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BANG�BANG TRAJECTORIES WITH A DOUBLE SWITCHING TIME IN THE MINIMUM

TIME PROBLEM

LAURA POGGIOLINI AND MARCO SPADINI

Sommario. In this paper we deal with the strong loal optimality of a triplet satisfying Pontryagin Maximum

Priniple in the minimum time problem between two �xed endpoints. The referene ontrol is assumed to be

bang-bang with a double swithing time

Our method are based on a topologial tehnique for the inversion of the projeted maximised �ow.

1. Introdution

This paper is part of a projet where Hamiltonian methods are applied to the study of su�ient seond order

onditions in optimal ontrol. We onsider the minimum time problem between two submanifolds of a �nite dimen-

sional manifold M in the ase when the dynamis is a�ne with respet to the ontrol and the latter takes values in

a box of R
m
. Namely, we onsider the following optimal ontrol problem:

T → min,(1.1a)

ξ̇(t) = f0(ξ(t)) +

m∑

s=1

us(t)fs(ξ(t)) a.e. t ∈ [0, T ],(1.1b)

ξ(0) ∈ N0, ξ(T ) ∈ Nf ,(1.1)

|us(t)| ≤ 1 s = 1, 2, . . . ,m a.e. t ∈ [0, T ].(1.1d)

For suh problem, we say that (T, ξ, u) is an admissible triplet if T > 0 and the ouple (ξ, u) ∈ W 1,∞([0, T ],M)×
L∞([0, T ],Rm) satis�es (1.1b), (1.1) and (1.1d).

We assume we are given a referene triplet

(
T̂ , ξ̂, û

)
whih satis�es the neessary onditions for optimality, namely

the Pontryagin Maximum Priniple (PMP) with an assoiated ovetor λ̂, and where the referene ontrol û is a

regular bang-bang ontrol with a double swithing time τ̂ and a �nite number of simple swithing times.

We are interested in strong loal optimality. To be more preise, we are interested in proving state-loal optimality

of the referene triplet. In fat, as we are dealing with a free terminal-time problem, two di�erent kinds of strong

loal optimality, de�ned aording to di�erent kinds of loalisation, may be of interest.

De�nition 1.1 ((time, state)-loal optimality). The trajetory ξ̂ : [0, T̂ ] → M is a (time, state)-loal minimiser if

there exist ε > 0 and a neighborhood U of its graph in R ×M suh that ξ̂ is a minimiser among the admissible

trajetories whose graph is in U and whose �nal time is greater than T̂ − ε.

De�nition 1.2 (state-loal optimality). The trajetory ξ̂ is a state-loal minimiser if there are neighborhoods U

of its range ξ̂([0, T̂ ]), U0 of ξ̂(0) and Uf of ξ̂(T̂ ) suh that ξ̂ is a minimiser among the admissible trajetories whose

range is in U , whose initial point is in N0 ∩ U0 and whose �nal point is in Nf ∩ Uf .
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Su�ient optimality onditions for state-loal optimality in the ase where only simple swithes our and the

initial and �nal points are �xed were given in [7℄, while in [3, 4℄ the authors give su�ient seond order onditions

for (time, state)-loal optimality in Bolza and in Mayer problems. State-loal optimality for the Bolza problem with

a ontrol-a�ne running ost is onsidered in [2℄ in the ase when only simple swithes our.

To keep the notation to the minimum we on�ne ourselves to the ase when the state spae is R
n
, the ontrol

is two-dimensional and only the double swith ours. In fat, this ase already ontains most of the mathematial

di�ulties of the proof. Namely, the presene of a double swith gives rise to a pieewise C1
(PC1

) maximised

Hamiltonian �ow where the number of smoooth piees around λ̂(τ̂ ) is �ve, thus requiring a non trivial proof of the

loal invertibility of the projetion of suh �ow on the state spae. This kind of di�ulty should be ompared with

the situation when at most four piees are present, as in [6℄. The more general ase where the state spae is a

manifold and there are simple swithes either preeeding or following the double one an be treated, at the ost of

a onsiderably heavier notation, with the same tehnique, see e.g. [4℄. We reall that the de�nition of PC1
maps is

the following:

De�nition 1.3 (PC1
funtions). Given two �nite dimensional manifolds N1 and N2, we say that a funtion

γ : N1 → N2 is a ontinuous seletion of C1
funtions if γ is ontinuous and there exists a �nite number of C1

funtions γ1, . . . , γk from N1 in N2 suh that the ative index set I := {i ∈ {1, 2, . . . , k} : γ(x) = γi(x)} is nonempty

for eah x ∈ N1. The funtions γi's are alled seletion funtions of γ. A ontinuous funtion γ is alled a PC1

funtion if at every point x ∈ N1 there exists a neighborhood V suh that the restrition of γ to V is a ontinuous

seletion of C1
funtions.

2. The problem

We onsider the minimum time problem between two given submanifolds N0 and Nf of the state spae R
n
:

T → min,(2.1a)

ξ̇(t) = f0(ξ(t)) + u1(t)f1(ξ(t)) + u2(t)f2(ξ(t)), a.e. t ∈ [0, T ](2.1b)

ξ(0) ∈ N0, ξ(T ) ∈ Nf ,(2.1)

|ui(t)| ≤ 1 i = 1, 2, a.e. t ∈ [0, T ].(2.1d)

The data of the problem, i.e. the drift f0 and the ontrolled vetor �elds, f1 and f2 are assumed to be smooth, let

us say C∞(Rn).

Assume we are given an admissible referene triplet

(
T̂ , ξ̂, û

)
satisfying the neessary optimality onditions (PMP)

where the referene ontrol û is

û(t) = (û1(t), û2(t)) =

{
(−1,−1) t ∈ [0, τ̂),

(1, 1) t ∈ (τ̂ , T̂ ].

(By an appropriate hange of f1 or f2 with −f1 and −f2 one an always assume that this is the ase.)

2.1. Notation. We are going to use some basi notions from sympleti geometry. For any manifold N ⊂ R
n
and

any x ∈ N , the tangent spae and the otangent spae to N in x are denoted as TxN and T ∗
xN , respetively. We

reall that the otangent bundle T ∗
R
n
to R

n
an be identi�ed with the Cartesian produt (Rn)

∗
×R

n = T ∗
xR

n×TxR
n

for any x ∈ R
n
. The projetion from T ∗

R
n
onto R

n
is denoted as π : ℓ ∈ T ∗

R
n 7→ πℓ ∈ R

n
. For the sake of larity in

several oasions we shall write TxR
n
in lieu of R

n
, to emphasize the fat that we are dealing with tangent vetors.

The anonial Liouville one�form s on T ∗
R
n
and the assoiated anonial sympleti two-form σ = ds allow to

assoiate to any, possibly time-dependent, smooth Hamiltonian Ft : T
∗
R
n → R, the unique Hamiltonian vetor �eld

−→
Ft suh that

σ(v,
−→
Ft(ℓ)) = 〈dFt(ℓ) , v〉, ∀v ∈ TℓT

∗
R
n.
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Choosing oordinates ℓ = (p, x), we have

−→
Ft(p, x) =

(
− ∂Ft
∂x

,
∂Ft
∂p

)
(p, x)

To any vetor �eld f : Rn → TRn we assoiate a Hamiltonian funtion F suh that

F : ℓ ∈ T ∗
R
n 7→ 〈ℓ , f(πℓ)〉 ∈ R,

so that

(2.2)

−→
F (p, x) =

(
− p df(x), f(x)

)
.

We denote by f̂t the pieewise time-dependent vetor �eld assoiated to the referene ontrol:

f̂t := f0 + û1(t)f1 + û2(t)f2

and by h1, h2 its restritions to the time intervals [0, τ̂ ) and (τ̂ , T̂ ], respetively:

h1 := f̂t

∣∣∣
[0,τ̂)

= f0 − f1 − f2, h2 := f̂t

∣∣∣
(τ̂ ,T̂ ]

= f0 + f1 + f2.

For future referene we also de�ne

k1 := f0 + f1 − f2 = h1 + 2f1 = h2 − 2f2,

k2 := f0 − f1 + f2 = h1 + 2f2 = h2 − 2f1.

The assoiated Hamiltonian funtions are denoted by the same letter, but apitalized. Namely

H1(ℓ) := 〈ℓ , h1(πℓ)〉, H2(ℓ) := 〈ℓ , h2(πℓ)〉, K1(ℓ) := 〈ℓ , k1(πℓ)〉, K2(ℓ) := 〈ℓ , k2(πℓ)〉.

The maximised Hamiltonian of the ontrol system (2.1) is well de�ned in the whole otangent bundle T ∗
R
n
and is

denoted by Hmax
:

Hmax(ℓ) := max
{
F0(ℓ) + u1F1(ℓ) + u2F2(ℓ) : (u1, u2) ∈ [−1, 1]2

}
= F0(ℓ) + |F1(ℓ)|+ |F2(ℓ)| .

Throughout the paper the symbol O(x) denotes a neighborhood of x in its ambient spae. The �ow starting at

time 0 of the time-dependent vetor �eld f̂t is de�ned in a neighborhood O(x̂0) for any t ∈ [0, T̂ ] and is denoted by

Ŝt : O(x̂0) → R
n
, i.e.

d

dt
Ŝt(x) = f̂t ◦ Ŝt(x) a.e. t ∈ [0, T̂ ], Ŝ0(x) = x.

3. Assumptions

We assume that the neessary onditions for optimality hold, namely the referene triplet

(
T̂ , ξ̂, û

)
satis�es

Pontryagin Maximum Priniple:

Assumption 3.1 (PMP). There exist p0 ∈ {0, 1} and an absolutely ontinuous urve λ̂ : [0, T̂ ] → T ∗
R
n
satisfying

the following properties

(p0, λ̂(0)) 6= (0, 0)

πλ̂(t) = ξ̂(t) ∀t ∈ [0, T̂ ]

˙̂
λ(t) =

−→
F̂ t(λ̂(t)) a.e. t ∈ [0, T̂ ],(3.1)

F̂t(λ̂(t)) = Hmax(λ̂(t)) = p0 a.e. t ∈ [0, T̂ ],(3.2)

λ̂(0)
∣∣∣
Tx̂0

N0

= 0, λ̂(T̂ )
∣∣∣
Tx̂f

Nf

= 0.(3.3)

We shall use the following notation:

ℓ̂0 := λ̂(0), ℓ̂d := λ̂(τ̂ ), ℓ̂f := λ̂(T̂ ) and x̂0 := ξ̂(0) = πℓ̂0, x̂d := ξ̂(τ̂ ) = πℓ̂d, x̂f := ξ̂(T̂ ) = πℓ̂f .
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Remark 3.1. Notie that (1) by (3.1), λ̂(t) = ℓ̂0Ŝ
−1
t ∗ ∀t ∈ [0, T̂ ]; (2) If λ̂ is a normal extremal (i.e. if p0 = 1),

then the transversality onditions (3.3) together with the maximalilty ondition (3.2) yield h1(x̂0) /∈ Tx̂0
N0 and

h2(x̂f ) /∈ Tx̂f
Nf .

