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Abstract

When the plane is pie-sliced in n ≤ 4 parts (with nonempty interior and common vertex at

the origin) our main result provides sufficient conditions for any map L, that is continuous

and piecewise linear relatively to this slicing, to be invertible. This result cannot be plainly

extended to a greater number of slices. Also, some examples show that the assumptions

cannot be relaxed too much. Our result is proved by a combination of linear algebra and

topological arguments.
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1 Introduction

Inspired by invertibility problems for PC1 maps (see e.g., [7]) that naturally arise in Optimal Control

(see e.g., [12]) we focus on the invertibility of continuous maps of the plane which are piecewise

linear.

When the plane is pie-sliced in n ≤ 4 parts (with nonempty interior and common vertex at the

origin) our main result, Theorem 4.2 below, provides sufficient conditions for any map L, that is

continuous and piecewise linear relatively to this slicing, to be invertible. Some examples show that

the assumptions of the theorem cannot be relaxed too much. For instance, convexity of the slices

when n = 4 cannot be dropped altogether and, perhaps not surprisingly, our conditions cannot be

plainly extended to a greater number of slices. This result is proved by a combination of linear

algebra and topological arguments in which Theorems 4 and 5 of [10] (Theorems 2.1 and 2.2 below)

play a crucial role. By contrast, an important tool of nonsmooth analysis, Clarke’s Theorem [4, 5],
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does not appear to be adequate for our purposes in the case n = 4, as we show by exhibiting an

explicit example, Example 4.4, that cannot be satisfactorily treated by this theorem.

Our results depend on the particularly nice nondifferentiability structure that we assume through-

out. In fact Example 2.1 in [7] shows that there exists a PC1 function with 4 selection functions

(which does not have such structure) which is not locally invertible at the origin despite being Fréchet

differentiable at 0 with invertible differential.

As stated above, our interest in the invertibility of PC1 maps stems from optimal control prob-

lems. Namely, if one considers a multiinput optimal control problem which is affine with respect to

the control variable u ∈ [−1, 1]m, then one cannot exclude the existence of bang–bang Pontryagin

extremals. This gives rise to a PC1 maximized Hamiltonian flow. In order to prove the optimality

of the given Pontryagin extrema via Hamiltonian methods, one needs to prove the invertibility of

the projection of such flow on the state space (see [1] for an introduction to Hamiltonian methods

in control and [2, 13] for specific applications to bang–bang Pontryagin extremals). In particular, as

in [11, 12] we are interested in what happens when two control components switch simultaneously

just once. In this case the “interesting” part of the above-mentioned projection is 2-dimensional.

This justifies our concern with the invertibility of planar maps. Moreover, a double switch gives rise

to the “nice” nondifferentiability structure we consider in this paper with at most n = 5 pie-slices

which reduce to 4 for the subsequent simple switches.

To the best of our knowledge, a comprehensive treatment of invertibility results in simple cases

is not available in the literature. This has, perhaps, slowed down the study of bang–bang Pontryagin

extremals with multiple switch behavior.

Some comments are in order concerning some of the illustrations included in this paper. Figures

1, 2 and 4 represent the piecewise linear maps contained in Examples 4.1, 4.2 and 4.4, respectively.

In fact, they actually show the image of the unit circle S1 under these maps. But, for the sake

of clarity, we have altered the proportion between axes and, in order to enhance the view close

to the origin, we logarithmically rescaled the radial distance from the origin. Notice that such

transformations do not change the qualitative behavior of the maps (at least not the characteristics

we are interested in).

2 Preliminaries and notation

2.1 Some notions of nonsmooth analysis

Following [7], a continuous function f : U ⊆ Rs → Rm is a continuous selection of C1 functions if

there exists a finite number of C1 functions f1, . . . , fℓ, of U into Rm such that the active index set

I := {i : f(x) = fi(x)} is nonempty for each x ∈ U. The functions fi’s are called selection functions

of f. The function f is called a PC1 function if at every point x ∈ U there exists a neighborhood V

such that the restriction of f to V is a continuous selection of C1 functions.

Example 2.1 Consider the function f : R2 → R given by

f(x, y) = min
{
y− x2, 0, x

}
, (x, y) ∈ R2.

The function f is a continuous selection of the three functions f1(x, y) = y− x2, f2(x, y) = 0 and

f3(x, y) = x and the active index set is summarized in the following table:
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Active index set Region of validity in R2

{1, 2, 3} {(0, 0)}

{2, 3} {(x, y) ∈ R2 : x = 0, y > 0}

{1, 2} {(x, y) ∈ R2 : x > 0, y = x2}

{1, 3} {(x, y) ∈ R2 : x < 0, y = x2 + x}

{1} {(x, y) ∈ R2 : x > 0, y < x2} ∪ {(x, y) ∈ R2 : x < 0, y < x2 + x}

{2} {(x, y) ∈ R2 : x > 0, y > x2}

{3} {(x, y) ∈ R2 : x < 0, y > x2 + x}

The function f is indeed PC1.

A function f : Rs → Rm is said to be piecewise linear if it is a continuous selection of linear

functions. We will actually focus on a much more restrictive class of piecewise linear functions,

especially when m = s = 2.

Recall that a cone C ⊆ Rk with vertex at the origin is a positively homogeneous set, in the sense

that if v ∈ C then αv ∈ C for all α ≥ 0. Below we give more specialized notions.

Definition 2.1 A cone C ⊆ Rk with nonempty and connected interior and vertex at the origin is

called a polyhedral cone if it is the intersection of a finite number of close half-spaces.

Clearly, a polyhedral cone, as the intersection of convex sets, is convex. This is an excessively

severe limitation for our purposes. By a hyper-plane in Rk we mean a 1-codimensional linear

subspace of Rk.

Definition 2.2 Let π1, π2 ⊂ Rk be two half hyper-planes with common boundary ∂π1 = ∂π2

containing the origin. Thus Rk \ (π1 ∪ π2) is an open set with two connected components A1 and

A2. We call each connected component an open wedge of Rk. The closure of an open wedge of Rk

is called a wedge of Rk.

Definition 2.3 A cone C ⊆ Rk with nonempty interior and vertex at the origin is called an admissi-

ble cone if it is the intersection of a finite number of wedges of Rk.

