetively.The proof of the invertibility at the simple swithing times θ̂0j , j = 1, . . . , J0 my bearried out either as in [5℄ or by means of Clarke's inverse funtion theorem (see [7, Thm24
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Strong loal optimality7.1.1.℄), while the invertibility at the double swithing time and at the simple swithingtimes θ̂1j , j = 1, . . . , J1 will be proved by means of Clarke's inverse funtion theorem orby means of topologial methods (see Theorem 7.6) aording to the dimension of thekernel of d(τ1 − τ2)|T
ℓ̂0
Λ.For the sake of uniformity with the others swithing times, for the simple swithingtimes θ̂0j , j = 1, . . . , J0 and we give here the proof based on Clarke's inverse funtiontheorem. Namely, we onsider the expressions of πH

θ̂0j
(ℓ), whih are di�erent aordingto whether θ0j(ℓ) is greater than or smaller than θ̂0j . We write the linearization of suhexpressions and their onvex ombinations. Finally, using the oerivity of the seondvariation on V0j we prove that all their onvex ombinations are one�to�one.The �owH

θ̂0j
at time θ̂0j , assoiated to the maximized Hamiltonian de�ned in equation(4.16), has the following expression:

H
θ̂0j

(ℓ) =

{
exp θ̂0j

−→
K 0,j−1(ϕ0,j−1(ℓ)) if θ0j(ℓ) > θ̂0j

exp(θ̂0j − θ0j(ℓ))
−→
K0j ◦ exp θ0j(ℓ)

−→
K0,j−1(ϕ0,j−1(ℓ)) if θ0j(ℓ) < θ̂0j.Lemma 6.1. Let j ∈ {1, . . . , J0}. De�ne

A0j : δℓ ∈ Tℓ̂0Λ 7→ π∗ exp θ̂0j
−→
K0,j−1 ∗ϕ0,j−1 ∗δℓ ∈ T

ξ̂(θ̂0j)
M

B0j : δℓ ∈ T
ℓ̂0
Λ 7→ A0jδℓ− 〈dθ0j(ℓ̂0) , δℓ〉

(
k0j − k0,j−1

)
|
ξ̂(θ̂0j)

∈ T
ξ̂(θ̂0j)

MThen, for any t ∈ [0, 1], the map
tA0j + (1− t)B0j : Tℓ̂0Λ → T

ξ̂(θ̂0j)
Mis one-to-one.Proof. Let t ∈ [0, 1] and let δℓ ∈ T

ℓ̂0
Λ suh that (tA0j + (1− t)B0j)(δℓ) = 0. We need toshow that δℓ is null. From formula (4.3) it follows that δℓ is in ker(tA0j + (1− t)B0j) ifand only if

π∗Ĥθ̂0j ∗
∆0,j−1δℓ = 0. (6.1)Let δx := π∗δℓ, so that δℓ = dα∗δx. Equation (6.1) is equivalent to

δx+

j−2∑

s=1

〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ〉g0s(x̂0)+

+
(
t〈dθ0j(ℓ̂0) , δℓ〉 − 〈dθ0,j−1(ℓ̂0) , δℓ〉

)
g0,j−1(x̂0)− t〈dθ0j(ℓ̂0) , δℓ〉g0j(x̂0) = 0. (6.2)Let δe := (δx, a, b) suh that

a0s = 〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ〉 s = 0, . . . , j − 2

a0,j−1 = t〈dθ0j(ℓ̂0) , δℓ〉 − 〈dθ0,j−1(ℓ̂0) , δℓ〉
a0j = −t〈dθ0j(ℓ̂0) , δℓ〉
a0s = b = a1r = 0 s = j + 1, . . . , J0, r = 0, . . . , J1. 25
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⊥J′′

ν

0,j−1 = {0}, beause of the oerivity of J ′′
ν .b) If t = 1, then δe ∈ V0j ∩ V

⊥J′′
ν

0j = {0}, beause of the oerivity of J ′′
ν . In both aseswe thus have δx = 0, so that δℓ = dα∗δx is also null.) If t ∈ (0, 1), then δe ∈ V0j ∩ V

⊥J′′
ν

0,j−1. Therefore, applying (5.9) we get
0 < J ′′

ν [δe]
2 = t〈dθ0j(ℓ̂0) , δℓ〉σ

(
δℓ+

j−2∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ〉
−→
G0s(ℓ̂0)+

+
(
t〈dθ0j(ℓ̂0) , δℓ〉 − 〈dθ0,j−1(ℓ̂0) , δℓ〉

)−→
G0,j−1(ℓ̂0) , (

−→
G0j −

−→
G0,j−1)(ℓ̂0)

)
=

= t 〈dθ0j(ℓ̂0) , δℓ〉σ
(
∆0,j−1δℓ+ t 〈dθ0j(ℓ̂0) , δℓ〉

−→
G0,j−1(ℓ̂0) , (

−→
G0j −

−→
G0,j−1)(ℓ̂0)

)
=

=− t (1− t)〈dθ0j(ℓ̂0) , δℓ〉2σ
(−→
G0,j−1,

−→
G0j

)
(ℓ̂0),a ontradition.Lemma 6.1 implies that Clarke's Generalized Jaobian of the map πH

θ̂0j
at ℓ̂0 is ofmaximal rank. Therefore, by Clarke's inverse funtion theorem (see [7, Thm 7.1.1.℄) themap πH

θ̂0j
is loally invertible about ℓ̂0 with Lipshitz ontinuous inverse. Hene themap

ψ : (t, ℓ) ∈ [0, T ]× Λ 7→ (t, πHt(ℓ)) ∈ [0, T ]×M (6.3)is loally invertible about [0, τ̂ − ε]×
{
ℓ̂0
}. In fat, ψ is loally one-to-one if and only if

πHt is loally one-to-one in ℓ̂0 for any t. On the other hand πHt is loally one-to-one forany t < τ̂ if and only if it is one-to-one at any θ̂0j .We now show that suh proedure an be arried out also on [τ̂ − ε, T ]×
{
ℓ̂0
}, so that

ψ will turn out to be loally invertible from a neighborhood [0, T ] × O ⊂ [0, T ] × Λ of
[0, T ]×

{
ℓ̂0
} onto a neighborhood U ⊂ [0, T ]×M of the graph Ξ̂ of ξ̂. The �rst step willbe proving the invertibility of πHτ̂ at ℓ̂0.In a neighborhood of ℓ̂0, πHτ̂ has the following pieewise representation:1. if min
{
τ1(ℓ), τ2(ℓ)

}
≥ τ̂ , then πHτ̂ (ℓ) = exp τ̂

−→
K 0J0 ◦ ϕ0J0(ℓ),2. if min

{
τ1(ℓ), τ2(ℓ)

}
= τ1(ℓ) ≤ τ̂ ≤ θ10(ℓ), then

πHτ̂ (ℓ) = exp(τ̂ − τ1(ℓ))
−→
K 1 ◦ exp τ1(ℓ)