Maximality ondition (3.2) implies, for any i = 1, 2 and for almost every t ∈ [0, T̂ ],

ûi(t)Fi(λ̂(t)) = ûi(t)〈λ̂(t) , fi(ξ̂(t))〉 ≥ 0.

We assume that the bang ars of λ̂ are regular, i.e. we assume that in eah point λ̂(t), t 6= τ̂ , the maximum of the

Hamiltonian is ahieved only by u = û(t) i.e.

F0(λ̂(t)) + u1F1(λ̂(t)) + u2F2(λ̂(t)) < Hmax(λ̂(t)) ∀(u1, u2) ∈ [−1, 1]2 \ {(û1(t), û2(t))}.

In terms of the ontrolled Hamiltonians F1 and F2 this an be stated as follows:

Assumption 3.2 (Regularity along the bang ars). Let i = 1, 2. If t 6= τ̂ , then

ûi(t)Fi(λ̂(t)) = ûi(t)〈λ̂(t) , fi(ξ̂(t))〉 > 0.

From the neessary maximality ondition (3.2) we get

d

dt
2Fi ◦ λ̂(t)

∣∣∣∣
t=τ̂−

=
d

dt
(Ki −H1) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

≥ 0,

d

dt
2Fi ◦ λ̂(t)

∣∣∣∣
t=τ̂+

=
d

dt
(H2 −Ki) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

≥ 0,

i = 1, 2.

We assume that the strit inequalities hold:

Assumption 3.3 (Regularity at the double swithing time).

d

dt
(Kν −H1) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

> 0,
d

dt
(H2 −Kν) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

> 0, ν = 1, 2.(3.4)

Assumption 3.3 means that at time τ̂ the referene adjoint λ̂(t) arrives simultaneosly at the hypersurfaes F1 = 0

and F2 = 0 with non-tangential veloity

−→
H1 and leaves with veloity

−→
H2 whih is again non-tangential to both

the hypersurfaes. We shall all Assumption 3.3 the Strong bang-bang Legendre ondition for double

swithing times. Equivalently, this assumption an be expressed in terms of the Lie brakets of vetor �elds or

in terms of the anonial sympleti struture σ (·, ·) on T ∗
R
n
. Reall that, given two smooth vetor �elds f and g,

then the Lie braket [f, g] is given by the vetor �eld (Dg)f − (Df)g.

Proposition 3.1. Assumption 3.3 is equivalent to

〈ℓ̂d , [h1, kν ] (x̂d)〉 = σ
(−→
H1,

−→
Kν

)
(ℓ̂d) > 0,

〈ℓ̂d , [kν , h2] (x̂d)〉 = σ
(−→
Kν ,

−→
H2

)
(ℓ̂d) > 0

ν = 1, 2.

In what follows we shall also need to reformulate Assumption 3.3 in terms of the pull-baks along the referene

�ow Ŝt of the vetor �elds hν and kν . De�ne

(3.5) gν(x) := Ŝ−1
τ̂ ∗
hν ◦ Ŝτ̂ (x), jν(x) := Ŝ−1

τ̂ ∗
kν ◦ Ŝτ̂ (x), ν = 1, 2

and let Gν , Jν be the assoiated Hamiltonians. Then a straightforward omputation yields

Proposition 3.2. Assumption 3.3 is equivalent to

〈ℓ̂0 , [g1, jν ] (x̂0)〉 = σ
(−→
G1,

−→
Jν

)
(ℓ̂0) > 0,

〈ℓ̂0 , [jν , g2] (x̂0)〉 = σ
(−→
Jν ,

−→
G2

)
(ℓ̂0) > 0

ν = 1, 2.(3.6)
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4. The finite dimensional sub-problem

We now introdue a �nite-dimensional sub-problem of (2.1) by keeping the same end-point onstraints and

restriting the set of admissible ontrols. Namely, we allow for independent variations of the swithing times of eah

of the two referene ontrol omponents û1 and û2.
We then extend this sub-problem by allowing for variations of the initial points of trajetories on a neighborhood

of x̂0 in R
n
. We penalise the latter variations with a smooth ost α that vanishes on N0.

In order to write the seond order approximation of this �nite-dimensional problem, we �rst write (2.1) as a

Mayer problem on the state spae R× R
n
.

4.1. A seond order approximation. We allow for perturbations of the �nal time, of the initial point of tra-

jetories on N0, of the �nal point on Nf and of the swithing time of either omponent of the referene ontrol:

Let τ1 := τ̂ + ε1 and τ2 := τ̂ + ε2 be the perturbed swithing times of the �rst and of the seond omponent of û,

respetively, and let τ3 := T̂ + ε3 be the perturbation of the �nal time T̂ . Two ases may our depending on the

sign of ε2 − ε1:

• If ε1 < ε2, the dynamis is given by

ξ̇(t) =





h1(ξ(t)) t ∈ (0, τ1),

k1(ξ(t)) t ∈ (τ1, τ2),

h2(ξ(t)) t ∈ (τ2, τ3);

• If ε2 < ε1, the dynamis is given by

ξ̇(t) =





h1(ξ(t)) t ∈ (0, τ2),

k2(ξ(t)) t ∈ (τ2, τ1),

h2(ξ(t)) t ∈ (τ1, τ3).

t

0 τ̂ T̂

(−1,−1) (1, 1)

t

0 τ1 τ2 τ3

(−1,−1) (1,−1) (1, 1)

t

0 τ2 τ1 τ3

(−1,−1) (−1, 1) (1, 1)

Figura 1. Variations of the referene ontrol

We an write the given minimum time problem as a Mayer one, with state spae R×R
n
. Let ξ0 : t ∈ [0, T ] 7→ ξ0(t) ∈ R

be suh that

ξ̇0(t) = 1, ξ0(0) = 0.

Also let the boldfaed vetor �elds f i be the extended vetor �elds assoiated to fi, i = 0, 1, 2, as follows:

f0 =

(
1
f0

)
, f i =

(
0
fi

)
, i = 1, 2.
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An analogous de�nition holds for the boldfaed vetor �elds hν , kν , ν = 1, 2. Finally, de�ne ξ(t) := (ξ0(t), ξ(t)) ∈
R× R

n
. Then the minimum time problem (2.1) is equivalent to

ξ0(T ) → min

ξ̇ = f0(ξ(t)) + u1(t)f1(ξ(t)) + u2(t)f2(ξ(t)) a.e. t ∈ [0, T ],

ξ(0) ∈ {0} ×N0, ξ(T ) ∈ R×Nf ,

|ui(t)| ≤ 1 i = 1, 2, a.e. t ∈ [0, T ].

We now restrit the ontrol variations by allowing only perturbations of the swithing and �nal times, thus obtaining

the �nite-dimensional minimisation problem

ξ0(T̂ + δ3) → min(4.1a)

ξ̇ =





h1(ξ(t)) t ∈ (0, τ̂ + δ1),

kν(ξ(t)) t ∈ (τ̂ + δ1, τ̂ + δ2),

h2(ξ(t)) t ∈ (τ̂ + δ2, T̂ + δ3),

(4.1b)

ξ(0) ∈ {0} ×N0, ξ(T̂ + δ3) ∈ R×Nf ,(4.1)

δ1 := min{ε1, ε2}, δ2 := max{ε1, ε2}, δ3 := ε3,(4.1d)

ν =

{
1 if ε1 ≤ ε2,

2 if ε1 > ε2.
(4.1e)

Let α : Rn → R be a smooth nonnegative funtion vanishing on N0. We remove the onstraint on the initial point

ξ(0) introduing the penalty ost α on suh point. We thus obtain the following Mayer problem

α(ξ(0)) + ξ0(T̂ + δ3) → min(4.2a)

ξ̇ =





h1(ξ(t)) t ∈ (0, τ̂ + δ1),

kν(ξ(t)) t ∈ (τ̂ + δ1, τ̂ + δ2),

h2(ξ(t)) t ∈ (τ̂ + δ2, T̂ + δ3),

(4.2b)

ξ(0) ∈ {0} × R
n, ξ(T̂ + δ3) ∈ R×Nf(4.2)

δ1 := min{ε1, ε2}, δ2 := max{ε1, ε2}, δ3 := ε3,(4.2d)

ν =

{
1 if ε1 ≤ ε2,

2 if ε1 > ε2.
(4.2e)

Let gν, jν , ν = 1, 2 be the pullbaks along the referene �ow of the vetor �elds hν and kν , as de�ned in equation

(3.5). Let N̂f be the pullbak of Nf along the referene �ow:

N̂f := Ŝ−1

T̂
(Nf )

and let Tx̂0
N̂f = Ŝ−1

T̂ ∗
(Tx̂f

Nf ) be its tangent spae at x̂0.

By the transversality ondition (3.3) at the referene �nal time T̂ , there exists a smooth funtion β : Rn → R that

vanishes on Nf and suh that dβ(x̂f ) = −ℓ̂f . Also let β̂ be the pull-bak of β along the referene �ow, β̂ := β ◦ Ŝ
T̂

so that, by Remark 3.1 (1),

β̂ : O(x̂0) → R, β̂
∣∣∣
O(x̂0)∩N̂f

≡ 0, dβ̂(x̂0) = −ℓ̂0.

Let us set

a1 := δ1, b := δ2 − δ1 = |ε2 − ε1| , a2 := δ3 − δ2;
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then the seond order approximations of problems (4.2), for ν = 1, 2, are de�ned on the losed half-spaes

V +
ν :=

{
(δx, a1, b, a2) ∈ R

n × R× R
+ × R : δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0

N̂f

}

and are given by

J ′′

ν [δx, a1, b, a2] =D2(α+ β̂)(x̂0)[δx]
2 + 2 δx · (a1g1 + b jν + a2g2) · β̂(x̂0) + (a1g1 + b jν + a2g2)

2 · β̂(x̂0)

+ a1b [g1, jν ] · β̂(x̂0) + a1a2 [g1, g2] · β̂(x̂0) + b a2 [jν , g2] · β̂(x̂0),
(4.3)

see [4℄ for the onstrution. The restritions of J ′′
ν to the sets

V +
0, ν :=

{
(δx, a1, b, a2) ∈ Tx̂0

N0 × R× R
+ × R : δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0

N̂f

}
, ν = 1, 2,

are indeed the seond order approximation of (4.1).