Remark 2.1 Clearly, an admissible cone need not be convex, so it may not be poyhedral. Con-

versely, however, a polyhedral cone is always admissible. We also observe the following facts:

1. If π1 ∪ π2 is an hyperplane in Rk, then the wedges defined by π1 and π2 are two closed

half-spaces. Otherwise only one of the wedges (the only convex one) is a polyhedral cone.

2. If k = 2 then any admissible cone is a wedge and is in fact an angle with vertex at the origin.

It is not difficult to prove that if L : Rk → Rk is an invertible linear map and C is a polyhedral

cone, then so is L(C) (it follows from linearity and the open mapping theorem). This is no longer

true if we drop the invertibility assumption on L. In fact, although the linear image of a cone with

vertex at the origin is a cone with the same vertex, if the map L is singular, a polyhedral cone could

collapse under L into a cone with empty interior.

Definition 2.4 A finite collection of closed admissible cones of Rk, C1, . . . , Cn, with pairwise

disjoint interiors is called a decomposition of Rk if Rk = ∪n
i=1

Ci.

Observe that if L : Rk → Rk is an invertible linear map, and C1, . . . , Cn is a decomposition of

Rk, then the sets Di = L(Ci), i = 1, . . . , n, constitute a decomposition of Rk as well. The same

statement remains true if the linear map L is replaced by any bijective function that maps each cone

Ci into an admissible cone Di.
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Definition 2.5 We say that a continuous map G : Rk → Rk is strongly piecewise linear (at 0) if

there exist a decompositionC1, . . . , Cn of Rk in admissible cones, and linear maps L1, . . . , Ln with

G(x) = Lix, for x ∈ Ci.

We also say that G is nondegenerate if sign(detLi) is constant and nonzero for all i = 1, . . . , n.

Notice that if G is a continuous strongly piecewise linear map as in Definition 2.5 above, then

Lix = Ljx for any x ∈ Ci ∩ Cj and i, j ∈ {1, . . . , n}. Moreover, G is positively homogeneous.

In this paper we are concerned with the global invertibility of continuous nondegenerate strongly

piecewise linear maps. In this regard the following two simple observations are in order:

Lemma 2.1 Let G : Rk → Rk be strongly piecewise linear (at 0) as in Definition 2.5. Assume that

G is injective, then the linear maps Li’s are invertible for all i = 1, . . . , n.

Proof. Let us use the notation of Definition 2.5. Assume by contradiction that there exists i ∈
{1, . . . , n} such that Li is not invertible. Take w ∈ kerLi \ {0}. On one hand, if w ∈ Ci \ {0} we have

that G(w) = Li(w) = 0 = G(0) against the injectivity of G. On the other hand, if w < Ci \ {0},

take any v ∈ int(Ci) \ {0}. Since int(Ci) is open, there exists α , 0 such that v+αw ∈ Ci. One has

v+ αw , v and

G(v+ αw) = Li(v+ αw) = Li(v) = G(v),

which, again, contradicts the injectivity of G.

In fact, in due course (see Proposition 4.1), we will see that when G in Lemma 2.1 is invertible,

then it is nondegenerate.

Lemma 2.2 Let G : Rk → Rk be a continuous strongly piecewise linear map as in Definition 2.5,

and let U be an open neighborhood of 0 ∈ Rk. Assume that the restriction G|U : U → G(U)

is invertible with continuous inverse, then G is globally invertible and its inverse is a continuous

strongly piecewise linear map as well.

Proof. Let us first prove that G is injective. Let x1, x2 ∈ Rk be such that G(x1) = G(x2). Since U

is an open neighborhood of the origin, there exists ρ > 0 such that ρx1 ∈ U and ρx2 ∈ U. Then

G
(

ρx1
)

= ρG(x1) = ρG(x2) = G
(

ρx2
)

,

so that ρx1 = ρx2, i.e. x1 = x2.

Let us now prove surjectivity by explicitly exhibiting the inverse. SinceG is injective, the domain

invariance theorem implies that G(U) is open in Rk. Given y ∈ Rk, define the map H : Rk → Rk

as follows:

H(y) =
‖y‖
r

(G|U)
−1

(

r
y

‖y‖

)

where r > 0 is any positive number such that the sphere Sr of radius r and centered at the origin

is contained in G(U). Clearly, H does not depend on the choice of r. One can directly verify that

H is the inverse of G. Moreover, since by assumption G|U has continuous inverse, we get that H is

continuous.

It only remains to prove that H is a strongly piecewise linear map. Let us use the notation of

Definition 2.5. The first part of the proof together with Lemma 2.1 shows that, for i = 1, . . . , n, all

maps Li are invertible. For all i = 1, . . . , n set Di = Li(Ci) = G(Ci). Observe that all the Di’s
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are admissible cones and that D1, . . . , Dn constitutes a decomposition of Rk. It is not difficult to

show that, in fact,

H(y) = L−1
i

y y ∈ Di,

whence the assertion.

In this paper, we study the invertibility of continuous strongly piecewise linear maps. We will

prove later (Proposition 4.1 below) that, if such a map is invertible, then it is necessarily nonde-

generate. It is not difficult to see that the converse of this statement is not true (see for instance

Examples 4.1 and 4.2 below). Our main concern will be finding simple sufficient conditions for the

invertibility. Section 4 is devoted to this purpose. Before dealing with this problem, however, we

need some preliminaries.

A classical notion which we need is that of Bouligand derivative. Let U ⊆ Rs be open and let

f : U → Rm be locally Lipschitz. We say that f is Bouligand differentiable at x0 ∈ U if there exists

a positively homogeneous function, f ′(x0, ·) : Rs → Rm with the property that

lim
x→x0

‖f(x) − f(x0) − f ′(x0, x− x0)‖
‖x− x0‖

= 0. (2.1)

This uniquely determined function f ′(x0, ·) is called the Bouligand derivative of f at x0 (see Exam-

ples 5.1 and 5.2). An important fact proved by Kuntz/Scholtes [7] is the following:

Proposition 2.1 (Prop. 2.1 in [7]) Let U ⊆ Rs be an open set. Any PC1 function f : U → Rm is

locally Lipschitz and, at every x0 ∈ U, has a piecewise linear Bouligand derivative f ′(x0, ·) which

is a continuous selection of the Fréchet derivatives of the selection functions of f at x0.