−→
K 0J0 ◦ ϕ0J0(ℓ),3. if min

{
τ1(ℓ), τ2(ℓ)

}
= τ2(ℓ) ≤ τ̂ ≤ θ10(ℓ), then

πHτ̂ (ℓ) = exp(τ̂ − τ2(ℓ))
−→
K 2 ◦ exp τ2(ℓ)

−→
K 0J0 ◦ ϕ0J0(ℓ),4. if min

{
τ1(ℓ), τ2(ℓ)

}
= τ1(ℓ) ≤ θ10(ℓ) ≤ τ̂ , then

πHτ̂ (ℓ) = exp(τ̂
−→
K10) ◦ ψ10(ℓ) = exp(τ̂ − θ10(ℓ))

−→
K 10◦

◦ exp(θ10(ℓ)− τ1(ℓ))
−→
K 1 ◦ exp τ1(ℓ)

−→
K0J0 ◦ ϕ0J0(ℓ),26
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{
τ1(ℓ), τ2(ℓ)

}
= τ2(ℓ) ≤ θ10(ℓ) ≤ τ̂ , then

πHτ̂ (ℓ) = exp(τ̂
−→
K10) ◦ ψ10(ℓ) = exp(τ̂ − θ10(ℓ))

−→
K 10◦

◦ exp(θ10(ℓ)− τ2(ℓ))
−→
K 2 ◦ exp τ2(ℓ)

−→
K0J0 ◦ ϕ0J0(ℓ).The invertibility of πHτ̂ will be proved by means of two di�erent arguments: in thegeneri ase when d(τ1 − τ2)(ℓ̂0) : Tℓ̂0Λ → R is not identially zero, we will use thetopologial argument of Theorem 7.6 in the Appendix; whereas, in the opposite ase wewill apply Clarke's inverse funtion theorem [7, Thm 7.1.1.℄, as in the ase of simpleswithes. In partiular, in the speial ase when dτ1(ℓ̂0)|T

ℓ̂0
Λ ≡ dτ2(ℓ̂0)|T

ℓ̂0
Λ ≡ 0 we willprove that πHτ̂ is indeed di�erentiable at ℓ̂0.

θ0j(ℓ) > θ̂0j

b

θ0j(ℓ) < θ̂0j

ℓ̂0(a) t = θ̂0j

τ1(ℓ) = τ2(ℓ) > τ̂

θ02(ℓ) > τ̂

θ02(ℓ) =
= τ1(ℓ) < τ̂ < θ10(ℓ)

θ02(ℓ) =
= τ2(ℓ) < τ̂ < θ10(ℓ)

θ02(ℓ) =
= τ2(ℓ) < θ10(ℓ) < τ̂

θ02(ℓ) =
= τ1(ℓ) < θ10(ℓ) < τ̂ℓ̂0

b

(b) t = τ̂Figure 7: Loal behaviour of Ht near ℓ̂0 at a simple swithing time and at the doubleone.In all ases we need to write the pieewise linearized map (πHτ̂ )∗.1. Let M0 = {δℓ ∈ T
ℓ̂0
Λ: min{〈dτ1(ℓ̂0) , δℓ〉, 〈dτ2(ℓ̂0) , δℓ〉} ≥ 0}. Then

(πHτ̂ )∗δℓ = L0δℓ := (exp τ̂ k0J0)∗π∗ϕ0J0 ∗δℓ ∀δℓ ∈M0 (6.4a)2. Let M11 := {δℓ ∈ T
ℓ̂0
Λ: 〈dτ1(ℓ̂0) , δℓ〉 ≤ 0 ≤ 〈dθ110(ℓ̂0) , δℓ〉, 〈dτ1(ℓ̂0) , δℓ〉 ≤

〈dτ2(ℓ̂0) , δℓ〉}. Then
(πHτ̂ )∗δℓ = L11δℓ := −2〈dτ1(ℓ̂0) , δℓ〉f1(x̂τ̂ ) + exp(τ̂ k0J0)∗π∗ϕ0J0∗δℓ

∀δℓ ∈M11 (6.4b)3. Let M21 := {δℓ ∈ T
ℓ̂0
Λ: 〈dτ2(ℓ̂0) , δℓ〉 ≤ 0 ≤ 〈dθ210(ℓ̂0) , δℓ〉, 〈dτ2(ℓ̂0) , δℓ〉 ≤

〈dτ1(ℓ̂0) , δℓ〉}. Then
(πHτ̂ )∗δℓ = L21δℓ := −2〈dτ2(ℓ̂0) , δℓ〉f2(x̂τ̂ ) + exp(τ̂ k0J0)∗π∗ϕ0J0∗δℓ

∀δℓ ∈M21 (6.4)27
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ℓ̂0
Λ: 〈dτ1(ℓ̂0) , δℓ〉 ≤ 〈dθ110(ℓ̂0) , δℓ〉 ≤ 0, 〈dτ1(ℓ̂0) , δℓ〉 ≤

〈dτ2(ℓ̂0) , δℓ〉}. Then
(πHτ̂ )∗δℓ = L12δℓ := −2〈dθ110(ℓ̂0) , δℓ〉f2(x̂τ̂ )−

− 2〈dτ1(ℓ̂0) , δℓ〉f1(x̂τ̂ ) + exp(τ̂ k0J0)∗π∗ϕ0J0∗δℓ ∀δℓ ∈M12 (6.4d)5. Let M22 := {δℓ ∈ T
ℓ̂0
Λ: 〈dτ2(ℓ̂0) , δℓ〉 ≤ 〈dθ210(ℓ̂0) , δℓ〉 ≤ 0, 〈dτ2(ℓ̂0) , δℓ〉 ≤

〈dτ1(ℓ̂0) , δℓ〉}. Then
(πHτ̂ )∗δℓ = L22δℓ := −2〈dθ210(ℓ̂0) , δℓ〉f1(x̂τ̂ )−

− 2〈dτ2(ℓ̂0) , δℓ〉f2(x̂τ̂ ) + exp(τ̂ k0J0)∗π∗ϕ0J0∗δℓ ∀δℓ ∈M22 (6.4e)Lemma 6.2. The pieewise linearized maps (6.4) have the same orientation in the fol-lowing sense: given any basis of T
ℓ̂0
Λ0 and any basis of T

ξ̂(τ̂)
M , the determinants of thematries assoiated to the linear maps L0, Lνj , ν, j = 1, 2, in suh bases, have the samesign.Proof. The proof is given by means of Lemma 7.1. We show that for any δℓ1, δℓ2 ∈ T

ℓ̂0
Λand ν = 1, 2 the following laims hold:Claim 1. If 〈dτν(ℓ̂0) , δℓ〉 < 0 < 〈dτν(ℓ̂0) , δℓ1〉 then L0(δℓ1) 6= Lν1τ̂ (δℓ2), i.e.

exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ1) 6= exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ2)− 〈dτν(ℓ̂0) , δℓ2〉(kν − k0J0)(x̂τ̂ ).Claim 2. If 〈dθν01(ℓ̂0) , δℓ2〉 < 0 < 〈dθν01(ℓ̂0) , δℓ1〉 then Lν1(δℓ1) 6= Lν2(δℓ2), i.e.
exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ1)− 〈dτν(ℓ̂0) , δℓ1〉(kν − k0J0)(x̂τ̂ ) 6=

6= exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ2)− 〈dτν(ℓ̂0) , δℓ2〉(kν − k0J0)(x̂τ̂ )−
− 〈dθν10(ℓ̂0) , δℓ2〉(k10 − kν)(x̂τ̂ )Proof of Claim 1. Fix ν ∈ {1, 2} and assume, by ontradition, that there exist δℓ1,

δℓ2 ∈ Tℓ̂0Λ suh that 〈dτν(ℓ̂0) , δℓ2〉 < 0 < 〈dτν(ℓ̂0) , δℓ1〉 and
exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ1) =

= exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ2)− 〈dτν(ℓ̂0) , δℓ2〉(kν − k0J0)(x̂τ̂ ). (6.5)Let δxi := π∗δℓi, i = 1, 2. Taking the pull-bak along the referene �ow Ŝτ̂ ∗ and usingformula (4.7), equation (6.5) an be equivalently written as
δx1 − δx2 +

J0−1∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ1 − δℓ2〉g0s(x̂0)+

+
(
−〈dτν(ℓ̂0) , δℓ2〉 − 〈dθ0J0(ℓ̂0) , δℓ1 − δℓ2〉

)
g0J0(x̂0) + 〈dτν(ℓ̂0 , δℓ2〉hν(x̂0) = 0.28
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a0s :=

{
〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ1 − δℓ2〉 s = 0, . . . , J0 − 1

−〈dθ0J0(ℓ̂0) , δℓ1 − δℓ2〉 − 〈dτν(ℓ̂0) , δℓ2〉 s = J0

b := 〈dτν(ℓ̂0 , δℓ2〉, and a1j := 0 for any j = 0, . . . , J1, then δe := (δx, a, b) ∈ V10 ∩ V ⊥
0J0

,so that by (5.12)
− 〈dτν(ℓ̂0) , δℓ2〉σ

(
dα∗δx+

J0−1∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , dα∗δx〉
−→
G0s(ℓ̂0)

+ (〈dθ0J0(ℓ̂0) , dα∗δx〉 − 〈dτν(ℓ̂0) , dα∗δx2〉
−→
G0J0(ℓ̂0) , (

−→
H ν −

−→
G0J0)(ℓ̂0)

)
> 0or, equivalently,

− 〈dτν(ℓ̂0) , δℓ2〉σ
(
∆0J0 dα∗δx− 〈dτν(ℓ̂0) , dα∗δx2〉

−→
G0J0(ℓ̂0) ,

(
−→
H ν −

−→
G0J0)(ℓ̂0)

)
> 0.Applying formula (4.8) we �nally get

〈dτν(ℓ̂0) , δℓ2〉〈dτν(ℓ̂0) , δℓ1〉σ
(−→
G0J0 ,

−→
H ν

)
(ℓ̂0) > 0,a ontradition.Proof of Claim 2. Let us �x ν ∈ {1, 2} and assume, by ontradition, that there exist

δℓ1, δℓ2 ∈ T
ℓ̂0
Λ suh that 〈dθν10(ℓ̂0) , δℓ2〉 < 0 < 〈dθν10(ℓ̂0) , δℓ1〉 and

exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ1)− 〈dτν(ℓ̂0) , δℓ1〉(kν − k0J0)(x̂τ̂ ) =

= exp(τ̂ k0J0)∗π∗ϕ0J0 ∗(δℓ2)− 〈dτν(ℓ̂0) , δℓ2〉(kν − k0J0)(x̂τ̂ )−
− 〈dθν10(ℓ̂0) , δℓ2〉(k10 − kν)(x̂τ̂ ) (6.6)Let δxi := π∗δℓi, i = 1, 2. Taking the pull-bak along the referene �ow and usingformula (4.7), equation (6.6) an be equivalently written as

δx1 − δx2 +

J0−1∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ1 − δℓ2〉g0s(x̂0)+

+ 〈d(τν − θ0J0)(ℓ̂0) , δℓ1 − δℓ2〉g0J0(x̂0)+
+
(
−〈dτν(ℓ̂0) , δℓ1 − δℓ2〉 − 〈dθν10(ℓ̂0) , δℓ2〉

)
h1(x̂0) + 〈dθν10(ℓ̂0) , δℓ2〉g10(x̂0) = 0.That is, if we de�ne δx := δx1 − δx2,

a0s :=

{
〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ1 − δℓ2〉 s = 0, . . . , J0 − 1

〈d(τν − θ0J0)(ℓ̂0) , δℓ1 − δℓ2〉 s = J0 29
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b := −〈dτν(ℓ̂0) , δℓ1 − δℓ2〉 − 〈dθν10(ℓ̂0) , δℓ2〉, and

a1s :=

{
〈dθν10(ℓ̂0) , δℓ2〉 s = 0

0 s = 1, . . . , J1,then δe := (δx, a, b) ∈ V10 ∩ V ⊥
0J0

so that by Lemma 5.2,
(
〈dτν(ℓ̂0) , dα∗δx〉+ 〈dθν10(ℓ̂0) , δℓ2〉

)
σ

(
dα∗δx+

+

J0−1∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , dα∗δx〉
−→
G0s(ℓ̂0)+

+ 〈d(τν − θ0J0)(ℓ̂0) , dα∗δx〉
−→
G0J0(ℓ̂0) , (

−→
H ν −

−→
G0J0)(ℓ̂0)

)
−

− 〈dθν10(ℓ̂0) , δℓ2〉σ
(
dα∗δx+

J0−1∑

s=0

〈d(θ0,s+1 − θ0s)(ℓ̂0) , dα∗δx〉
−→
G0s(ℓ̂0)+

+ 〈d(τν − θ0J0)(ℓ̂0) , dα∗δx〉
−→
G0J0(ℓ̂0)− (〈dτν(ℓ̂0) , dα∗δx〉+ 〈dθν10(ℓ̂0) , δℓ2〉)

−→
H ν(ℓ̂0) ,

(
−→
G10 −

−→
H ν)(ℓ̂0)

)
> 0or, equivalently,

(
〈dτν(ℓ̂0) , dα∗δx〉+ 〈dθν10(ℓ̂0) , δℓ2〉

)
σ

(
∆0J0 dα∗δx+ 〈dτν(ℓ̂0) , dα∗δx〉

−→
G0J0(ℓ̂0) ,

(
−→
H ν −

−→
G0J0)(ℓ̂0)