We are now in a position to state our last assumption.

Assumption 4.1. For eah ν = 1, 2, J ′′
ν is oerive on V +

0,ν .

Sine both J ′′
1 and J ′′

2 are quadrati forms, we may as well remove the onstraint b ≥ 0 and let them be de�ned on

the spaes

(4.4) Vν :=
{
(δx, a1, b, a2) ∈ R

n × R
3 : δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0

N̂f

}
, ν = 1, 2.

Also let

V0,ν :=
{
(δx, a1, b, a2) ∈ Tx̂0

N0 × R
3 : δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0

N̂f

}
, ν = 1, 2.

By [1℄ we obtain the following:

Theorem 4.1. If both the seond order approximations J ′′
1 and J ′′

2 are oerive on V0, 1 and V0, 2 respetively, then

there exists a smooth funtion α : Rn → R suh that α|N0
≡ 0, dα(x̂0) = ℓ̂0 and both J ′′

1 and J ′′
2 are oerive

quadrati forms on V1 and V2, respetively.

The main result of this paper is the following

Theorem 4.2. Assume

(
T̂ , ξ̂, û

)
is an admissible triplet for the minimum time problem (2.1). Assume the triplet

is bang-bang with only one swithing time whih is a double swithing time. Assume the triplet satis�es PMP

(Assumption 3.1), the regularity assumption along the bang ars (Assumption 3.2), the regularity assumption at

the double swithing time (Assumption 3.3) and the oerivity assumption (Assumption 4.1). Moreover assume the

trajetory ξ̂ is injetive. Then, ξ̂ is a strit state-loally optimal trajetory. In partiular, if p0 = 0, then ξ̂ is isolated
among admissible trajetories.

5. Hamiltonian methods

In this setion we desribe the proedure we are going to follow in order to prove Theorem 4.2, namely the

Hamiltonian approah to state�loal optimality.

Let Hmax
be the maximised Hamiltonian of the ontrol system. Also assume that there exist ε > 0 and a

neighborhood O(ℓ̂0) of ℓ̂0 suh that the �ow Hmax
of the assoiated Hamiltonian vetor �eld

−→
Hmax

is well de�ned

and PC1
in (−ε, T̂ + ε)×O(ℓ̂0); denote it as

Hmax : (t, ℓ) ∈ (−ε, T̂ + ε)×O(ℓ̂0) 7→ Hmax
t (ℓ) ∈ T ∗

R
n.

Let α : Rn → R be the smooth funtion of Theorem 4.1. Let us assume there exists a neighborhood O(x̂0) of x̂0 in

R
n
suh that

Λ0 :=
{
ℓ ∈ T ∗

R
n : Hmax(ℓ) = p0, ℓ = dα(x), x ∈ O(x̂0)

}

is a (n− 1)-dimensional manifold in T ∗
R
n
whih satis�es the following properties:
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• The one-form ω := (Hmax)∗(p dq) is exat on (−ε, T̂ + ε)× Λ0;

• The �ow πHmax : (t, ℓ) ∈ (−ε, T̂ + ε) × Λ0 7→ πHmax
t (ℓ) ∈ R

n
is one�to�one onto a neighborhood V of the

range of ξ̂.

Notie that ξ̂(t) = πHmax
t (ℓ̂0) for any t ∈ [0, T̂ ] so that a neessary ondition for the invertibility of the map

πHmax : [0, T ]× Λ0 → V is the injetivity of ξ̂ as required in Theorem 4.2. See also Theorem 3 in [8℄.

De�ne

(5.1) ψ := (πHmax)−1 =
(
ψR, ψΛ0

)
: V → (−ε, T̂ + ε)× Λ0

and let (T, ξ, u) be an admissible triplet suh that the range of ξ is in V . Assume, by ontradition, that T < T̂ .
We an obtain a losed path in V by onatenating in sequene the urve ξ, a path γf from ξ(T ) to x̂f , the urve

ξ̂ ran bakward in time and a path γ0 from x̂0 to ξ(0). From the exatness of the one�form ω := (Hmax)∗(p dq) we
get

(5.2) 0 =

∮
ω =

∫

ψ(ξ)

ω +

∫

ψ(γf )

ω −

∫

ψ(ξ̂)

ω +

∫

ψ(γ0)

ω = I1 + I2 − I3 + I4.

Computing eah of these integrals we get

I1:

∫

ψ(ξ)

ω =

∫ T

0

〈Hmax(ψ(ξ(t))) , ξ̇(t)〉dt ≤

∫ T

0

Hmax (Hmax(ψ(ξ(t)))) dt = p0T ;

I2: Parametrise ψ ◦ γf as

ψ ◦ γf : s ∈ [0, 1] 7→ (t(s), dα(q(s)), q(s)) ∈ (−ε, T̂ + ε)× Λ0

where (t(0), dα(q(0)), q(0)) = (tf , dα(qf ), qf ) = ψ(ξ(T )) and (t(1), dα(q(1)), q(1)) =
(
T̂ , dα(x̂0), x̂0

)
= ψ(ξ̂(T̂ )). By

the regularity Assumption 3.2 we an assume that Hmax ≡ H2 along Hmax(ψ(γf )), hene

∫

ψ(γf )

ω =

∫ 1

0

〈Hmax
t(s) (dα(q(s)), q(s)) , ṫ(s)h2

(
πHmax

t(s) (dα(q(s)), q(s))
)
+ π∗H

max
t(s) ∗q̇(s)〉ds

=

∫ 1

0

ṫ(s)H2

(
Hmax
t(s) (dα(q(s)), q(s)))

)
+ 〈Hmax

t(s) (dα(q(s)), q(s)) , π∗H
max
t(s) ∗q̇(s)〉ds

=

∫ 1

0

p0 ṫ(s) ds+

∫ 1

0

〈dα(q(s)) , q̇(s)〉ds = p0
(
T̂ − tf

)
+ α(x̂0)− α(qf );

I3:

∫

ψ(ξ̂)

ω =

∫ T̂

0

〈λ̂(t) ,
˙̂
ξ(t)〉dt = p0T̂ ;

I4: Parametrise ψ ◦ γ0 as

ψ ◦ γ0 : s ∈ [0, 1] 7→ (t(s), dα(q(s)), q(s)) ∈ (−ε, T̂ + ε)× Λ0

where (t(0), dα(q(0)), q(0)) =
(
0, dα(x̂0), x̂0

)
= ψ(x̂0) and (t(1), dα(q(1)), q(1)) = (t0, dα(q0), q0) = ψ(ξ(0)). By the

regularity Assumption 3.2 we an assume that Hmax ≡ H1 along Hmax(ψ(γ0)), hene we get

∫

ψ(γ0)

ω =

∫ 1

0

〈Hmax
t(s) (dα(q(s)), q(s)) , ṫ(s)h1

(
πHmax

t(s) (dα(q(s)), q(s))
)
+ π∗H

max
t(s) ∗q̇(s)〉ds

=

∫ 1

0

ṫ(s)H1

(
Hmax
t(s) (dα(q(s)), q(s))

)
+ 〈Hmax

t(s) (dα(q(s)), q(s)) , π∗H
max
t(s) ∗q̇(s)〉ds

=

∫ 1

0

p0 ṫ(s) ds+

∫ 1

0

〈dα(q(s)) , q̇(s)〉ds = p0t0 + α(q0)− α(x̂0).

(5.3)
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Sine ξ(0) ∈ N0 and πHmax
t0

(dα(q0), q0) = exp t0h1(q0), with (dα(q0), q0) ∈ Λ0, we have

0 = α(ξ(0)) − α(x̂0) = α(ξ(0)) − α(q0)− p0t0 + α(q0)− α(x̂0) + p0t0

=
(
α(πHt0 (dα(q0), q0))− α(q0)− p0t0

)
+
(
α(q0)− α(x̂0) + p0t0

)

= t0
(
h1 · α(q0)− p0

)
+
t20
2
h1 · h1 · α(q) +

(
α(q0)− α(x̂0) + p0t0

)

=
t20
2
h1 · h1 · α(q) +

(
α(q0)− α(x̂0) + p0t0

)

where q = exp sh1(q0) for some s between 0 and t0. Hene, substituting in (5.3) we get

∫

ψ(γ0)

ω = −
t20
2
h1 · h1 · α(q).

Thus, substituting in (5.2) we get

0 =

∮
ω ≤ p0T + p0

(
T̂ − tf

)
+ α(x̂0)− α(qf )− p0T̂ −

t20
2
h1 · h1 · α(q)

so that

p0
(
T − T̂

)
≥ p0

(
tf − T̂

)
+ α(qf )− α(x̂0) +

t20
2
h1 · h1 · α(q)

= C(ξ(T ))− C(x̂f ) +
t20
2
h1 · h1 · α(q)

(5.4)

where C(x) := p0(ψ
R(x)) + α(πψΛ0 (x)).

Taking advantage of the oerivity of the seond variation of the problem, in the following setions we shall show

that the funtion α given by Theorem 4.1 is suh that the manifold Λ0 satis�es the properties required for the

onstrution given above. Also we shall show that h1 ·h1 ·α(q) > 0 and that C|Nf
has a strit loal minimum in x̂f .

If p0 = 1, this yields the state-loal optimality of ξ̂. If either T = T̂ or p0 = 0, then equalities must hold throughout

(5.4). We will show how this fat implies ξ ≡ ξ̂, i.e. we shall prove that the minimum is strit and in partiular, if

p0 = 0, then ξ̂ is isolated among admissible trajetories.

6. The maximised flow

We are now going to prove the properties of the maximised Hamiltonian Hmax
and of the �ow of the assoiated

Hamiltonian vetor �eld

−→
Hmax

. Suh �ow will turn out to be Lipshitz ontinuous and PC1
. In our onstrution

we shall use only the regularity assumptions 3.2-3.3 and not the oerivity of the seond order approximations.