Following [10] we consider a generalization of the notion of Jacobian matrix ∇f(x) of a function

f : Rk → Rk at a Fréchet differentiability point x. Let f : Rk → Rk be locally Lipschitz at x0. We

define Jac(f, x) as the (nonempty) set of limit points of sequences {∇f(xk)} where {xk} is a sequence

converging to x0 and such that f is Fréchet differentiable at xk with Jacobian ∇f(xk). One can see

([10]), as a consequence of Rademacher’s Theorem, that Jac(f, x0) is nonempty. Moreover the

convex hull of Jac(f, x0) is equal to the Clarke generalized Jacobian ∂f(x0) of f at x0, see [4] or the

book [5].

Let f : U ⊆ Rk → Rk be a PC1 function (with selection functions fi). The relation between

the Bouligand derivative and the above generalized notion of Jacobian is clarified by the following

formula [10, Lemma 2]:

Jac
(

f ′(x0, ·), 0
)

⊆ Jac(f, x0) =
{
∇fi(x0) : i ∈ Ī(x0)

}
, (2.2)

where Ī(x0) =
{
i : x0 ∈ cl int{x ∈ U : i ∈ I(x)}

}
, see e.g. [7]. Notice that by Proposition 2.1 the

map f ′(x0, ·) is continuous and piecewise linear, hence it is locally Lipschitz. Thus Jac
(

f ′(x0, ·), 0
)

is well defined.

The following two results of [10] play a crucial role in the following. Here, we slightly reformu-

late them to match our notation.

Theorem 2.1 (Thm. 4 of [10]) Let f : U ⊆ Rk → Rk be a PC1 function. Then f is a Lipschitz local

homeomorphism at x0 ∈ U if and only if Jac(f, x0) consists of matrices whose determinants have the

same nonzero sign and, for a sufficiently small neighborhoodU0 of x0, deg(f,U0, y0), y0 := f(x0),

is well-defined and has value ±1.
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Theorem 2.2 (Thm. 5 of [10]) Let f : U ⊆ Rk → Rk be a PC1 function, and let x0 ∈ U. Assume

that

Jac(f, x0) = Jac
(

f ′(x0, ·), 0
)

,

then the following statements are equivalent:

1. f is a Lipschitz local homeomorphism at x0 ∈ U;

2. f ′(x0, ·) is bijective;

3. f ′(x0, ·) is a Lipschitz (global) homeomorphism.

Moreover, if any of (1)–(3) holds, then f is a local PC1 homeomorphism at x0.

We conclude this subsection recalling the classical notion of Bouligand tangent cone. Let C ⊆
Rk be a nonempty closed subset. Given x ∈ C, the Bouligand tangent cone to C at x is the set:

{
v ∈ Rk : ∃αj → 0+, ∃vj → v s.t. x+ αjvj ∈ C

}
.

2.2 Topological degree

In this section we briefly recall the notion of Brouwer degree of a map and summarize some of its

properties that will be used in the rest of the paper. Major references for this topic are, for instance,

Milnor [9], Deimling [6] and Lloyd [8]; see also [3] for a quick introduction.

A triple (f,U, p), with p ∈ Rk and f a proper map defined in some neighborhood of the open set

U ⊆ Rk, is said to be admissible if f−1(p) ∩ U is compact. Given an admissible triple (f,U, p), it

is defined an integer deg(f,U, p), called the degree of f in U respect to p, that in some sense counts

(algebraically) the elements of f−1(p) which lie in U. In fact, when in addition to the admissibility

of (f,U, p) we let f be C1 in a neighborhood of f−1(p) ∩ U and assume p is a regular value of f,

the set f−1(p) ∩U is finite, and one has

deg(f,U, p) =
∑

x∈f−1(p)∩U

sign det
(

f ′(x)
)

, (2.3)

where f ′(x) denotes the (Fréchet) derivative of f at x. See e.g. [9] for a broader definition in the case

when (f,U, p) is just an admissible triple.

The Brouwer degree enjoys many known properties only a few of which are needed in this paper.

We now remind some of them.

Homotopy Invariance. If (H,U,α) is a smooth admissible homotopy joining two admissible

triples, then

deg(H(·, 0), U, α(0)) = deg(H(·, 1), U, α(1)).

Excision. If (f,U, y) is admissible and V is an open subset of U such that f−1(y) ∩U ⊆ V , then

(f, V, y) is admissible and

deg(f,U, y) = deg(f, V, y).

Boundary Dependence. Let U ⊆ Rk be open, and let f and g be Rk-valued functions defined in

a neighborhood of U such that f(x) = g(x) for all x ∈ ∂U. Assume that U is bounded or, more

generally, that f and g are proper and the difference map f− g : U → Rk has bounded image. Then

deg(f,U, y) = deg(g,U, y)
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for any y ∈ Rk \ f(∂U).

Observe that if f : Rk → Rk is proper then deg(f,Rk, p) is well-defined for any p ∈ Rk, more-

over, by the above property, it is actually independent of the choice of p. In this case we shall simply

write deg(f) instead of the more cumbersome deg(f,Rk, p).

Finally, we mention a well-known integral formula for the computation of the degree of an

admissible triple when the dimension of the space is k = 2 (see e.g. [6, 8]) which we present here

in a simplified form.

Assume that f : R2 → R2 is a proper map, let Br ⊆ R2 be a ball of radius r > 0 centered at the

origin and let Sr = rS1 = ∂Br. If 0 < f(Sr), then the degree of f in Br relative to 0 coincides with

the winding number of the curve σ : [0, 1] → R2 given by

σ(t) = f
(

r cos(2πt), r sin(2πt)
)

.

In other words,

deg(f, Br, 0) =
1

2π

∫

f(Sr)

ω

where ω is the 1-form

ω =
x dy

x2 + y2
−

y dx

x2 + y2

In fact, if Br is large enough to contain the compact set f−1(0), then

deg(f) =
1

2π

∫

f(Sr)

ω. (2.4)

3 Piecewise continuous linear maps and topological degree

Observe that any nondegenerate continuous strongly piecewise linear map G is differentiable in

Rk \ ∪n
i=1

∂Ci. It is easily shown that G is proper, and therefore deg(G,Rk, p) is well-defined for

any p ∈ Rk. In fact, one immediately checks that G−1(0) = {0}. So, as remarked above, we can

write deg(G) in lieu of deg(G,Rk, p).
The following linear algebra result plays an important role in the paper.