)
− 〈dθν10(ℓ̂0) , δℓ2〉σ

(
∆0J0 dα∗δx+

+ 〈dτν(ℓ̂0) , dα∗δx〉
−→
G0J0(ℓ̂0)− (〈dτν(ℓ̂0) , dα∗δx〉

+ 〈dθν10(ℓ̂0) , δℓ2〉)
−→
H ν(ℓ̂0) , (

−→
G10 −

−→
H ν)(ℓ̂0)

)
> 0that is

(
〈dτν(ℓ̂0) , dα∗δx〉+ 〈dθν10(ℓ̂0) , δℓ2〉

)(
− 〈dτν(ℓ̂0) , dα∗δx〉+ 〈dτν(ℓ̂0) , dα∗δx〉

)

σ
(−→
G0J0 ,

−→
H ν)(ℓ̂0)−

− 〈dθν10(ℓ̂0) , δℓ2〉
(
− 〈dθν10(ℓ̂0) , dα∗δx〉 − 〈dθν10(ℓ̂0) , δℓ2〉

)
σ
(−→
H ν ,

−→
G10

)
(ℓ̂0) > 0. (6.7)Sine dα∗δx = δℓ1 − δℓ2, we get 〈dθν10(ℓ̂0) , δℓ2〉〈dθν10(ℓ̂0) , δℓ1〉σ(−→H ν ,
−→
G10

)
(ℓ̂0) > 0, aontradition.We an now omplete the proof of the loal invertibility of πHτ̂ . Let us �rst onsiderthe generi ase when d(τ1 − τ2)(ℓ̂0) is not identially zero on T

ℓ̂0
Λ.We need to express the boundaries between the adjaent setors M0, Mνj .

• The boundary between M0 and M11 is given by
{δℓ ∈ T

ℓ̂0
Λ: 0 = 〈dτ1(ℓ̂0) , δℓ〉 ≤ 〈dτ2(ℓ̂0) , δℓ〉};30
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• The boundary between M0 and M21 is given by

{δℓ ∈ T
ℓ̂0
Λ: 0 = 〈dτ2(ℓ̂0) , δℓ〉 ≤ 〈dτ1(ℓ̂0) , δℓ〉};

• The boundary between M11 and M12 is given by
{δℓ ∈ T

ℓ̂0
Λ: 〈dθ110(ℓ̂0) , δℓ〉 = 0, 〈dτ1(ℓ̂0) , δℓ〉 ≤ 〈dτ2(ℓ̂0) , δℓ〉};

• The boundary between M21 and M22 is given by
{δℓ ∈ T

ℓ̂0
Λ: 〈dθ210(ℓ̂0) , δℓ〉 = 0, 〈dτ2(ℓ̂0) , δℓ〉 ≤ 〈dτ1(ℓ̂0) , δℓ〉};

• The boundary between M12 and M22 is given by
{δℓ ∈ T

ℓ̂0
Λ: 〈dτ2(ℓ̂0) , δℓ〉 = 〈dτ1(ℓ̂0) , δℓ〉 ≤ 0};Aording to Theorem 7.6, in order to prove the invertibility of our map it is su�ientto prove that both the map and its linearization are ontinuous in a neighborhood of ℓ̂0and of 0 respetively, that they maintain the orientation and that there exists a point δywhose preimage is a singleton that belongs to at most two of the above de�ned setors.Notie that the ontinuity of πHτ̂ follows from the very de�nition of the maximized�ow. Disontinuities of (πHτ̂ )∗ may our only at the boundaries desribed above. Adiret omputation in formulas (6.4) shows that this is not the ase. Let us now provethe last assertion.For �symmetry� reasons it is onvenient to look for δy among those whih belong tothe image of the set {δℓ ∈ T

ℓ̂0
Λ : 0 < 〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉}. Observe that

〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 also implies 〈dθν10(ℓ̂0) , δℓ〉 = 〈dτν(ℓ̂0) , δℓ〉, ν = 1, 2, seeformulas (4.11).Let δℓ ∈ T
ℓ̂0
Λ suh that 0 < 〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 and let δy := L0δℓ.Clearly δy has at most one preimage per eah of the above polyhedral ones. Let usprove that atually its preimage is the singleton {δℓ}.In fat we show that for ν, j = 1, 2, there is no δℓ ∈Mνj suh that Lνj(δℓ) = δy.1. Fix ν ∈ {1, 2} and assume, by ontradition, that there exists δℓ ∈M1ν suh that

Lν1δℓ = δy. The ontradition is shown exatly as in the proof of Claim 1 in Lemma 6.2.2. Fix ν ∈ {1, 2} and assume, by ontradition, that there exists δℓ ∈ Mν2 suhthat Lν2δℓ = δy that is: let δx := π∗δℓ, and δx := π∗δℓ. Taking the pull-bak along thereferene �ow at time τ̂ , and realling formula (4.7) we assume by ontradition that
δx−

J0∑

s=1

〈dθ0s(ℓ̂0) , δℓ〉(g0s − g0,s−1)(x̂0) = δx−
J0∑

s=1

〈dθ0s(ℓ̂0) , δℓ〉(g0,s − g0,s−1)(x̂0)−

− 〈dτ1(ℓ̂0) , δℓ〉(hν − g0J0)(x̂0)− 〈dθν10(ℓ̂0) , δℓ〉(g10 − hν)(x̂0).31
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δx− δx+

J0−1∑

s=1

〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ− δℓ〉)g0s(x̂0)−

−
(
〈dθ0J0(ℓ̂0) , δℓ− δℓ〉+ 〈dτ1(ℓ̂0) , δℓ〉

)
g0J0(x̂0)−

− 〈d(θν10 − τν)(ℓ̂0) , δℓ〉h1(x̂0) + 〈dθ10(ℓ̂0) , δℓ〉g10(x̂0) = 0.Let δe := (δx− δx, a, b), where,
a0s :=

{
〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ− δℓ〉 s = 0, . . . , J0 − 1,

〈dθ0J0(ℓ̂0) , δℓ− δℓ〉 − 〈dτ1(ℓ̂0) , δℓ〉 s = J0,

b := −〈d(θν10 − τν)(ℓ̂0) , δℓ〉,

a1s :=

{
〈dθν10(ℓ̂0) , δℓ〉 s = 0,

a1s = 0 s = 1, . . . , J1.Then δe ∈ V10 ∩ V ⊥J′′
ν

0J0
and Lemma 5.2 applies:

0 <J ′′
ν [δe]

2 = −bσ
(
δℓ− δℓ+

J0∑

s=0

a0s
−→
G0s(ℓ̂0), (

−→
H ν −

−→
G0J0)(ℓ̂0)

)
−

− a10 σ

(
δℓ− δℓ+

J0∑

s=0

a0s
−→
G0s(ℓ̂0) + b

−→
H ν(ℓ̂0), (

−→
G10 −

−→
H 1)(ℓ̂0)