In order to de�ne the maximized Hamiltonian Hmax(ℓ) in a neighborhood of the range of λ̂ we deouple the

double swithing time. In this we depart from [7℄ in that we introdue the new vetor �elds k1, k2 in the sequene

of values assumed by the referene vetor �eld. We proeed in four steps:

• For ν = 1, 2 let τν(ℓ) be the unique solution to

(6.1) 2Fν ◦ exp τν(ℓ)
−→
H1(ℓ) = (Kν −H1) ◦ exp τν(ℓ)

−→
H1(ℓ) = 0

de�ned by the impliit funtion theorem (see below) in a neighborhood of (τ̂ , ℓ̂0);
• Choose

θ1(ℓ) := min {τ1(ℓ), τ2(ℓ)} ;

• For ν = 1, 2, let τ2ν (ℓ) be the unique solution to

(6.2) 2F3−ν ◦ exp
(
τ2ν (ℓ)− τν(ℓ)

)−→
Kν ◦ exp τν(ℓ)

−→
H1 (ℓ) =

= (H2 −Kν) ◦ exp
(
τ2ν (ℓ)− τν(ℓ)

)−→
Kν ◦ exp τν(ℓ)

−→
H1 (ℓ) = 0
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de�ned by the impliit funtion theorem (see below) in a neighborhood of (τ̂ , ℓ̂0);
• Choose

θ2(ℓ) =

{
τ21 (ℓ) if τ1(ℓ) ≤ τ2(ℓ),

τ22 (ℓ) if τ2(ℓ) < τ1(ℓ).

Notie that if τ1(ℓ) = τ2(ℓ), then τ
2
1 (ℓ) = τ22 (ℓ) = τ1(ℓ) = τ2(ℓ) so that θ2(·) is ontinuous. In Proposition 6.1 we will

show that in general θ1(ℓ) ≤ θ2(ℓ). To be more preise, the funtions θ1(·), θ2(·) are Lipshitz ontinuous on their

domain and are atually C1
on their domain with the only possible exeption of the set {ℓ ∈ T ∗

R
n : τ1(ℓ) = τ2(ℓ)}.

To justify the previous proedure we have to show that we an atually apply the impliit funtion theorem to

de�ne the swithing times τν , τ
2
ν (ℓ), ν = 1, 2. Let

Φν(t, ℓ) := (Kν −H1) ◦ exp t
−→
H1(ℓ) ν = 1, 2.

Then

∂Φν
∂t

∣∣∣∣
(τ̂ ,ℓ̂0)

= σ
(−→
H1,

−→
Kν

)
(ℓ̂d), ν = 1, 2,

whih are positive by Assumption 3.3, so that τ1(·) and τ2(·) are both well de�ned by means of the impliit funtion

theorem. Now let

Φ2
ν(t, ℓ) := (H2 −Kν) ◦ exp(t− τν(ℓ))

−→
Kν ◦ exp τν(ℓ)

−→
H1(ℓ), ν = 1, 2,

then

∂Φ2
ν

∂t

∣∣∣∣
(τ̂ ,ℓ̂0)

= σ
(−→
Kν ,

−→
H2

)
(ℓ̂d), ν = 1, 2,

whih are positive again by Assumption 3.3, and the same argument applies.

Proposition 6.1. There exists a neighborhood O(ℓ̂0) of ℓ̂0 in T ∗
R
n
suh that θ1(ℓ) ≤ θ2(ℓ) for any ℓ ∈ O(ℓ̂0).

Dimostrazione. If ℓ is suh that τ1(ℓ) = τ2(ℓ), then θ1(ℓ) = θ2(ℓ). Assume ℓ is suh that θ1(ℓ) = τ1(ℓ) < τ2(ℓ). Sine
Φ2(τ2(ℓ), ℓ) = 0 one has

Φ2(t, ℓ) =
∂Φ2

∂t
(τ2(ℓ), ℓ)(t− τ2(ℓ)) + o(t− τ2(ℓ)) = (t− τ2(ℓ))

(
σ
(−→
H1,

−→
K2

)∣∣∣
exp τ2(ℓ)

−→
H1(ℓ)

+ o(1)

)
.

In partiular, hoosing t = θ1(ℓ) = τ1(ℓ), by Assumption 3.3 and by ontinuity, when ℓ is su�iently lose to ℓ̂0, we
get

(6.3) Φ2(θ1(ℓ), ℓ) = (K2 −H1) ◦ exp θ1(ℓ)
−→
H1(ℓ) < 0.

Sine K2 −H1 = 2F2 = H2 −K1, inequality (6.3) an be written as

0 > (H2 −K1) ◦ exp 0
−→
K1 ◦ exp θ1(ℓ)

−→
H1(ℓ),

i.e. the swith of the omponent u2 has not yet ourred at time τ1(ℓ), so that θ2(ℓ)− τ1(ℓ) = τ21 (ℓ)− τ1(ℓ) > 0.
An analogous proof holds if θ1(ℓ) = τ2(ℓ) < τ1(ℓ). �

The onstrution above shows that the �ow of the maximized Hamiltonian oinides with the �ow of the

Hamiltonian H : (t, ℓ) ∈ [0, T ]× T ∗
R
n 7→ Ht(ℓ) ∈ R:

Ht(ℓ) :=





H1(ℓ) t ∈ [−ε, θ1(ℓ)],

Kν(ℓ) t ∈ (θ1(ℓ), θ2(ℓ)], when ν is suh that θ1(ℓ) = τν(ℓ),

H2(ℓ) t ∈ (θ2(ℓ), T̂ + ε].

Namely the maximised �ow Hmax
t (ℓ) is given by:

if (t, ℓ) ∈ S0 := {(t, ℓ) : t ∈ [−ε, θ1(ℓ)]} then

(6.4a) Hmax
t (ℓ) = exp t

−→
H1(ℓ);
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if (t, ℓ) ∈ S1 := {(t, ℓ) : θ1(ℓ) = τ1(ℓ), t ∈ (θ1(ℓ), θ2(ℓ)]} then

(6.4b) Hmax
t (ℓ) = exp(t− θ1(ℓ))

−→
K1 ◦ exp θ1(ℓ)

−→
H1(ℓ);

if (t, ℓ) ∈ S2
1 := {(t, ℓ) : θ1(ℓ) = τ1(ℓ), t ∈ (θ2(ℓ), T̂ + ε]} then

(6.4) Hmax
t (ℓ) = exp(t− θ2(ℓ))

−→
H2(ℓ) ◦ exp(θ2(ℓ)− θ1(ℓ))

−→
K1 ◦ exp θ1(ℓ)

−→
H1(ℓ);

if (t, ℓ) ∈ S2 := {(t, ℓ) : θ1(ℓ) = τ2(ℓ), t ∈ (θ1(ℓ), θ2(ℓ)]} then

(6.4d) Hmax
t (ℓ) = exp(t− θ1(ℓ))

−→
K2 ◦ exp θ1(ℓ)

−→
H1(ℓ);

if (t, ℓ) ∈ S2
2 := {(t, ℓ) : θ1(ℓ) = τ2(ℓ), t ∈ (θ2(ℓ), T̂ + ε]} then

(6.4e) Hmax
t (ℓ) = exp(t− θ2(ℓ))

−→
H2(ℓ) ◦ exp(θ2(ℓ)− θ1(ℓ))

−→
K2 ◦ exp θ1(ℓ)

−→
H1(ℓ).

In what follows we will need the di�erentials of τν and τ2ν , ν = 1, 2, in ℓ̂0. For ease of reading we shall write dτν
and dτ2ν instead of dτν(ℓ̂0) and dτ2ν (ℓ̂0). Formulas from the di�erentials easily follow from equations (6.1)-(6.2). In

partiular when δℓ = dα∗δx we have the following simpli�ed formulas for 〈dτν , δℓ〉 and 〈dτ2ν , δℓ〉, ν = 1, 2:

〈dτν , δℓ〉 =
−δx · jν · α(x̂0)

[g1, jν ] · α(x̂0)
,(6.5)

〈d
(
τ2ν − τν

)
, δℓ〉 =

1

[jν , g2] · α(x̂0)

{
−δx · j3−ν · α(x̂0) + δx · jν · α(x̂0)

[g1, j3−ν ] · α(x̂0)

[g1, jν ] · α(x̂0)

}
.(6.6)

In order to apply the invertibility results of [6℄ to the projeted maximised Hamiltonian �ow πHmax
, we need to

write its �rst order approximation π∗H
max
∗ in a neighborhood of the point (t, ℓ) = (τ̂ , ℓ̂0). Clearly this �rst order

approximation is a pieewise linear map whih we speify by giving its form in the polyhedral ones C0, C1, C
2
1 ,

C2, C
2
2 tangent to the setors S0, S1, S

2
1 , S2, S

2
2 de�ned in (6.4). We reall that the vetor �elds gν , jν , ν = 1, 2,

de�ned in (3.5), are the pull-baks of the vetor �elds hν , kν , respetively.
In C0 :=

{
(δt, δℓ) ∈ R× T

ℓ̂0
T ∗

R
n : δt < min{〈dτ1 , δℓ〉, 〈dτ2 , δℓ〉}

}

(6.7a) π∗H
max
∗ (δt, δℓ) = L0(δt, δℓ) := Ŝτ̂ ∗

(
δtg1(x̂0) + π∗δℓ

)
,

in C1 :=
{
(δt, δℓ) ∈ R× T

ℓ̂0
T ∗

R
n : 〈dτ1 , δℓ〉 < δt < 〈dτ21 , δℓ〉, 〈dτ1 , δℓ〉 < 〈dτ2 , δℓ〉

}

π∗H
max
∗ (δt, δℓ) = L1(δt, δℓ) := Ŝτ̂ ∗

(
(δt− 〈dτ1 , δℓ〉)j1(x̂0) + 〈dτ1 , δℓ〉g1(x̂0) + π∗δℓ

)
,

in C2
1 :=

{
(δt, δℓ) ∈ R× T

ℓ̂0
T ∗

R
n : 〈dτ1 , δℓ〉 < 〈dτ21 , δℓ〉 < δt, 〈dτ1 , δℓ〉 < 〈dτ2 , δℓ〉

}

π∗H
max
∗ (δt, δℓ) =L2

1(δt, δℓ)

:=Ŝτ̂ ∗

(
(δt− 〈dτ21 , δℓ〉)g2(x̂0) + 〈d(τ21 − τ1)(ℓ̂0) , δℓ〉j1(x̂0) + 〈dτ1 , δℓ〉g1(x̂0) + π∗δℓ

)
,

(6.7b)

in C2 :=
{
(δt, δℓ) ∈ R× T

ℓ̂0
T ∗

R
n : 〈dτ2 , δℓ〉 < δt < 〈dτ22 , δℓ〉, 〈dτ2 , δℓ〉 < 〈dτ1 , δℓ〉

}

(6.7) π∗H
max
∗ (δt, δℓ) = L2(δt, δℓ) := Ŝτ̂ ∗

(
(δt− 〈dτ2 , δℓ〉)j2(x̂0) + 〈dτ2 , δℓ〉g1(x̂0) + π∗δℓ

)
,

in C2
2 :=

{
(δt, δℓ) ∈ R× T

ℓ̂0
T ∗

R
n : 〈dτ2 , δℓ〉 < 〈dτ22 , δℓ〉 < δt, 〈dτ2 , δℓ〉 < 〈dτ1 , δℓ〉

}

π∗H
max
∗ (δt, δℓ) =L2

2(δt, δℓ)

:=Ŝτ̂ ∗

(
(δt− 〈dτ22 , δℓ〉)g2(x̂0) + 〈d(τ22 − τ2)(ℓ̂0) , δℓ〉j2(x̂0) + 〈dτ2 , δℓ〉g1(x̂0) + π∗δℓ

)
.