Proposition 3.1 Let A and B be linear automorphisms of Rk. Assume that for some v ∈ Rk \ {0}, A

and B coincide on the hyperplane {v}⊥. Then, the map LAB defined by x 7→ Ax if 〈v , x〉 ≥ 0, and

by x 7→ Bx if 〈v , x〉 ≤ 0, is a homeomorphism if and only if det(A) · det(B) > 0.

Proof. Let w1, . . . , wk−1 be a basis of the hyperplane {v}⊥, then w1, . . . , wk−1, v is a basis of Rk.

The matrix of A−1B in this basis is given by











































Ik−1

γ1

...

γk−1

0
t
k−1 γk











































where Ik−1 is the (k − 1)-unit matrix, 0k−1 is the (k − 1)-null vector and the γi’s are defined by

A−1Bv =

k−1∑

i=1

γiwi + γkv.
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Clearly γk is positive if and only if det(A) · det(B) is positive.

Observe that if γk is negative then LAB is not one–to–one. In fact, being

Awi = Bwi, ∀i = 1, . . . , k − 1, and 〈
k−1∑

i=1

−
γi

γk
wi +

1

γk
v , v〉 = ‖v‖

2

γk
< 0,

we get

LAB(v) = A

















k−1∑

i=1

−
γi

γk
wi +

1

γk
A−1Bv

















=

k−1∑

i=1

−
γi

γk
Awi +

1

γk
Bv

= B

















k−1∑

i=1

−
γi

γk
wi +

1

γk
v

















= LAB

















k−1∑

i=1

−
γi

γk
wi +

1

γk
v

















.

We now prove that LAB is injective if γk is positive. Assume this is not true. Since both A and

B are invertible, there exist zA, zB ∈ Rk such that 〈v , zA〉 > 0, 〈v , zB〉 < 0 and AzA = BzB or,

equivalently, A−1BzB = zA. Let

zA =

k−1∑

i=1

ciAwi + cAv, zB =

k−1∑

i=1

ciBwi + cBv,

so that cA > 0, cB < 0. The equality A−1BzB = zA is equivalent to

k−1∑

i=1

ciBwi + cB

k−1∑

i=1

γiwi + cBγkv =

k−1∑

i=1

ciAwi + cAv.

Consider the scalar product with v, we get cBγk ‖v‖2 = cA ‖v‖2, a contradiction.

We finally prove that, if γk is positive, then LAB is surjective. Let z ∈ Rk. There exist yA,

yB ∈ Rk such that AyA = ByB = z. If either 〈v , yA〉 ≥ 0 or 〈v , yB〉 ≤ 0, there is nothing to

prove. Let us assume 〈v , yA〉 < 0 and 〈v , yB〉 > 0. In this case A−1ByB = yA and proceeding as

above we get a contradiction.

Corollary 3.1 Let A,B and v be as in Proposition 3.1. Define LAB, as in Proposition 3.1, by

LAB(x) =

{
Ax if 〈v , x〉 ≥ 0,

Bx if 〈v , x〉 ≤ 0.

Assume that det(A) · det(B) > 0. Then deg(LAB) = sign det(A) = sign det(B).

Proof. The map LAB is invertible by Proposition 3.1. Take any p ∈ Rk such that the singleton

{q} = L−1
AB

(p) does not belong to v⊥. Then, Formula 2.3 yields the assertion.

Another useful tool for the computation of the topological degree of a strongly piecewise linear

map is the following lemma:

Lemma 3.1 If G is a nondegenerate continuous strongly piecewise linear map as in Definition 2.5

with det(Li) > 0, ∀i = 1, . . . , n, then deg(G) > 0. In particular, if there exists q , 0 whose

preimage G−1(q) is a singleton that belongs to at most two admissible cones Ci, then deg(G) = 1.
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Proof. Observe that the set ∪n
i=1

G
(

∂Ci

)

is nowhere dense hence A := G(C1) \ ∪ni=1
G

(

∂Ci

)

is

non-empty. Take x ∈ A and observe that if y ∈ G−1(x) then y < ∪n
i=1

∂Ci. Thus, by (2.3),

deg(G) =
∑

y∈G−1(x)

sign detG ′(y) = #G−1(x). (3.1)

Since G−1(x) , ∅, deg(G) > 0.

Consider now the second part of the assertion. Assume in addition that q < ∪n
i=1

G
(

∂Ci

)

. Taking

x = q in (3.1) we get deg(G) = 1.

Let us now remove the additional assumption. Let {p} = G−1(q) be such that p belongs to two

cones. Without any loss of generality we can assume p ∈ ∂C1 ∩ ∂C2. Observe that by assumption

p , 0 does not belong to any ∂Cs for s ≥ 3. Thus one can find a neighborhood V of p, with V ⊂
int

(

(C1 ∪C2) \ {0}
)

. By the excision property of the topological degree deg(G) = deg(G,V, p). Let

LL1L2
be a map as in Proposition 3.1. Observe that, by Corollary 3.1, the assumption on the signs

of the determinants of L1 and L2 imply that deg(LL1L2
) = 1. Also notice that LL1L2

|∂V = G|∂V .

Hence, by the excision and boundary dependence properties of the degree we have

1 = deg(LL1L2
) = deg(LL1L2

, V, p) = deg(G,V, p).

Thus, deg(G) = 1 as claimed.

Remark 3.1 One can show that if det(Li) < 0, for all i = 1, . . . , n, then

deg(G) < 0.

In particular, if there exists q , 0 whose preimage G−1(q) is a singleton that belongs to at most

two of the admissible cones Ci, then deg(G) = −1. To see this, it is enough to compose G with the

permutation matrix

P =

(

J 0

0 Ik−2

)

, J :=

(

0 1

1 0

)

,

and Ik−2 is the (k − 2) × (k− 2) identity matrix.