)
=

=〈d(θν10 − τν)(ℓ̂0) , δℓ〉
(
〈dτν(ℓ̂0) , δℓ− δℓ〉 − 〈dτν(ℓ̂0) , δℓ〉

)
σ

(−→
G0J0 ,

−→
H ν

)
(ℓ̂0)−

− 〈dθν10(ℓ̂0) , δℓ〉
((

− 〈dθν10(ℓ̂0) , δℓ− δℓ〉 − 〈dθν10(ℓ̂0) , δℓ〉
)
σ

(−→
H ν ,

−→
G10

)
(ℓ̂0)+

+ 〈dτν(ℓ̂0) , δℓ〉σ
(−→
G0J0 ,

−→
H 3−ν

)
(ℓ̂0)

)
=

=〈d(θν10 − τν)(ℓ̂0) , δℓ〉〈dτν(ℓ̂0) , δℓ〉σ
(−→
G0J0 ,

−→
H ν

)
(ℓ̂0)−

− 〈dθν10(ℓ̂0) , δℓ〉
(
〈dθν10(ℓ̂0) , δℓ〉σ

(−→
H ν ,

−→
G10

)
(ℓ̂0)+

+ 〈dτν(ℓ̂0) , δℓ〉σ
(−→
G0J0 ,

−→
H 3−ν

)
(ℓ̂0)

)whih is a ontradition, sine all the addenda are negative.By Theorem 7.6 this proves the invertibility of πHτ̂ , hene ψ is one-to-one in a neigh-borhood of [0, θ̂10 − ε]×
{
ℓ̂0
}.Assume now that the non generi ase T

ℓ̂0
Λ ⊂ ker d(τ1− τ2)(ℓ̂0) holds. We are going toprove the Lipshitz invertibility of πHτ̂ |Λ by means of Clarke's inverse funtions theorem,see [7℄. The generalized Jaobian ∂(πHτ̂ )(ℓ̂0) (in the sense of Clarke) of πHτ̂ : Λ → Mat ℓ̂0 is the losed onvex hull of the linear maps L0, Lνj , ν, j = 1, 2 de�ned in (6.4).32
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Strong loal optimalityWe distinguish between two sub-ases:1. 〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 = 0 for any δℓ ∈ T
ℓ̂0
ΛIn this ase we also have dθ110(ℓ̂0)|Tℓ̂0Λ ≡ dθ210(ℓ̂0)|Tℓ̂0Λ ≡ 0, see formulas (4.11), heneall the linear maps L0, Lνj , ν, j = 1, 2 de�ned in (6.4) oinide with the map L0, sothat πHτ̂ is di�erentiable at ℓ̂0. The invertibility of L0 and Clarke's invertibility theoremyield the laim.2. 〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 for any δℓ ∈ T

ℓ̂0
Λ but ker(dτ1(ℓ̂0)|T

ℓ̂0
Λ) 6= T

ℓ̂0
Λ. Inthis ase we also have dθ110(ℓ̂0)|Tℓ̂0Λ ≡ dθ210(ℓ̂0)|Tℓ̂0Λ ≡ dτ1(ℓ̂0)|T

ℓ̂0
Λ (see formulas (4.11))so that L12 ≡ L22.Let {v1, v2, . . . , vn} be a basis of Tx̂0M suh that 〈dτ1(ℓ̂0) , dα∗v1〉 = 1 and 〈dτ1(ℓ̂0) , dα∗vi〉 =

0 for i = 2, . . . , n. We will show that ∂(πHτ̂ )(ℓ̂0) is made up of invertible matries byshowing that
(L0)−1

(
t0L

0 + t1L
11 + t2L

21 + t3L
12 + t4L

22
)
◦ dα∗is invertible for any t0, . . . , t4 ≥ 0 suh that ∑4

i=0 ti = 1.Let cνi , ν = 1, 2, i = 1, . . . , n suh that
(hν − g0J0)(x̂0) =

n∑

i=1

cνi vi.We have
(L0)−1Lνj dα∗vi = vi i = 2, . . . , n and ν, j = 1, 2and, for eah ν = 1, 2:

(L0)−1Lν1 dα∗v1 = v1 − (hν − g0J0)(x̂0) = (1− cν1)v1 −
n∑

k=2

cνkvk

(L0)−1Lν2 dα∗v1 = v1 − (hν − g0J0)(x̂0)− (g10 − hν)(x̂0) =

= (1− c11 − c21)v1 −
n∑

k=2

(c1k + c2k)vk.Thus the determinant of (L0)−1
(
t0L

0 + t1L
11 + t2L

21 + t3L
12 + t4L

22
)
◦ dα∗ is given by

t0+ t1 det(L
0)−1L11 dα∗+ t2 det(L

0)−1L21 dα∗+(t3+ t4) det(L
0)−1L12 dα∗ whih annotbe null sine all the addenda are positive as it follows from Lemmata 6.2 and 7.1. Thisonludes the proof of the invertibility of πHτ̂ . Let us now turn to πH

θ̂1j
, j = 1, . . . , J1.For any j = 1, . . . , J1, there are four regions in Λ, haraterized by the followingproperties

{ℓ ∈ Λ: θ1j(ℓ) ≥ θ̂1j and θ0,J0+1(ℓ) = τ1(ℓ)},
{ℓ ∈ Λ: θ1j(ℓ) ≥ θ̂1j and θ0,J0+1(ℓ) = τ2(ℓ)},
{ℓ ∈ Λ: θ1j(ℓ) < θ̂1j and θ0,J0+1(ℓ) = τ1(ℓ)},
{ℓ ∈ Λ: θ1j(ℓ) < θ̂1j and θ0,J0+1(ℓ) = τ2(ℓ)}. 33



Pr
ep

ri
nt

Laura Poggiolini and Maro SpadiniAs for πHτ̂ , πHθ̂1j
turns out to be a Lipshitz ontinuous, pieewise C1 appliation.Its invertibility an be proved applying again Theorem 7.6. Let us write the pieewiselinearized map (πH
θ̂1j

)∗

• Let N10
1j := {δℓ ∈ T

ℓ̂0
Λ: 〈dτ1(ℓ̂0) , δℓ〉 ≤ 〈dτ2(ℓ̂0) , δℓ〉, 〈dθ11j(ℓ̂0) , δℓ〉 ≥ 0}. Then

(πH
θ̂1j

)∗δℓ = A1
1jδℓ := exp(θ̂1jk1,j−1 ∗)π∗ϕ

1
1,j−1 ∗(δℓ)

• Let N20
1j := {δℓ ∈ T

ℓ̂0
Λ: 〈dτ2(ℓ̂0) , δℓ〉 ≤ 〈dτ1(ℓ̂0) , δℓ〉, 〈dθ21j(ℓ̂0) , δℓ〉 ≥ 0}. Then

(πH
θ̂1j

)∗δℓ = A2
1jδℓ := exp(θ̂1jk1,j−1 ∗)π∗ϕ

2
1,j−1 ∗(δℓ)