(6.7d)
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7. Properties of the seond order approximation

7.1. Exploiting the oerivity of the seond order approximation. We �rst prove the invertibility of the

�rst order approximation of the projeted maximised �ow π∗H
max
∗ . In order to take advantage of the invertibility

results of [6℄ for the ontinuous and pieewise linear map π∗H
max
∗ , we must �rst exploit the oerivity of the seond

order approximation of sub-problem (4.2). This is ahieved by examining J ′′
ν on ertain subspaes of the spae Vν

de�ned in (4.4). For ν = 1, 2 let

V 1
ν := {δe = (δx, a1, b, a2) ∈ Vν : b = a2 = 0, δx+ a1g1(x̂0) = 0} ,

V 2
ν := {δe = (δx, a1, b, a2) ∈ Vν : a2 = 0, δx+ a1g1(x̂0) + bjν(x̂0) = 0} ,

V 3
ν := {δe = (δx, a1, b, a2) ∈ Vν : δx+ a1g1(x̂0) + bjν(x̂0) + a2g2(x̂0) = 0} ,

and let Qν be the bilinear form assoiated to J ′′
ν , see [5℄, i.e. if δe = (δx, a1, b, a2) and δf = (δy, c1, d, c2) then

Qν [δe, δf ] =D2(α + β̂)(x̂0)(δx, δy) + δy · (a1g1 + b jν + a2g2) · β̂(x̂0)

+ δx · (c1g1 + d jν + c2g2) · β̂(x̂0) + (c1g1 + d jν + c2g2) · (a1g1 + b jν + a2g2) · β̂(x̂0)

+ da1 [g1, jν ] · β̂(x̂0) + c2a1 [g1, g2] · β̂(x̂0) + c2b [jν , g2] · β̂(x̂0).

(7.1)

For any subspae W ⊂ Vν denote as W⊥ν
the subspae of Vν orthogonal to W with respet to Qν i.e.

W⊥ν := {δe ∈ Vν : Qν [δe, δf ] = 0 ∀δf ∈W} .

Clearly V 1
1 = V 1

2 , so we shall simply denote this subspae as V 1
. Moreover, for any ν = 1, 2 we have

V 1 ⊆ V 2
ν ⊆ V 3

ν ⊆ Vν ,

so that J ′′
ν is oerive on Vν if and only if it is oerive on the four subspaes V 1

, V 2
ν ∩

(
V 1

)⊥ν
, V 3

ν ∩
(
V 2
ν

)⊥ν
and

Vν ∩
(
V 3
ν

)⊥ν
.

The following proposition gathers the properties of the above subspaes of Vν and haraterises the oerivity of

J ′′
ν on suh subspaes. The proposition should be ompared to Lemmas 4.1-4.4 of [4℄ where analougous onditions

are obtained for the weaker kind of oerivity needed to prove (time, state)-loal optimality.

Proposition 7.1. The following properties hold:

(1) if δe = (δx, a1, b, a2) ∈ V 1
then

(7.2) J ′′

ν [δe]
2 = a21 g1 · g1 · α(x̂0) = a21 h1 · h1 · α(x̂0),

(2) if δe = (δx, a1, b, a2) ∈ V 2
ν ∩

(
V 1

)⊥ν
then

δx · g1 · α(x̂0) = δx · h1 · α(x̂0) = 0(7.3)

J ′′

ν [δe]
2 =

1

2
b [g1, jν ] · α(x̂0) (〈dτν , dα∗δx〉 − a1) ,(7.4)

(3) if δe = (δx, a1, b, a2) ∈ V 3
ν ∩

(
V 2
ν

)⊥ν
then

δx · g1 · α(x̂0) = 0, a1 = 〈dτν , dα∗δx〉,(7.5)

J ′′

ν [δe]
2 =

1

2
a2 [jν , g2] · α(x̂0)

(
〈d
(
τ2ν − τν

)
, dα∗δx〉 − b

)
,(7.6)

(4) if δe = (δx, a1, b, a2) ∈ Vν ∩
(
V 3
ν

)⊥ν
then

(7.7) δx · g1 · α(x̂0) = 0, a1 = 〈dτν , dα∗δx〉, b = 〈d
(
τ2ν − τν

)
, dα∗δx〉,
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J ′′

ν [δe]
2 =

1

2
D2(α+ β̂)(x̂0)[δx, δx+ a1g1 + b jν + a2g2]

+
1

2
(δx+ a1g1 + b jν + a2g2) · (a1g1 + b jν + a2g2) · β̂(x̂0).

(7.8)

Dimostrazione. (1), (2), (3) and (7.7) are obtained as straightforward omputations from (7.1). In order to prove

(7.8) it su�es to take into aount (7.7), (6.5) and (6.6). �

7.2. Invertibility of the projeted maximised �ow. In this setion we prove that the funtion α de�ned in

Theorem 4.1 satis�es the properties required for the onstrution of Setion 5. Namely, let

Λ := {dα(x) : x ∈ R
n}

be the Lagrangian manifold de�ned by the funtion α of Theorem 4.1. Also let

(7.9) Λ0 := {ℓ ∈ Λ: H1(ℓ) = p0} , M0 := πΛ0 = {x ∈ R
n : h1 · α(x) = p0} .

By Theorem 3 of [8℄ it su�es to show that πHmax
is loally invertible at (t, ℓ̂0) for any t ∈ [0, T̂ ]. If t < τ̂ then

πHmax
is smooth at (t, ℓ̂0) and π∗H

max
∗ (δt, δℓ) = Ŝt ∗ (δtg1(x̂0) + π∗δℓ). So, in order to prove the loal invertibility

of πHmax
at (t, ℓ̂0), t ∈ [0, τ̂), it su�es to show that g1(x̂0) is not tangent to πΛ0. Indeed the following lemma

holds:

Lemma 7.2. The sets M0 and Λ0 are (n − 1)-dimensional submanifolds of R
n
and T ∗

R
n
, respetively. Moreover

h1(x̂0) is not tangent to M0.

Dimostrazione. By (7.9) it su�es to show that M0 is a submanifold i.e., it su�es to show that there exists

δx ∈ Tx̂0
R
n
suh that δx · h1 · α(x̂0) 6= 0. By the oerivity of the seond variation, see equation (7.2), we get the

laim by hoosing δx = h1(x̂0). �

For ν = 1, 2, let

Mν :=
{
πHmax

τν(ℓ)
(ℓ) : ℓ ∈ Λ0

}
, M2

ν :=
{
πHmax

τ2
ν (ℓ)

(ℓ) : ℓ ∈ Λ0

}
.

Proposition 7.3. For ν = 1, 2, Mν and M2
ν are (n− 1)-dimensional submanifolds of R

n
. Moreover:

(1) h1 and kν are not tangent to Mν and there exist cν > 0, δxν ∈ Tx̂d
Mν suh that kν(x̂d) = δxν + cνh1(x̂d);

(2) h2 and kν are not tangent to M2
ν and there exist c2ν > 0, δx2ν ∈ Tx̂d

M2
ν suh that h2(x̂d) = δx2ν + c2νkν(x̂d).

Dimostrazione. Let δx ∈ Tx̂d
R
n
. Then δx is tangent to Mν if and only if there exists δℓ0 ∈ Λ0 suh that δx =

π∗Ĥτ̂ ∗δℓ0 + 〈dτν , δℓ0〉h1(x̂d) = Ŝτ̂ ∗ (π∗δℓ0 + 〈dτν , δℓ0〉g1(x̂0)). As π∗δℓ0 ∈ Tx̂0
M0 while g1(x̂0) /∈ Tx̂0

M0 we get

δx = 0 if and only if π∗δℓ0 = 0, i.e., if and only if δℓ0 = dα∗π∗δℓ0 = 0. This proves that Mν is a (n− 1)-dimensional

submanifold of the state spae R
n
.

Let us now prove (1): assume h1(x̂d) is tangent to Tx̂d
Mν . Then there exists δx0 ∈ Tx̂0

M0 suh that g1(x̂0) =
δx0 + 〈dτν , dα∗δx0〉g1(x̂0), i.e., δx0 + (〈dτν , dα∗δx0〉 − 1) g1(x̂0) = 0 so that δx0 = 0 while 〈dτν , dα∗δx0〉 = 1, a
ontradition.

Let δxν ∈ Tx̂d
Mν and cν ∈ R suh that kν(x̂d) = δxν+cνh1(x̂d) and let δx0 ∈ Tx̂0

M0 be suh that δxν = Ŝτ̂ ∗δx0+
〈dτν , dα∗δx0〉h1(x̂d), so that jν(x̂0) = δx0+(〈dτν , dα∗δx0〉+ cν) g1(x̂0). Thus, by (7.3), δe :=

(
δx0, 〈dτν , dα∗δx0〉+

cν ,−1, 0
)
∈ V ν2 ∩ (V1)

⊥ν
and, by (7.4), 0 < J ′′

ν [δe]
2 =

1

2
(−1) [g1, jν ] · α(x̂0) (−cν) so that cν > 0.

Let us now turn to M2
ν : δx ∈ Tx̂d

R
n
is tangent to M2

ν if and only if there exists δℓ0 ∈ T
ℓ̂0
Λ0 suh that

δx = π∗Ĥτ̂ ∗δℓ0 + 〈dτν , δℓ0〉h1(x̂d) + 〈d(τ2ν − τν) , δℓ0〉kν(x̂d)

= Ŝτ̂ ∗

(
π∗δℓ0 + 〈dτν , δℓ0〉g1(x̂0) + 〈d(τ2ν − τν) , δℓ0〉jν(x̂0)

)
.
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Thus, if δx = 0, then δe :=
(
π∗δℓ0, 〈dτν , δℓ0〉, 〈d(τ

2
ν − τν) , δℓ0〉, 0

)
∈ V 2

ν ∩
(
V 2
ν

)⊥ν
by (7.5), whih is {0} by the

oerivity assumption. Thus π∗δℓ0 = 0 and δℓ0 = dα∗π∗δℓ0 = 0. Thus M2
ν is a (n− 1)-dimensional submanifold of

R
n
.