We conclude this section by observing that if G is a nondegenerate continuous strongly piecewise

linear map in R2 then, by (2.4),

deg(G) =
1

2π

∫

G(S1)

ω. (3.2)

(observe, in fact, that G−1(0) = {0}). This formula plays an important role in what follows.

4 Main results: invertibility of piecewise linear maps

We now turn to our main scope that is invertibility of continuous strongly piecewise linear maps.

We begin with a technical lemma concerning Rk, whose proof we only sketch for the sake of com-

pleteness.

Lemma 4.1 Let Σ1, . . . , Σn be subspaces of Rk with codim(Σi) ≥ 2 for each i = 1, . . . , n. Then

Rk \ (
⋃n

i=1 Σi) is path connected.
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Proof. [Sketch of the proof.] Let P0 , P1 be points of Rk \
⋃n

i=1 Σi, and let B be the complete

metric space, with the usual supremum distance, of continuous curves of [0, 1] in Rk joining P0 and

P1. For each i = 1, . . . , n, denote by Ei the subset of B of the curves taking values in Rk \ Σi. We

claim that the following assertions hold for i = 1, . . . , n:

1. The set Ei is open in the space B.

2. The set Ei is dense in the space B.

Assertion (1) is very straightforward and follows from the fact that any curve in Ei has a positive

distance from the closed set Σi and that any curve closer to it than this distance lies necessarily

in Ei. The proof of assertion (2) is in two parts: first one proves that Ei , ∅ by showing that the

segment joining P0 and P1 can be approximated by a polygonal lying in a 2-dimensional affine space

containing the P0 and P1 and intersecting Σi in exactly one point. Then, a similar argument can be

used to prove that any curve in B can be approximated as closely as desired by an element of Ei.

Once the claim is established, the lemma follows from the fact that
⋂n

i=1 Ei is open and dense

in B.

Remark 4.1 The argument of Lemma 4.1 and the Baire cathegory theorem can be combined to

show that Rk cannot be disconnected by the union Σ of a denumerable family of (at least) 2-

codimensional subspaces. As a matter of fact, given a pair of points not lying in Σ, one could

prove that the set of curves in Rk \ Σ joining these points is residual.

We are now in a position to prove the following relatively simple result concerning the invert-

ibility of continuous strongly piecewise linear maps.

Proposition 4.1 Let G be a continuous strongly piecewise linear map from Rk into itself. If G is

invertible, then it is nondegenerate.

Proof. Let Ci, i = 1, . . . , n be the admissible cones decomposition of Rk relative to G and let

Li = G|Ci
. We need to show that det(Li) , 0 for any i = 1, . . . , n and that all these determinants

have the same sign.

Observe first that Lemma 2.1, since G is injective, implies that no such determinant is null. We

now show that all these determinants have the same sign. Let us introduce the following set:

S :=
{
Ci ∩Cj : i, j ∈ {1, . . . , n}, codim

(

span(Ci ∩Cj)
)

≥ 2
}
.

Notice that when the dimension k of the ambient space Rk is 1, then S = ∅, if k = 2 then S is

merely the origin whereas, for k = 3, it consists of a finite number of half-lines emanating from the

origin. As the dimension k grows, S becomes more complicated. However, with the help of Lemma

4.1 one can prove that Rk \ S is path connected for all k ≥ 1.

Assume by contradiction i, j ∈ {1, . . . , n}, i , j are such that det(Li) det(Lj) < 0. Since Rk \ S

is path connected, it is not difficult to prove that there must exist two cones Ci and Cj such that

codim
(

span(Ci ∩Cj)
)

= 1 and det(Li) det(Lj) < 0. Without any loss of generality we may assume

i = 1, j = 2. Let v ∈ Rk such that span(C1 ∩ C2) = v⊥. Let w1, w2, . . . , wk−1 ∈ C1 ∩ C2 be a

basis for span(C1 ∩ C2) such that

{
k−1∑

i=1

ciwi : ci ≥ 0 i = 1, . . . , k− 1

}

⊆ (C1 ∩ C2),
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and let

L−1
1

L2v = γkv+

k−1∑

i=1

γiwi.

As in the proof of Proposition 3.1 one can show that γk < 0. Take c1, . . . , ck−1 > 0 and define

z1 := v+

k−1∑

i=1

ciwi and z2 :=
1

γk
v+

k−1∑

i=1

(

ci −
γi

γk

)

wi.

An easy computation shows that L1z1 = L2z2. Choosing c1, . . . , ck−1 large enough, we can assume

that z1 ∈ C1, z2 ∈ C2. Thus G(z1) = G(z2), i.e. G is not injective, against the assumption. This

contradiction shows that all determinants det(Ls), s ∈ {1, . . . , n}, share the same sign.

Simple considerations (e.g. Examples 4.1 and 4.2 below) show that the converse of Propositions

4.1 is not true in general. In order to partially invert this proposition, different situations must be

considered. We begin with a simple consequence of Lemma 3.1.

Theorem 4.1 Let G : Rk → Rk be a continuous strongly piecewise linear map as in Definition

2.5 with det(Li) of constant sign for all i = 1, . . . , n. Assume also that there exists q ∈ Rk whose

preimage G−1(q) is a singleton that belongs to at most two of the admissible cones Ci. Then G is

a Lipschitz homeomorphism.

Proof. Lemma 3.1 and Remark 3.1 imply that deg(G) = ±1. The assertion follows from Theorem

2.1 and Lemma 2.2.

Remark 4.2 The condition in Theorem 4.1 concerning the existence of a point q whose preimage

is a singleton belonging to at most two polyhedral cones, is equivalent to the existence of a half-line

at the origin whose preimage is a single half-line. In fact, as a consequence of Theorem 4.1, one

has that if the determinants det(Li) have constant sign for all i = 1, . . . , n the existence of such a

half-line implies that all the half-lines at the origin must have the same property.

Remark 4.3 Observe that the only nontrivial (i.e. such that are not reducible to linear maps) con-

tinuous strongly piecewise linear maps with n = 2 are those in which the cones are half-spaces.

In fact, unless C1 and C2 are two half-spaces, then dim
(

span(∂C1 ∩ ∂C2)
)

= k and two linear

endomorphisms of Rk that agree on k linearly independent vectors, necessarily coincide. Hence,

when n = 2, it is sufficient to consider the case when the two nontrivial cones are half-spaces. This

has already been done in Proposition 3.1.