• Let N11
1j := {δℓ ∈ T

ℓ̂0
Λ: 〈dτ1(ℓ̂0) , δℓ〉 ≤ 〈dτ2(ℓ̂0) , δℓ〉, 〈dθ11j(ℓ̂0 , δℓ〉 ≤ 0}. Then

(πH
θ̂1j

)∗δℓ = B1
1jδℓ := exp(θ̂1jk1,j−1 ∗)π∗ϕ

1
1,j−1 ∗(δℓ)−
− 〈dθ11j(ℓ̂0) , δℓ〉(k1j − k1,j−1)(x̂1j)

• Let N21
1j := {δℓ ∈ T

ℓ̂0
Λ: 〈dτ2(ℓ̂0) , δℓ〉 ≤ 〈dτ1(ℓ̂0) , δℓ〉, 〈dθ21j(ℓ̂0) , δℓ〉 ≤ 0}. Then

(πH
θ̂1j

)∗δℓ = B2
1jδℓ := exp(θ̂1j

−→
K1,j−1 ∗)π∗ϕ

2
1,j−1 ∗(δℓ)−
− 〈dθ21j(ℓ̂0) , δℓ〉(k1j − k1,j−1)(x̂1j)Analogously to what we did at time τ̂ , let us �rst onsider the non degenerate ase

〈d(τ1 − τ2)(ℓ̂0) , δℓ〉 6= 0 for some δℓ ∈ T
ℓ̂0
Λ: aording to Theorem 7.6, we only have toprove that both the map and its pieewise linearization are ontinuous in a neighborhoodof ℓ̂0 and of 0 respetively, that the linearized piees are orientation preserving and thatthere exists a point δy whose preimage is a singleton.The only nontrivial part is the last statement whih an be proved by piking δy ∈

A1
1j(N

10
1j ) ∩A2

1j(N
20
1j ): let δℓ ∈ T

ℓ̂0
Λ suh that 〈dτ1(ℓ̂0) , δℓ〉 = 〈dτ2(ℓ̂0) , δℓ〉 > 0 and let

δy := A1
1jδℓ = A2

1jδℓ.Let ν ∈ {1, 2} and assume, by ontradition, that there exists δℓν ∈ Nν1
1j suh that

Bν
1jδℓ1 = δy, i.e.
exp(θ̂1jk1,j−1 ∗)π∗ϕ

ν
1,j−1 ∗(δℓ) =

= exp(θ̂1jk1,j−1 ∗)π∗ϕ
ν
1,j−1 ∗(δℓ)− 〈dθν1j(ℓ̂0) , δℓ〉(k1j − k1,j−1)(x̂1j).Taking the pull-bak along the referene �ow Ŝ

θ̂1j
and de�ning δx := π∗δℓ, δxν := π∗δℓν34
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δx− δx−

J0∑

s=1

〈dθ0s(ℓ̂0) , δℓ− δℓ〉(g0s − g0,s−1)(x̂0)−

− 〈dτν(ℓ̂0) , δℓ− δℓ〉(hν − g0J0)(x̂0)− 〈dθν10(ℓ̂0) , δℓ− δℓ〉(g10 − hν)(x̂0)−

−
j−1∑

s=1

〈dθν1s(ℓ̂0) , δℓ− δℓ〉(g1s − g1,s−1)(x̂0)− 〈dθν1j(ℓ̂0) , ℓ̂0〉(g1j − g1,j−1)(x̂0) = 0that is
δx− δx+

J0−1∑

s=0

〈d(θ0,s+1 − θ0s(ℓ̂0) , δℓ− δℓ〉g0s(x̂0)+

+ 〈d(τν − θ0J0)(ℓ̂0) , δℓ− δℓ〉g0J0(x̂0)+

+ 〈d(θν10 − τν)(ℓ̂0) , δℓ− δℓ〉hν(x̂0) +
j−2∑

s=0

〈d(θν1,s+1 − θν1s)(ℓ̂0) , δℓ− δℓ〉g1s(x̂0)+

+
(
〈dθν1j(ℓ̂0) , δℓ〉 − 〈dθν1,j−1(ℓ̂0) , δℓ− δℓ〉

)
g1,j−1(x̂0)− 〈dθν1j(ℓ̂0) , δℓ〉g1j(x̂0) = 0Let δe := (δx− δx, a, b), where,

a0s :=

{
〈d(θ0,s+1 − θ0s)(ℓ̂0) , δℓ− δℓ〉 s = 0, . . . , J0 − 1,

〈d(τν − θ0J0)(ℓ̂0) , δℓ− δℓ〉 s = J0,

b := 〈d(θν10 − τν)(ℓ̂0) , δℓ− δℓ〉

a1s :=





〈d(θν1,s+1 − θν1s(ℓ̂0) , δℓ− δℓ〉 s = 0, . . . , j − 2

〈dθν1j(ℓ̂0) , δℓ〉 − 〈dθν1,j−1(ℓ̂0) , δℓ− δℓ〉 s = j − 1,

−〈dθν1j(ℓ̂0) , δℓ〉 s = j,

0 s = j + 1, . . . , J1.Then δe ∈ V1j ∩ V ⊥J′′
ν

1,j−1 and Lemma 5.3 applies:
0 >a1j σ

(
dα∗(δx− δx) +

J0∑

s=0

a0s
−→
G0s(ℓ̂0)+

+ b
−→
H ν(ℓ̂0) +

j−1∑

s=0

a1s
−→
G1s(ℓ̂0) , (

−→
G1j −

−→
G1,j−1)(ℓ̂0)

)
=

=〈dθν1j(ℓ̂0) , δℓ〉
{
〈dθν1j(ℓ̂0) , δℓ− δℓ〉σ

(−→
G1,j−1,

−→
G1j

)
(ℓ̂0)−

− 〈dθν1j(ℓ̂0) , δℓ〉σ
(−→
G1,j−1,

−→
G1j

)
(ℓ̂0)

}
= 35
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=− 〈dθν1j(ℓ̂0) , δℓ〉〈dθν1j(ℓ̂0) , δℓ〉σ

(−→
G1,j−1,

−→
G1j

)
(ℓ̂0),a ontradition.Let us now turn to the degenerate ase dτ1|T

ℓ̂0
Λ ≡ dτ2|T

ℓ̂0
Λ. From equations (4.14)one an reursively show that 〈dθ11j(ℓ̂0) , δℓ〉|Tℓ̂0Λ = 〈dθ21j(ℓ̂0) , δℓ〉|Tℓ̂0Λ for any δℓ ∈ T

ℓ̂0
Λand for any j = 1, . . . , J1, so that A1

1j = A2
1j and B1

1j = B2
1j and the result an be provedrepeating the proof of Lemma 6.1.This proves the invertibility of πH

θ̂1j
, j = 1, . . . , J1. Thus the map

id×πH : [0, T ] × Λ →Mis one-to-one from a neighborhood of [0, T ] × {λ̂(0)} in [0, T ] × Λ and we an apply theproedure desribed in Setion 3.6.1 Proof of Theorem 2.3Let
id×πH : [0, T ]×O → V = [0, T ]× Ube one-to-one and let ξ : [0, T ] →M be an admissible trajetory whose graph is in V.Applying the Hamiltonian methods explained in Setion 3 we have:
C(ξ, u)− C(ξ̂, û) ≥ F(ξ(T )) −F(x̂f ).Thus, to omplete the proof of Theorem 2.3 it su�es to show that F has a loal minimumat x̂f . In order to shorten the notation, let us denote ψT (ℓ) := (πHT )