Let us now prove (2): kν(x̂d) is tangent to M
2
ν if and only if there exists δx0 ∈ Tx̂0

M0 suh that jν(x̂0) = δx0 +
〈dτν , dα∗δx0〉g1(x̂0) + 〈d(τ2ν − τν) , dα∗δx0〉jν(x̂0), i.e., δe :=

(
δx0, 〈dτν , dα∗δx0〉, 〈d(τ

2
ν − τν) , dα∗δx0〉 − 1, 0

)
, by

(7.5) is in V 2
ν ∩

(
V 2
ν

)⊥ν
whih is {0} by the oerivity assumption. So that δx0 = 0 while 〈d(τ2ν − τν) , dα∗δx0〉 is

equal to 1, a ontradition.

Let δx2ν ∈ Tx̂d
M2
ν and c2ν ∈ R suh that h2(x̂d) = δx2ν + c2νkν(x̂d) and let δx0 ∈ Tx̂0

M0 suh that

δx2ν = Ŝτ̂ ∗δx0 + 〈dτν , dα∗δx0〉h1(x̂d) + 〈d(τ2ν − τν) , dα∗δx0〉kν(x̂d)

so that g2(x̂0) = δx0 + 〈dτν , dα∗δx0〉g1(x̂0) +
(
〈d(τ2ν − τν) , dα∗δx0〉+ c2ν

)
jν(x̂0) i.e., by (7.5)

δe :=
(
δx0, 〈dτν , dα∗δx0〉, 〈d(τ

2
ν − τν) , dα∗δx0〉+ c2ν ,−1

)
∈ V 3

ν ∩
(
V 2
ν

)⊥ν
.

Thus, by the oerivity assumption and (7.6) we get 0 < J ′′
ν [δe]

2 =
1

2
(−1) [jν , g2] · α(x̂0)

(
−c2ν

)
so that c2ν > 0. �

We now prove that the determinants of the linear maps de�ned in (6.7) have the same sign. This is equivalent

to proving that the images of eah pair of adjaent setors do not overlap (see Proposition 3.1 in [6℄).

Further on we will show that

• if dτ1|T
ℓ̂0

Λ0
and dτ2|T

ℓ̂0
Λ0

do not oinide, then the onditions of Theorem 4.1 of [6℄ are satis�ed, see setion

7.2.3,

• if dτ1|T
ℓ̂0

Λ0
≡ dτ2|T

ℓ̂0
Λ0
, then Clarke's inverse map theorem an be applied, see setion 7.2.4.

7.2.1. Setors C0 and C1. Assume, by ontradition, there exist (δt0, δℓ0) ∈ C0 ∩
(
R × T

ℓ̂0
Λ0

)
and (δt1, δℓ1) ∈

C1 ∩
(
R× T

ℓ̂0
Λ0

)
suh that

(7.10) L0(δt0, δℓ0) = L1(δt1, δℓ1),

Equation (7.10) is equivalent to

π∗ (δℓ1 − δℓ0) +
(
〈dτ1 , δℓ1〉 − δt0

)
g1(x̂0) +

(
δt1 − 〈dτ1 , δℓ1〉

)
j1(x̂0) = 0.

Let

δx := π∗ (δℓ1 − δℓ0) , a1 := 〈dτ1 , δℓ1〉 − δt0, b := δt1 − 〈dτ1 , δℓ1〉.

Notie that

(δt0 − 〈dτ1 , δℓ0〉) b = (δt0 − 〈dτ1 , δℓ0〉) (δt1 − 〈dτ1 , δℓ1〉) < 0

beause (δt0, δℓ0) ∈ C0 and (δt1, δℓ1) ∈ C1. Thus, using (3.6), (7.4) and (6.5) we get

0 ≥ [g1, j1] · α(x̂0) (δt0 − 〈dτ1 , δℓ0〉) (δt1 − 〈dτ1 , δℓ1〉)

= b (−a1 [g1, j1] · α(x̂0)− δx · j1 · α(x̂0)) = J ′′

1 [a1, b, 0]
2 > 0,

a ontradition.

7.2.2. Setors C1 and C2
1 . Assume, by ontradition, there exist (δt1, δℓ1) ∈ C1 ∩

(
R × T

ℓ̂0
Λ0

)
and (δt21, δℓ

2
1) ∈

C2
1 ∩

(
R× T

ℓ̂0
Λ0

)
suh that

(7.11) L1(δt1, δℓ1) = L2
1(δt

2
1, δℓ

2
1),

Equation (7.11) is equivalent to

π∗
(
δℓ21 − δℓ1

)
+ 〈dτ1 , δℓ

2
1 − δℓ1〉g1(x̂0)+

+
(
〈dτ21 , δℓ

2
1〉 − 〈dτ1 , δℓ

2
1 − δℓ1〉 − δt1

)
j1(x̂0) +

(
δt21 − 〈dτ21 , δℓ

2
1〉
)
g2(x̂0) = 0.
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Let

(7.12)

δℓ := δℓ21 − δℓ1, δx := π∗δℓ, a1 := 〈dτ1 , δℓ〉,

b := 〈dτ21 , δℓ
2
1〉 − 〈dτ1 , δℓ〉 − δt1, a2 := δt21 − 〈dτ21 , δℓ

2
1〉.

Notie that (
δt1 − 〈dτ21 , δℓ1〉

)
a2 =

(
δt1 − 〈dτ21 , δℓ1〉

) (
δt21 − 〈dτ21 , δℓ

2
1〉
)
< 0

beause (δt1, δℓ1) ∈ C1 and (δt21, δℓ
2
1) ∈ C2

1 .

Thus, using (3.6), (7.4) and (6.6) with ν = 1 we get

0 ≥ [j1, g2] · α(x̂0)
(
δt21 − 〈dτ21 , δℓ

2
1〉
) (
δt1 − 〈dτ21 , δℓ1〉

)
= a2 [j1, g2] · α(x̂0)

(
δt1 − 〈dτ21 , δℓ1〉+ b− b

)

= a2 [j1, g2] · α(x̂0)
(
〈d
(
τ21 − τ1

)
(ℓ̂0) , dα∗δx〉 − b

)

= a2

(
[g1, j2] · α(x̂0)

(
δx · j1 · α(x̂0)

[g1, j1] · α(x̂0)
−
δx · j2 · α(x̂0)

[g1, j2] · α(x̂0)

)
− b [j1, g2] · α(x̂0)

)

as j2 − g1 = g2 − j1, [g1, j2] = [g1, j2 − g1] = [g1, g2 − j1] and sine δx · g1 · α(x̂0) = 0, so that δx · j2 · α(x̂0) =
δx · (g2 − j1) · α(x̂0) we get:

= a2

(
[g1, g2 − j1] · α(x̂0)

δx · j1 · α(x̂0)

[g1, j1] · α(x̂0)
− δx · (g2 − j1) · α(x̂0)− b [j1, g2] · α(x̂0)

)

= a2

(
[g1, g2] · α(x̂0)

δx · j1 · α(x̂0)

[g1, j1] · α(x̂0)
− δx · g2 · α(x̂0)− b [j1, g2] · α(x̂0)

)

= a2 [g1, g2] · α(x̂0)
δx · j1 · α(x̂0)

[g1, j1] · α(x̂0)
− δx · a2g2 · α(x̂0) − a2b [j1, g2] · α(x̂0)

by (6.5) with ν = 1 and the de�nition of a1 given in (7.12):

= −a1a2 [g1, g2] · α(x̂0)− δx · (a1g1 + bj1 − bj1 + a2g2) · α(x̂0)− a2b [j1, g2] · α(x̂0)

again by (6.5) with ν = 1 and the de�nition of a1 given in (7.12):

= −a1a2 [g1, g2] · α(x̂0)− a2b [j1, g2] · α(x̂0)− a1b [g1, j1] · α(x̂0)− δx · (a1g1 + bj1 + a2g2) · α(x̂0)

= J ′′

1 [a1, b, a2]
2 > 0,

a ontradition. We an thus onlude that

det (L0) det (L1) > 0, det (L1) det
(
L2
1

)
> 0.

Analougously one an show that

det (L0) det (L2) > 0, det (L2) det
(
L2
2

)
> 0.

Suh inequalities also imply det
(
L2
1

)
det

(
L2
2

)
> 0 so that all the determinants have the same sign.

7.2.3. Case when dτ1|T
ℓ̂0

Λ0
and dτ2|T

ℓ̂0
Λ0

do not oinide. In order to apply Theorem 4.1 of [6℄, we now show that

there exists a point in the image of π∗H
max
∗ whose preimage is a singleton.

Let

(
δt, δℓ

)
∈ C0 ∩

(
R× T

ℓ̂0
Λ0

)
suh that 〈dτ1 , δℓ〉 = 〈dτ2 , δℓ〉, i.e.

δt < 〈dτ1 , δℓ〉 = 〈dτ2 , δℓ〉 = 〈dτ21 , δℓ〉 = 〈dτ22 , δℓ〉

and let δy := π∗H
max
∗

(
δt, δℓ

)
= L0

(
δt, δℓ

)
.