The point q in Theorem 4.1 may be difficult to determine if the linear maps Li’s are given

in a complicate way. However, in some cases, invertibility of continuous nondegenerate strongly

piecewise linear maps can be deduced merely from their nondifferentiability structure. The easiest

nontrivial case, i.e. when n = 2, has already been treated (Proposition 3.1) in arbitrary dimension

just by means of linear algebra. The other cases, n = 3 and n = 4, will be investigated in dimension

k = 2 only.

We are now in a position to state our main result concerning the invertibility of continuous

strongly piecewise linear maps in R2.

Theorem 4.2 Let G : R2 → R2 be as in Definition 2.5 and non-degenerate. If one of the following

conditions holds:
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1. n ∈ {1, 2, 3};

2. n = 4 and all the admissible cones are convex;

then G has a continuous piecewise linear inverse.

Before providing the proof of this result, we show with two examples that the assumptions of

Theorem 4.2 are, to some extent, sharp.
Pr

ep
ri

nt
G(P2)

G(P1)

G(P3)

G(P4)

G(P5)

b

b

b

b

b

G

b

b

b

b

b

C5

C1

C2

C3

C4

P2

P1

P3

P4

P5

Figure 1: The image of S1 under G in Example 4.1. For clarity’s sake, the radial distance of G(S1)

from (0, 0) has been rescaled.

Our first example shows that for n > 4 there are G’s as above that are not invertible even if the

cones are convex.

Example 4.1 Consider a nondegenerate continuous piecewise linear map G : R2 → R2 defined as

in Definition 2.5 by

L1 =

(

1 −
√
2

0
√
2− 1

)

L2 =

(

−
√
2 −

√
2+ 1

1 0

)

L3 =

(

0 1

−
√
2+ 1 −

√
2

)

L4 =

(√
2− 1 0

−
√
2 1

)

L5 =

(

1 0

0 1

)

where the corresponding cones are given, in polar coordinates, by the pairs (ρ, θ) with arbitrary ρ’s

and θ chosen as in the following table:

C1 C2 C3 C4 C5

0 ≤ θ ≤ 3
8
π 3

8
π ≤ θ ≤ 3

4
π 3

4
π ≤ θ ≤ 9

8
π 9

8
π ≤ θ ≤ 3

2
π 3

2
π ≤ θ ≤ 2π

This map is illustrated in Figure 1. As the picture suggests, the above defined map G is not invertible

because it is not injective.

Our second example shows an instance of non invertible G with n = 4 and one nonconvex cone.
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Example 4.2 Consider G : R2 → R2 as in Definition 2.5, with

L1 =

(

1 0

0 1

)

, L2 =

(

1 0

2
√
3 1

)

, L3 =

(

−2 −
√
3

−
√
3 −2

)

, L4 =

(

1 2
√
3

0 1

)

,

and the cones are given, in polar coordinates, by the pairs (ρ, θ) with arbitrary ρ’s and θ chosen as

in the following table:

C1 C2 C3 C4

0 ≤ θ ≤ π
2

π
2
≤ θ ≤ 2

3
π 2

3
π ≤ θ ≤ 11

6
π 11

6
π ≤ θ ≤ 2π

Figure 2 illustrates this map. As the picture suggests, G defined as above is not injective and there-

fore it is not invertible.
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G(P2)

G(P1)

G(P3)

G(P4)

b

b

b

b

G

b

b

b

b

C1

C2

C3

C4

P2

P1

P3

P4

Figure 2: The image of S1 under G in Example 4.2. For clarity’s sake, the radial distance of G(S1)
from (0, 0) has been rescaled.

Let us now turn to the task of proving Theorem 4.2. The proof is done differently according to

the number of nontrivial cones in which the plane is pie-sliced. The proof, in the cases of n = 2,

boils down to Proposition 3.1 whereas the cases n = 3 and n = 4 will be treated with the help of

Theorem 2.2. In order to apply this theorem it is necessary to estimate the topological degree of our

map G. This will be done by means of geometric considerations. The proof of the following lemma

is based on an elementary linear algebra argument and is left to the reader.

Lemma 4.2 Let A : R2 → R2 be linear and nonsingular and let C ⊂ R2 be an admissible cone.

Then A(C) ⊆ R2 is an admissible cone and the following statements hold:

1. If C does not contain a half-plane, then A(C) does not contain a half-plane.

2. If C  R2 contains a half-plane, then so does A(C)  R2.
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This lemma has an useful consequence:

Lemma 4.3 Let A : R2 → R2 be linear and nonsingular and let C  R2 be a cone with vertex at

the origin. Let Γ be the image of the arc S1 ∩ C. Then,

∣

∣

∣

∣

∣

∫

Γ

ω

∣

∣

∣

∣

∣

∈
{
[0, π) if C does not contain a half-plane,

[π, 2π) otherwise.
(4.1)

In particular, we have that

∣

∣

∣

∣

∣

∫

Γ

ω

∣

∣

∣

∣

∣

< 2π and

∣

∣

∣

∣

∣

∫

Γ

ω

∣

∣

∣

∣

∣

< π when C is strictly convex.

Proof. Observe first that by Lemma 4.2 there exists a half-line s starting at the origin that does not

intersectA(C). Clearly the differential formω is exact inR2\s. Let P1 and P2 be the intersections of

∂C with S1. The path integral that appears in (4.1) does not depend on the chosen path connecting

A(P1) and A(P2). With the choice of an appropriate path, for instance, the concatenation of a

circular arc of radius |A(P2)| from A(P2) with the radial segment through A(P1) (see Figure 3), it

is not difficult to show that |
∫
Γ ω| is merely the angular distance (we consider the angle that does

not contain the half-line s) between A(p1) and A(p2) as seen from the origin. The assertion now

follows from Lemma 4.2.

b
P1b

P2

C

S1

A

s
A(P1)

b

A(P2)
b

Γ

|
∫
Γ
ω|

|A(P2)|
integration path

Figure 3: The integration path in Lemma 4.3

Lemma 4.4 Let G be as in Theorem 4.2 with n = 3 and detLi > 0, ∀i = 1, 2, 3. Then, deg(G) = 1.