−1(ℓ).Theorem 6.3. F has a strit loal minimum at x̂f .Proof. It su�es to prove that
dF(x̂f ) = 0 and D2F(x̂f ) > 0 . (6.8)The �rst equality in (6.8) is an immediate onsequene of the de�nition of F and of PMP.Let us prove that also the inequality holds.Sine d(α ◦ πψT ) = HT ◦ ψT , we also have

dF = HT ◦ ψT + dβ (6.9)
D2F(x̂f )[δxf ]

2 =
(
(HT ◦ ψT )∗ +D2β

)
(x̂f )[δxf ]

2

= σ ((HT ◦ ψT )∗δxf ,d(−β)∗δxf )
(6.10)From Lemma 5.4 we have

σ

(
d(−β̂)∗

(
δx+

1∑

i=0

Ji∑

s=0

aisgis(x̂0) + bhν(x̂0)
)
,

dα∗δx+

1∑

i=0

Ji∑

s=0

ais
−→
G is(ℓ̂0) + b

−→
H ν(ℓ̂0)

)
< 0. (6.11)

36
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σ (HT∗ dα∗δx,d(−β)∗((πHT )∗ dα∗δx)) > 0whih is exatly (6.10) with δx := π∗ψT∗δxf .To onlude the proof of Theorem 2.3 we have to show that ξ̂ is a strit minimizer.Assume C(ξ, u) = C(ξ̂, û). Sine x̂f is a strit minimizer for F , then ξ(T ) = x̂f andequality must hold in (3.1):
〈Hs(ψ

−1
s (ξ(s))) , ξ̇(s)〉 = Hs(Hs(ψ

−1
s (ξ(s)))).By regularity assumption, u(s) = û(s) for any s at least in a left neighborhood of T ,hene ξ(s) = ξ̂(s) and ψ−1

s (ξ(s)) = ℓ̂0 for any s in suh neighborhood. u takes the value
û|(θ̂1J1 ,T )

until Hsψ
−1
s (ξ(s)) = Hs(ℓ̂0) = λ̂(s) hits the hyper-surfae K1,J1 = K1,J1−1,whih happens at time s = θ̂1,J1. At suh time, again by regularity assumption, u mustswith to û|(θ̂1,J1−1,θ̂1,J1 )

, so that ξ(s) = ξ̂(s) also for s in a left neighborhood of θ̂1,J1.Proeeding bakward in time, with an indution argument we �nally get (ξ(s), u(s)) =
(ξ̂(s), û(s)) for any s ∈ [0, T ].In the abnormal ase the ost is zero, thus the existene of a strit loal minimiserimplies that the trajetory is isolated among admissible ones.7 Appendix: Invertibility of pieewise C1 mapsThis Setion is devoted to pieewise linear maps and to pieewise C1 maps. Our aim isto prove a su�ient ondition, in terms of the �pieewise linearization�, of pieewise C1maps.Some linear algebra preliminaries are needed.Lemma 7.1. Let A and B be linear automorphisms of R

n. Assume that for some
v ∈ (Rn)∗ \ {0}, A and B oinide on the spae π(v) := {x ∈ R

n : 〈v , x〉 = 0}. Then,the map LAB de�ned by x 7→ Ax if 〈v , x〉 ≥ 0, and by x 7→ Bx if 〈v , x〉 ≤ 0, is ahomeomorphism if and only if det(A) · det(B) > 0.Proof. Let w1, . . . , wn−1 be a basis of the hyperplane π(v). We omplete it with v toobtain a basis of Rn. The matrix of A−1B in this basis is given by



In−1

γ1...
γn−1

0
t
n−1 γn


where In−1 is the n − 1 unit matrix and 0n−1 is the n − 1 null vetor and the γi's arede�ned by

A−1Bv =

n−1∑

i=1

γiwi + γnv. 37
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LABv = LAB

(
n−1∑

i=1

− γi
γn

wi +
1

γn
v

)
.Thus, in this ase LAB is not one�to�one.We now prove that LAB is injetive if γn is positive. Assume this is not true. Sineboth A and B are invertible, there exist zA, zB ∈ R

n suh that 〈v , zA〉 > 0, 〈v , zB〉 < 0and AzA = BzB or, equivalently, A−1BzB = zA. Let
zA =

n−1∑

i=1

ciAwi + cAv, zB =

n−1∑

i=1

ciBwi + cBv.Clearly cA > 0, cB < 0. The equality A−1BzB = zA is equivalent to
n−1∑

i=1

ciBwi + cB

n−1∑

i=1

γiwi + cBγnv =
n−1∑

i=1

ciAwi + cAv.Consider the salar produt with v, we get cBγn‖v‖2 = cA‖v‖2, whih is a ontradition.We �nally prove that, if γn is positive, then LAB is surjetive. Let z ∈ R
n. Thereexist yA, yB ∈ R

n suh that AyA = ByB = z. If either 〈v , yA〉 ≥ 0 or 〈v , yB〉 ≤ 0,there is nothing to prove. Let us assume 〈v , yA〉 < 0 and 〈v , yB〉 > 0. In this ase
A−1ByB = yA and proeeding as above we get a ontradition.De�nition 7.1. Let G : Rn → R

n be a ontinuous, pieewise linear map at 0, in thesense that G is ontinuous and there exists a deomposition S1, . . . , Sk of Rn in losedpolyhedral ones (intersetion of half spaes, hene onvex) with nonempty interior andommon vertex in the origin and suh that ∂Si ∩ ∂Sj = Si ∩ Sj , i 6= j, and linear maps
L1, . . . , Lk with

G(x) = Lix, x ∈ Si,with Lix = Ljx for any x ∈ Si ∩ Sj , and detLi 6= 0, ∀i = 1, . . . , k.Example 7.1. As an example of ontinuous pieewise linear map onsider G : R2 → R
2given by

L1 =

(
1 0
0 1

)
L2 =

(
1 −

√
2

0
√
2− 1

)
L3 =

(
−
√
2 −

√
2 + 1

1 0

)

L4 =

(
0 1

−
√
2 + 1 −

√
2

)
L5 =

(√
2− 1 0

−
√
2 1

)where the Li's are applied in the orresponding one Si illustrated in piture 838
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8
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3π
4