With the same omputation of setion 7.2.1 one an prove that there is no (δt, δℓ) in the set (C1 ∪ C2)∩
(
R×T

ℓ̂0
Λ0

)

suh that δy = π∗H
max
∗ (δt, δℓ). It now remains to prove that no element of

(
C2

1 ∪ C2
2

)
∩
(
R×T

ℓ̂0
Λ0

)
an be mapped

to δy. We present the proof for C2
1 ∩

(
R× T

ℓ̂0
Λ0

)
. Similar onsiderations work for C2

2 ∩
(
R× T

ℓ̂0
Λ0

)
.
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Assume, by ontradition,

δy = π∗H
max
∗

(
δt21, δℓ

2
1

)
for some (δt21, δℓ

2
1) ∈ C2

1 ∩
(
R× T

ℓ̂0
Λ0

)

so that, by (6.7a) and (6.7b),

(7.13)

(
δt21 − 〈dτ21 , δℓ

2
1〉
)
g2(x̂0) +

〈
d
(
τ21 − τ1

)
(ℓ̂0), δℓ

2
1

〉
j1(x̂0)+

+ 〈dτ1 , δℓ
2
1〉g1(x̂0) + π∗δℓ

2
1 = δtg1(x̂0) + π∗δℓ

Set

(7.14)

δℓ := δℓ21 − δℓ, δx := π∗δℓ a1 := 〈dτ1 , δℓ
2
1〉 − δt,

b := 〈d
(
τ21 − τ1

)
(ℓ̂0) , δℓ

2
1〉, a2 := δt21 − 〈dτ21 , δℓ

2
1〉

and notie that a2 is nonnegative while b+ a2 is positive. Equation (7.13) reads

(7.15) δx+ a1g1(x̂0) + bj1(x̂0) + a2g2(x̂0) = 0, δx ∈ π∗Tℓ̂0Λ0 = Tx̂0
M0

so that J ′′
1 [δx, a1, b, a2] > 0 by the oerivity Assumption 4.1. Hene, by (4.3) using (7.15),

0 <(a1g1 + b j1 + a2g2)
2 · α(x̂0)− a1b [g1, j1] · α(x̂0)− a1a2 [g1, g2] · α(x̂0)− b a2 [jν , g2] · α(x̂0)

= − a1b [g1, j1] · α(x̂0)− δx · (bj1 + a2g2) · α(x̂0)− a1a2 [g1, g2] · α(x̂0)− ba2 [j1, g2] · α(x̂0)

in the �rst addendum we replae a1 as in (7.14), whereas in the seond one we substitute −δx · j1 · α(x̂0) with

[g1, j1] · α(x̂0)〈dτ1 , δℓ〉 as in (6.5)

= b
(
δt− 〈dτ1 , δℓ

2
1〉
)
[g1, j1] · α(x̂0) + b [g1, j1] · α(x̂0)〈dτ1 , δℓ〉 − a2δx · g2 · α(x̂0)− a1a2 [g1, g2] · α(x̂0)

− b a2 [j1, g2] · α(x̂0)

= b
(
δt− 〈dτ1 , δℓ〉

)
[g1, j1] · α(x̂0)− a2 (δx · g2 · α(x̂0) + a1 [g1, g2] · α(x̂0) + b [j1, g2] · α(x̂0))

we an write [g1, g2] · α(x̂0) = [g1, j2] · α(x̂0) + [g1, g2 − j2] · α(x̂0) = [g1, j2] · α(x̂0) + [g1, j1] · α(x̂0) obtaining

= b
(
δt− 〈dτ1 , δℓ〉

)
[g1, j1] · α(x̂0)− a2

{
δx · g2 · α(x̂0) + a1 [g1, j2] · α(x̂0) + a1 [g1, j1] · α(x̂0)

+ b [j1, g2] · α(x̂0)
}

in the seond addendum within the urly brakets we replae a1 as in (7.14) and in the last addendum we replae

b as in (7.14). Taking into aount that 〈d(τ21 − τ1)(ℓ̂0) , δℓ〉 = 0 we obtain

= b
(
δt− 〈dτ1 , δℓ〉

)
[g1, j1] · α(x̂0)− a2

{
δx · g2 · α(x̂0)−

(
δt− 〈dτ1 , δℓ

2
1 ∓ δℓ〉

)
[g1, j2] · α(x̂0)

+ a1 [g1, j1] · α(x̂0) + 〈d(τ21 − τ1)(ℓ̂0) , δℓ
2
1 ∓ δℓ〉 [j1, g2] · α(x̂0)

}

We now write 〈dτ1 , δℓ〉 as in (6.5) so that

= b
(
δt− 〈dτ1 , δℓ〉

)
[g1, j1] · α(x̂0)− a2

{
δx · g2 · α(x̂0)−

(
δt− 〈dτ1 , δℓ〉

)
[g1, j2] · α(x̂0)

+
−δx · j1 · α(x̂0)

[g1, j1] · α(x̂0)
[g1, j2] · α(x̂0) + a1 [g1, j1] · α(x̂0) + 〈d(τ21 − τ1)(ℓ̂0) , δℓ〉 [j1, g2] · α(x̂0)

}
.

In the last addendum we write 〈d(τ21 − τ1)(ℓ̂0) , δℓ〉 as in (6.6) and simplify

=
(
δt− 〈dτ1 , δℓ〉

) (
b [g1, j1] · α(x̂0) + a2 [g1, j2] · α(x̂0)

)
+ a2

(
− a1 [g1, j1] · α(x̂0)− δx · (g2 − j2) · α(x̂0)

)
.
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We now use the relation g2 − j2 = j1 − g1 in δx · (g2 − j2) · α(x̂0), the de�nition of a1 as in (7.14) and the fat that

δx · g1 · α(x̂0) = 0 sine δx ∈ Tx̂0
M0 yielding

=
(
δt− 〈dτ1 , δℓ〉

) (
b [g1, j1] · α(x̂0) + a2 [g1, j2] · α(x̂0)

)

+ a2

( (
δt− 〈dτ1 , δℓ

2
1 ∓ δℓ〉

)
[g1, j1] · α(x̂0)− δx · j1 · α(x̂0)

)
.

Finally, we ompute 〈dτ1 , δℓ〉 as in (6.5) and simplify with the last addendum obtaining

=
(
δt− 〈dτ1 , δℓ〉

) (
b [g1, j1] · α(x̂0) + a2 [g1, j2] · α(x̂0)

)
+ a2

( (
δt− 〈dτ1 , δℓ〉

)
[g1, j1] · α(x̂0)

)

=
(
δt− 〈dτ1 , δℓ〉

) (
(b+ a2) [g1, j1] · α(x̂0) + a2 [g1, j2] · α(x̂0)

)
.

The �rst parenthesis is negative sine (δt, δℓ) ∈ C0 ∩
(
R× T

ℓ̂0
Λ0

)
while the seond one is positive by (7.14). Thus

the produt is negative, whih ontradits J ′′
1 [δx, a1, b, a2]

2 > 0.

7.2.4. Case when dτ1|T
ℓ̂0

Λ0
and dτ2|T

ℓ̂0
Λ0

oinide. In the ase when dτ1|T
ℓ̂0

Λ0
≡ dτ2|T

ℓ̂0
Λ0

Theorem 4.1 of [6℄ does

not appy as the interiors of C1 and C2 are empty. Thus we prove the invertibility of the projeted maximised �ow

by Clarke's inverse funtion theorem.

Case when dτ1|T
ℓ̂0

Λ0
≡ dτ2|T

ℓ̂0
Λ0

≡ 0. Let a0 ≥ 0, aν , a
2
ν ≥ 0, ν = 1, 2, be suh that a0 + a1 + a21 + a2 + a22 = 1.

Then, for any (δt, δℓ) = (δt, dα∗δx) ∈ R× T
ℓ̂0
Λ0, by equations (6.7), we get

L0(δt, δℓ) = δtg1(x̂0) + δx, L1(δt, δℓ) = δtj1(x̂0) + δx,

L2(δt, δℓ) = δtj2(x̂0) + δx, L2
1(δt, δℓ) = L2

2(δt, δℓ) = δtg2(x̂0) + δx.

By Proposition 7.3 we have

• j1(x̂0) = c1g1(x̂0) + δx10 for some c1 > 0 and δx10 ∈ Tx̂0
M0;

• j2(x̂0) = c2g1(x̂0) + δx20 for some c2 > 0 and δx20 ∈ Tx̂0
M0;

• g2(x̂0) = c21j1(x̂0) + δx1,20 for some c21 > 0 and δx1,20 ∈ Tx̂0
M0.

Thus

g2(x̂0) = c21
(
c1g1(x̂0) + δx10

)
+ δx1,20 = c3g1(x̂0) + δx30

where c3 := c21c1 > 0 and δx30 := c21δx
1
0 + δx1,20 ∈ Tx̂0

M0.

Thus

(
a0L0 + a1L1 + a2L2 + a21L

2
1 + a22L

2
2

)
(δt, δℓ) = 0 if and only if

δx+ δt
(
a1δx

1
0 +

(
a21 + a22

)
δx30 + a2δx

2
0

)
+ δt

(
a0 + a1c1 +

(
a21 + a22

)
c3 + a2c2

)
g1(x̂0) = 0.

As g1(x̂0) /∈ Tx̂0
M0 this equality yields

δx+ δt
(
a1δx

1
0 +

(
a21 + a22

)
δx30 + a2δx

2
0

)
= 0,

δt
(
a0 + a1c1 +

(
a21 + a22

)
c3 + a2c2

)
= 0.

Sine a0+a1c1+
(
a21 + a22

)
c3+a2c2 > 0 we get δt = 0 and δx = 0. We have thus proved that any onvex ombination

of the �ve linear approximations of π∗H
max
∗ at (τ̂ , ℓ̂0) is invertible, and Clarke's inverse funtion theorem applies.
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Case when dτ1|T
ℓ̂0

Λ0
≡ dτ2|T

ℓ̂0
Λ0

6= 0. In this ase ker dτ1|T
ℓ̂0

Λ0
≡ ker dτ2|T

ℓ̂0
Λ0

is a (n− 2)�dimensional linear

spae and

dτ21 ≡ dτ22 ≡ dτ2 ≡ dτ1 on T
ℓ̂0
Λ0.

Let v1, . . . , vn−1 be a basis of Tx̂0
M0 suh that 〈dτ1 , dα∗v1〉 = 1, 〈dτ1 , dα∗vs〉 = 0, for any s = 2, . . . , n − 1. As

a basis for R× T
ℓ̂0
Λ0 hoose (1, 0), (1, dα∗v1), (0, dα∗vs), s = 2, . . . , n− 1 and, as a basis for R

n = Tx̂0
R
n
, hoose

g1(x̂0), vs, s = 1, 2, . . . , n− 1. By equations (6.7) we get

L0(1, 0) = g1(x̂0), L1(1, 0) = j1(x̂0), L2(1, 0) = j2(x̂0), L2
1(1, 0) = L2

2(1, 0) = g2(x̂0),

L0(1, dα∗v1) = L1(1, dα∗v1) = L2(1, dα∗v1) = L2
1(1, dα∗v1) = L2

2(1, dα∗v1) = g1(x̂0) + v1,

L0(0, dα∗vs) = L1(0, dα∗vs) = L2(0, dα∗vs) = L2
1(0, dα∗vs) = L2

2(0, dα∗vs) = vs ∀s = 2, . . . , n− 1.