Proof. We consider the two possible cases: when all the cones are strictly convex and when there is

one cone containing a half-plane. For i = 1, 2, 3, let Γi, be the image G(S1 ∩ Ci). In the first case,

by Lemma 4.3 we have that
∫
Γi
ω < π for i = 1, 2, 3. Hence, by Lemma 3.1 and formula (3.2),

0 < deg(G) <
π+ π+ π

2π
=

3

2
. (4.2)

Which, the degree being an integer, implies deg(G) = 1.

In the second case, only one of the cones, say C1, may contain a half-plane. Thus, by Lemma

4.3, we have that
∫
Γ1

ω < 2π and
∫
Γi
ω < π for i = 2, 3. Hence, inequality (4.2) becomes

0 < deg(G) <
2π+ π+ π

2π
= 2.

Which, again, implies deg(G) = 1.



Pr
ep

ri
nt

Local inversion of planar maps with nice nondifferentiability structure 15

Lemma 4.5 Let G be as in Theorem 4.2 with n = 4 and detLi > 0 ∀i = 1, 2, 3, 4. Then deg(G) =

1.

Proof. For i = 1, . . . , 4, let Γi, be the image G(S1 ∩ Ci). By Lemma 4.3 we have that
∫
Γi
ω < π

for i = 1, . . . , 4 since all the cones are convex. Hence, by Lemma 3.1 and formula (3.2),

0 < deg(G) <
π+ π+ π+ π

2π
= 2.

Which, the degree being an integer, implies deg(G) = 1.

Remark 4.4 If detLi < 0 ∀i = 1, . . . , n, composing G with the linear maps whose matrix in the

standard basis of R2 is J =
(

0 1
1 0

)

, we get that JG : R2 → R2 is one–to–one so that G is invertible as

well.

We are now in a position to prove our main theorem.

Proof. [Proof of Theorem 4.2]

(Case n = 1.) In this case G is linear with nonzero determinant. Thus, there is nothing to prove.

(Case n = 2.) See Proposition 3.1 and Remark 4.3.

(Cases n = 3 and n = 4.) In both cases, it follows from Lemmas 4.4 and 4.5 that deg(G) = 1, then

the assertion follows from Theorem 2.1.

Example 4.3 Let us consider a decomposition of the space R3 into four convex wedges C1, . . . , C4

with a common edge along the straight line r. Let G : R3 → R3 be a continuous strongly piecewise

linear map with respect to this decomposition and with

G(x) = Lix, x ∈ Ci, i = 1, . . . , 4

and assume that detLi share the same sign for i = 1, . . . , 4. Then, as a consequence of Theorem 4.2,

we have that G is invertible with continuous strongly piecewise linear inverse. To see that, consider

a plane π orthogonal to r. Clearly, the restriction G|π is invertible by Theorem 4.2. Similarly, since

G(xr) = L1xr = . . . = L4xr, for any point xr ∈ r, and the Li’s are isomorphisms, G is invertible on

r. Given any vector y ∈ R3, we can obtain G−1(y) by the following argument. Write y = yπ + yr

where yπ and yr denote the orthogonal projections of y onto π and r, respectively. Then one has

G−1(y) = L−1
1

(yr) + (G|π)
−1(yπ).

We conclude this section with an example showing that our main result (at least when n = 4)

cannot be deduced from the well-known Clarke’s Theorem [4, 5]. This important and widely used

result on inverse functions states that if f : Rk → Rk satisfies a Lipschitz condition in a neighborhood

of x0 ∈ Rk and all the matrices in the Clarke generalized Jacobian ∂f(x0) (see, e.g., [4, 5] for a

definition) are invertible, then f is locally invertible about x0. In the case of a continuous strongly

piecewise linear function G at 0, the Clarke generalized jacobian ∂G(0) is the closed convex hull of

Jac(G, 0).

In Example 4.4 we exhibit a continuous piecewise linear map which is invertible by our main

result although it does not satisfy the assumptions of Clarke’s Theorem.
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G(P1)

G(P2)

G(P3)

G(P4)

b

b

b

b

G

C1
C2

C3

C4

P3 P4

P2

P1

Figure 4: The image of S1 under G in Example 4.4. For clarity’s sake, the radial distance of G(S1)
from (0, 0) and the proportion between axes have been both altered.

Example 4.4 Consider a continuous piecewise linear map G : R2 → R2 given as in Definition 2.5

by

L1 =

(

1 0

0 1

)

, L2 =













1
10

0

−10 1













, L3 =















5
100

5
100

−455
100

−445
100















, L4 =













1 1

0 1
10













,

where the corresponding cones are given, in polar coordinates, by the pairs (ρ, θ) with arbitrary

ρ ≥ 0 and θ chosen as in the following table

C1 C2 C3 C4

0 ≤ θ ≤ π
2

π
2
≤ θ ≤ 5

4
π 5

4
π ≤ θ ≤ 7

4
π 7

4
π ≤ θ ≤ 2π

This map is illustrated in Figure 4. Trivial computation shows that det(Li) > 0 for any i = 1, 2, 3, 4

and, as the picture suggests, G has degree 1. (The map G has been found with the help of a short

FORTRAN program that assisted us in sifting many potential examples.)

In this case ∂G(0) is just the closed convex hull of the matrices Li, i = 1, 2, 3, 4, i.e.

∂G(0) =

{
4∑

i=1

aiLi, ai ≥ 0 i = 1, 2, 3, 4,

4∑

i=1

ai = 1

}

.

Choosing

a1 =
637

7208
, a2 =

1165

7208
, a3 =

1

2
, a4 =

1

4
,

we get det
(∑4

i=1 aiLi
)

= 0, i.e. ∂G(0) contains at least one singular matrix. Moreover, choosing

a1 =
9

136
, a2 =

25

136
, a3 =

1

2
, a4 =

1

4
,

we get det
(∑4

i=1 aiLi
)

=
−1

10
, i.e. ∂G(0) contains at least one matrix with negative determinant.
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5 Application: Piecewise differentiable functions

We now provide some applications of the results of the previous section to the local invertibility of

PC1 functions. In this section, for a Frechét differentiable map ϕ at a point x0, the (Frechét) differ-

ential at x0 is denoted by dϕ(x0). The basis for our considerations is the following consequence of

Theorem 2.1.