9π
8

3π
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7π
8

7π
4

21π
8

7π
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(b) The map G transforms the argu-ment of unit vetors.Figure 8: Polyhedral ones and the transformation of unit vetors under GObserve that any ontinuous pieewise linear map G is di�erentiable in R
n\∪ki=1∂Si. Itis easily shown that G is proper, and therefore deg(G,Rn, p) is well-de�ned for any p ∈ R

n(the onstrution in [12℄, Chapter 5 is still valid if the assumption on the ompatnessof the manifolds is replaed with the assumption that G is proper. Compare also [6℄).Moreover deg(G,Rn, p) is onstant with respet to p. So we shall denote it by deg(G).We shall also assume that detLi > 0 for any i = 1, . . . , k.Lemma 7.2. If G is as above, then deg(G) > 0. In partiular, if there exists q 6= 0suh that its preimage G−1(q) is a singleton that belongs to at most two of the onvexpolyhedral ones Si, then deg(G) = 1.Proof. Let us assume in addition that q /∈ ∪ki=1G
(
∂Si
). Observe that the set ∪ki=1G

(
∂Si
)is nowhere dense hene A := G(S1) \ ∪ki=1G

(
∂Si
) is non-empty.Take x ∈ A and observe that if y ∈ G−1(x) then y /∈ ∪ki=1∂Si. Thus

deg(G) =
∑

y∈G−1(x)

sign det dG(y) = #G−1(x). (7.1)Sine G−1(x) 6= ∅, deg(G) > 0. The seond part of the assertion follows taking x = q in(7.1).Let us now remove the additional assumption. Let {p} = G−1(q) be suh that p ∈
∂Si∩∂Sj for some i 6= j. Observe that by assumption p 6= 0 does not belong to any one39
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∂Ss for s /∈ {i, j}. Thus one an �nd a neighborhood V of p, with V ⊂ int (Si∪Sj \{0}).By the exision property of the topologial degree deg(G) = deg(G,V, p). Let LLiLj

be amap as in Lemma 7.1. Observe that, the assumption on the signs of the determinants of
Li and Lj imply that LLiLj

is orientation preserving. Also notie that LLiLj
|∂V = G|∂V .The multipliativity, exision and boundary dependene properties of the degree yield

1 = deg(LLiLj
) = deg(LLiLj

, V, p) = deg(G,V, p). Thus, deg(G) = 1, as laimed.7.1 Pieewise di�erentiable funtionsLemma 7.3. Let A and B be linear endomorphisms of R
n. Assume that for some

v ∈ R
n \ {0}, A and B oinide on the spae {x ∈ R

n : 〈x, v〉 = 0}. Then
det
(
tA+ (1 − t)B

)
= t detA+ (1− t) detB ∀t ∈ R.Proof. We an, without loss of generality, assume that |v| = 1. We an hoose vetors

w2, . . . , wn ∈ R
n \ {0} suh that v,w2, . . . , wn is an orthonormal basis of Rn. In thisbasis, for t ∈ [0, 1] we an represent the operator tA + (1 − t)B in the following matrixform:



ta11 + (1− t)b11 a12 . . . a1n... ... ...
tan1 + (1− t)bn1 an2 . . . ann


 =



ta11 + (1− t)b11 b12 . . . b1n... ... ...
tan1 + (1− t)bn1 bn2 . . . bnn


Thus,

det
(
tA+ (1− t)B

)
=

n∑

i=1

(−1)i+1
(
tai1 + (1− t)bi1

)
detAi1

=
n∑

i=1

(−1)i+1
(
tai1 + (1− t)bi1

)
detBi1where Ai1 and Bi1 represent the (i1)-th ofator of A and B respetively. Clearly,

Ai1 = Bi1 for i = 1, . . . , n. Hene, we have
det
(
tA+ (1− t)B

)
=

n∑

i=1

(−1)i+1tai1 detAi1+

+
n∑

i=1

(−1)i+1(1− t)bi1 detBi1 = t detA+ (1− t) detBas laimed in the lemma.Lemmas 7.1 and 7.3 imply the following fat:40
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n. Assume that for some

v ∈ R
n \ {0}, A and B oinide on the spae {x ∈ R

n : 〈x, v〉 = 0}. Assume thatthe map LAB de�ned by x 7→ Ax if 〈x, v〉 ≥ 0, and by x 7→ Bx if 〈x, v〉 ≤ 0, is ahomeomorphism. Then, det(A) · det (tA+ (1− t)B
)
> 0 for any t ∈ [0, 1].Let σ1, . . . , σr be a family of C1-regular pairwise transversal hyper-surfaes in R

n with
x0 ∈ ∩ri=1σi and let U ⊂ R

n be an open and bounded neighborhood of x0. Clearly, if Uis su�iently small, U \∪ri=1σi is partitioned into a �nite number of open sets U1, . . . , Uk.Let f : U → R
n be a ontinuous map suh that there exist f1, . . . , fk ∈ C1(U ) withthe property that

f(x) = fi(x), x ∈ U i, (7.2)with fi(x) = fj(x) for any x ∈ U i ∩ U j . Notie that suh a funtion is PC1(U ) (seee.g. [10℄ for a de�nition), and Lipshitz ontinuous in U .Let S1, . . . , Sk be the tangent ones (in the sense of Boulingand) at x0 to the sets
U1, . . . , Uk, (by the transversality assumption on the hyper-surfaes σi eah Si is a onvexpolyhedral one with non empty interior) and assume dfi(x0)x = dfj(x0)x for any x ∈
Si ∩ Sj . De�ne

F (x) = dfi(x0)x x ∈ Si. (7.3)so that F is a ontinuous pieewise linear map (ompare [10℄).One an see that f is Bouligand di�erentiable and that its B-derivative is the map F(ompare [10, 13℄). Let y0 := f(x0). There exists a ontinuous funtion ε, with ε(0) = 0,suh that f(x) = y0 + F (x− x0) + |x− x0|ε(x− x0).Lemma 7.5. Let f and F be as in (7.2)-(7.3), and assume that det dfi(x0) > 0 for all
i = 1, . . . , k. Then there exists ρ > 0 suh that deg (f,B(x0, ρ), y0

)
= deg

(
F,B(0, ρ), 0

).In partiular, deg (f,B(x0, ρ), y0
)
= deg(F ).Proof. Consider the homotopy H(x, λ) = F (x− x0) + λ |x− x0| ε(x− x0), λ ∈ [0, 1] andobserve that

m := inf{|F (v)| : |v| = 1} = min
i=1,...,k

‖dfi‖ > 0.Thus,
|H(x, λ)| ≥

(
m− |ε(x− x0)|

)
|x− x0| .This shows that in a onveniently small ball entered at x0, homotopy H is admissible.The assertion follows from the homotopy invariane property of the degree.Theorem 7.6. Let f and F be as in (7.2)-(7.3) and assume det dfi(x0) > 0. Assume alsothat there exists p ∈ R

n whose pre-image belongs to at most two of the onvex polyhedralones Si and suh that F−1(p) is a singleton. Then f is a Lipshitzian homeomorphismin a su�iently small neighborhood of x0.Proof. From Lemmas 7.2-7.5, it follows that deg(f,B(x0, ρ), y0) = 1 for su�iently small
ρ > 0. By Theorem 4 in [13℄, we immediately obtain the assertion. 41
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