Theorem 5.1 Let f be an Rk-valued PC1 function in a neighborhood of x0 ∈ Rk. Assume that

1. All the determinants of all the elements of Jac(f, x0) have the same sign;

2. The Bouligand differential of f at x0 is an invertible piecewise linear map.

Then f is locally invertible at x0.

Proof. It is not difficult to show that since f ′(x0, ·) is invertible,

deg
(

f ′(x0, ·), V, 0
)

= s,

where s denotes the common sign of the determinants of the elements of Jac(f, x0).

Consider the map F with the same domain as f given by F(x) = f(x) − f(x0). Clearly, f is

locally invertible if and only if so is F. We claim that in a sufficiently small neighborhood V of x0
the map F is admissibly homotopic to f ′(x0, ·) so that, by homotopy invariance, deg(F, V, 0) = s.

The assertion follows from Theorem 2.1.

We now prove the claim. Since f is Bouligand differentiable in x0 there exists a continuous

function ε such that ε(0) = 0 and

f(x) = f(x0) + f ′(x0, x− x0) + |x− x0| ε(x − x0).

Thus, F(x) = f ′(x0, x− x0) + |x− x0| ε(x − x0).

Consider the homotopy

H(x, λ) = f ′(x0, x− x0) + λ |x− x0| ε(x − x0), λ ∈ [0, 1],

and let {1, . . . , n} be the active index set of f (hence of F) at x0. Observe that

m := inf
{
|f ′(x0, v)| : |v| = 1

}
= min

i=1,...,n
‖ dfi(x0)‖ > 0.

Thus,

|H(x, λ)| ≥
(

m− |ε(x − x0)|
)

|x− x0| .

This shows that in a conveniently small ball centered at x0, the homotopy H is admissible. The

claim follows from the homotopy invariance property of the degree.

Example 5.1 Let R1 = {(x, y) ∈ R2 : y > x2}, R2 = {(x, y) ∈ R2 : y < −x2}, and R3 =

R2 \ (R1 ∪ R2). Consider the PC1 map f : R2 → R2 given by

f(x, y) =






(x, 2y− x2) for (x, y) ∈ R1,

(x, 2y+ x2) for (x, y) ∈ R2,

(x, y) for (x, y) ∈ R3.
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The map f is Frechét, hence Bouligand, differentiable (but it is not C1). In fact

f ′
(

(0, 0), ·
)

=

(

1 0
0 2

)

.

The determinant of f ′
(

(0, 0), ·
)

is positive. Hence, by Theorem 5.1, f is locally invertible about the

origin. Observe in passing that the local invertibility of f does not follow directly from Theorem 2.2

because Jac(f, x0) , Jac
(

f ′(x0, ·), 0
)

.

Example 5.2 Let R1 = {(x, y) ∈ R2 : y > 0}, R2 = {(x, y) ∈ R2 : y < −x2}, and R3 =

R2 \ (R1 ∪ R2). Consider the PC1 map f : R2 → R2 given by

f(x, y) =






(x, y/2) for (x, y) ∈ R1,

(x, 2y+ x2) for (x, y) ∈ R2,

(x, y) for (x, y) ∈ R3.

The map f is Bouligand differentiable. Indeed, the Bouligand differential is as follows:

f ′
(

(0, 0), (x, y)
)

=

{
(

1 0
0 1/2

)

( x
y ) if y ≥ 0,

(

1 0
0 2

)

( x
y ) if y ≤ 0.

Both the linear operators in the Bouligand differential have positive determinant. Hence, by Theorem

5.1, f is locally invertible about the origin.

In order to apply Theorem 5.1 above one needs to know when the linearization of a PC1 map

(which is a continuous piecewise linear map) is invertible. This is what all the previous section is

about. Criteria for the local invertibility of PC1 map will be deduced from Theorem 5.1 combined

with the results of the previous section.

Let f be an Rk-valued PC1 function in a sufficiently small ball B(x0, ρ) ⊆ Rk, and let I0 =

{1, . . . , n} be the active index set in B(x0, ρ). For each i ∈ I0 define

Si :=
{
x ∈ B(x0, ρ) : f(x) = fi(x)

}
. (5.1)

Let C1, . . . , Cn be the tangent cones (in the sense of Bouligand) at x0 to the sectors S1, . . . , Sn.

Assume that the Ci’s are admissible cones and that

dfi(x0)x = dfj(x0)x for any x ∈ Ci ∩ Cj, i, j ∈ {1, . . . , n}, i , j .

Define

F(x) = dfi(x0)x x ∈ Ci, i = 1, . . . , n (5.2)

so that F is a continuous piecewise linear map (compare [7]).

This section is concerned with local invertibility of such maps. We first consider arbitrary di-

mension.

Corollary 5.1 Let f and F be as above, with F nondegenerate at 0. Assume also that there exists

p ∈ Rk whose preimage under F, F−1(p), is a singleton that belongs to at most two of the cones Ci.

Then f is a Lipschitz homeomorphism in a sufficiently small neighborhood of x0.
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Proof. From Theorem 4.1 it follows that F is invertible. The assertion follows from Theorem 5.1.

The above Corollary 5.1 can be greatly simplified when the number of cones is n = 2, in the

sense that the assumption on the existence of the special point p can be dropped altogether. In fact,

in dimension k = 2 this is true also for n = 3 and, when n = 4, one can replace it by merely

requiring the convexity of the tangent cones to the sectors.

Corollary 5.2 Let f and F be as above, with F nondegenerate at 0 and n = 2. Then f is a Lipschitz

homeomorphism in a sufficiently small neighborhood of x0.

Proof. From Proposition 3.1 it follows that F is invertible. The assertion follows from Theorem 5.1.

We finally consider dimension k = 2 of the ambient space.

Corollary 5.3 Let f and F be as above, with F nondegenerate at 0. We have that if either

• n ∈ {1, 2, 3},

or

• n = 4 and all the cones Ci’s are convex,

then f is a Lipschitz homeomorphism in a sufficiently small neighborhood of x0.

Proof. Since F is nondegenerate then it is invertible by Theorem 4.2. Theorem 5.1, yields the asser-

tion.
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