In order to write the matrix rappresentation following these bases we need to ompute j1(x̂0), j2(x̂0) and g2(x̂0) in
terms of the basis g1(x̂0), v1, . . . , vn−1.

Observe that, by Proposition 7.3(1), we have kν(x̂d) = cνh1(x̂d) + δxν where δxν ∈ Tx̂d
Mν and cν > 0. The

di�erential at ℓ̂0 of the surjetive map ℓ ∈ Λ0 7→ πHmax
τν(ℓ)

(ℓ) ∈ Mν operates as follows: δℓ0 ∈ T
ℓ̂0
Λ0 7→ Ŝτ̂ ∗π∗δℓ0 +

〈dτν , δℓ0〉h1(x̂d). Therefore there exists δx0ν ∈ Tx̂0
M0 suh that δxν = Ŝτ̂ ∗δx0ν + 〈dτν , dα∗δx0ν〉h1(x̂d). Thus

kν(x̂d) = cνh1(x̂d) + Ŝτ̂ ∗δx0ν + 〈dτν , dα∗δx0ν〉h1(x̂d), equivalently,

jν(x̂0) =
(
cν + 〈dτν , dα∗δx0ν〉

)
g1(x̂0) + δx0ν =

(
cν + γν1

)
g1(x̂0) +

n−1∑

s=1

γνsvs, ν = 1, 2

where δx0ν =

n−1∑

s=1

γνsvs.

Analogously, by Proposition 7.3(2), one an show that

g2(x̂0) =
(
γ2ν1 + c2ν

(
cν + γν1

))
g1(x̂0) +

n−1∑

s=1

(
c2νγνs + γ2νs

)
vs, ν = 1, 2

for appropriate numbers γνs, γ
2
νs, s = 1, . . . , n− 1.

Thus, the matries assoiated to the �ve mappings in these bases are

A0 =




1 1 0 . . . 0
0 1 0 . . . 0
0 0
.

.

.

.

.

. In−2

0 0



, A1 =




c1 + γ11 1 0 . . . 0
γ11 1 0 . . . 0
γ12 0
.

.

.

.

.

. In−2

γ1,n−1 0



,

A2 =




c2 + γ21 1 0 . . . 0
γ21 1 0 . . . 0
γ22 0
.

.

.

.

.

. In−2

γ2,n−1 0



, A2

1 = A2
2 =




γ211 + c21
(
c1 + γ11

)
1 0 . . . 0

c21γ11 + γ211 1 0 . . . 0
c21γ12 + γ212 0

.

.

.

.

.

. In−2

c21γ1,n−1 + γ21,n−1 0




i.e. the �ve matries di�er only in the �rst olumn. Thus

det
(
a0A0 + a1A1 + a2A2 + a21A

2
1 + a22A

2
2

)

= a0 detA0 + a1 detA1 + a2 detA2 + a21 detA
2
1 + a22 detA

2
2
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and is positive as all the determinants have the same sign and detA0 = 1. Thus Clarke's inverse funtion theorem

applies.

Remark 7.1. For t ∈ (τ̂ , T̂ ] we have

π∗H
max
∗ (δt, δℓ) =

{
exp(t− τ̂)h2 ∗L

2
1(δt, δℓ) if 〈dτ1 , δℓ〉 < 〈dτ2 , δℓ〉,

exp(t− τ̂)h2 ∗L
2
2(δt, δℓ) if 〈dτ2 , δℓ〉 < 〈dτ1 , δℓ〉.

In Setion 7.2.2 we have shown that det(L2
1) det(L

2
2) > 0 so that π∗H

max
∗ is one-to-one also for any t ∈ (τ̂ , T̂ ] and

πHmax
is loally invertible at at any (t, ℓ̂0), t ∈ (τ̂ , T̂ ].

8. Proof of state-loal optimality

We an now omplete the proof of Theorem 4.2. Let us go bak to inequality (5.4). By the oerivity of J ′′
ν ,

ν = 1, 2, (7.2) and by ontinuity, the quantity h1 ·h1 ·α(q) in (5.4) is positive so that p0(T − T̂ ) ≥ C(ξ(T ))−C(x̂f ).
Let

C̃ : y ∈ O(x̂f ) 7→ C(y) + β(y) = p0(ψ
R(y)) + α(πψΛ0 (y)) + β(y) ∈ R.

Then C̃
∣∣∣
O(x̂f)∩Nf

≡ C|
O(x̂f)∩Nf

. Let V be the neighborhood of ξ̂([0, T̂ ]) de�ned in (5.1).

For y ∈ V onsider ψ := (πHmax)
−1
:

ψ : y ∈ V 7→
(
ψR(y), ψΛ0(y)

)
= (t(y), ℓ(y)) ∈

(
− ε, T̂ + ε

)
× Λ0.

By the invertbility of πHmax
and π∗H

max
∗ there exists a neighborhood O(x̂f ) ⊂ V suh that, for any y ∈ O(x̂f ) and

any δy ∈ TyNf there exists an unique ouple (δt, δℓ) ∈ Tψ(y) (R× Λ0) and ν ∈ {1, 2} suh that (see equations (6.7))

δy = 〈dψR(y) , δy〉h2(y) + π∗H
max
t(y) ∗δℓ

= Ŝ
T̂ ∗

(
π∗δℓ+ 〈dτν , δℓ〉 g1(πψ(y)) + 〈d

(
τ2ν − τν

)
, δℓ〉 jν(πψ(y)) +

(
δt− 〈dτ2ν , δℓ〉

)
g2(πψ(y))

)
.

Applying the one-form Hmax
t(y) (ℓ(y)) ∈ T ∗

yR
n
we get

〈Hmax
t(y) (ℓ(y)) , δy〉 = p0〈dψ

R(y) , δy〉+ 〈Hmax
t(y) (ℓ(y)) , π∗H

max
t(y) ∗δℓ〉

= p0〈dψ
R(y) , δy〉+ 〈ℓ(y) , π∗δℓ〉 = p0〈dψ

R(y) , δy〉+ 〈dα(πℓ(y)) , π∗δℓ〉

i.e. dC(y) = Hmax
t(y) (ℓ(y)) and dC̃(y) = Hmax

t(y) (ℓ(y)) + dβ(y) for any y ∈ O(x̂f ). In partiular, hoosing y = x̂f , by

the transversality ondition (3.3) in PMP we get

〈dC̃(x̂f ) , δy〉 = 〈dC(x̂f ) , δy〉 − 〈ℓ̂f , δy〉 = 〈ℓ̂f , δy〉 − 〈ℓ̂f , δy〉 = 0 ∀δy ∈ Tx̂f
R
n.

Di�erentiating again, and taking into aount that σ is invariant with respet to the �ow of Ĥ
T̂ ∗

we get

D2C̃(x̂f )[δy]
2 =〈Hmax

∗ (δt, δℓ) , δy〉+D2β[δy]2 = 〈Hmax
∗ ψ∗δy , δy〉+D2β[δy]2 = σ ((Hmax ◦ ψ)

∗
δy, d(−β)∗δy)

=σ (Hmax
∗ (δt, δℓ), d(−β)∗π∗H

max
∗ (δt, δℓ)) = σ

(
Ĥ−1

T̂ ∗
Hmax

∗ (δt, δℓ), d(−β̂)∗Ŝ
−1

T̂ ∗
π∗H

max
∗ (δt, δℓ)

)
.
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By equations (6.7), the de�nition of σ, equation (2.2), and realling that dα(x̂0) = ℓ̂0 = − dβ̂(x̂0) the last expression
reads

D2C̃(x̂f )[δy]
2 =

〈
δℓ+ 〈dτν , δℓ〉

−→
G1(ℓ̂0) + 〈d

(
τ2ν − τν

)
, δℓ〉

−→
Jν(ℓ̂0) +

(
δt− 〈dτ2ν , δℓ〉

)−→
G2(ℓ̂0),

π∗δℓ+ 〈dτν , δℓ〉 g1(x̂0) + 〈d
(
τ2ν − τν

)
, δℓ〉 jν(x̂0) +

(
δt− 〈dτ2ν , δℓ〉

)
g2(x̂0)

〉

+D2β̂(x̂0)
[
π∗δℓ+ 〈dτν , δℓ〉 g1 + 〈d

(
τ2ν − τν

)
, δℓ〉 jν +

(
δt− 〈dτ2ν , δℓ〉

)
g2
]2

=D2(α+ β̂)(x̂0)
(
π∗δℓ , π∗δℓ+ 〈dτν , δℓ〉 g1 + 〈d

(
τ2ν − τν

)
, δℓ〉 jν +

(
δt− 〈dτ2ν , δℓ〉

)
g2

)

+
(
π∗δℓ+ 〈dτν , δℓ〉 g1 + 〈d

(
τ2ν − τν

)
, δℓ〉 jν +

(
δt− 〈dτ2ν , δℓ〉

)
g2

)

·
(
〈dτν , δℓ〉 g1 + 〈d

(
τ2ν − τν

)
, δℓ〉 jν +

(
δt− 〈dτ2ν , δℓ〉

)
g2

)
· β̂(x̂0)

(8.1)

whih is positive by (7.8).

This proves that if p0 = 1, then ξ̂ is a state-loal optimal trajetory. Let us now show that the minimum is strit.

In partiular this fat implies that when p0 = 0 the trajetory ξ̂ is isolated among the admissible ones.

If p0(T − T̂ ) = 0, then by (5.4), (7.2) and (8.1) we get ξ(T ) = x̂f and t0 = 0 i.e. ξ(0) ∈M0 and, by the expression

for I1 in Setion 5,

(8.2) 〈Hmax(ψ(ξ(t))) , ξ̇(t)〉 = p0 a.e. t ∈ [0, T ].

As ξ(T ) = x̂f , by the regularity assumption along the bang ars, Assumption 3.2, equation (8.2) implies ξ̇(t) =

h2(ξ(t)) as long as Hmax(ψ(ξ(t))) ∈ {ℓ : Hmax(ℓ) = H2(ℓ)} so that ξ(t) = ξ̂(t − T + T̂ ) for any t ∈ [τ̂ + T − T̂ , T ].

In partiular ξ(τ̂ + T − T̂ ) = x̂d. Proposition 7.3 implies that any solution through x̂d when run bakwards in time

annot aess the interior of the regions π {ℓ ∈ T ∗
R
n : Hmax(ℓ) = K1(ℓ)} and π {ℓ ∈ T ∗

R
n : Hmax(ℓ) = K2(ℓ)} for

times t lose to τ̂+T − T̂ . Further one an exlude that the solution stiks to the manifoldMν by observing that, by

Proposition 7.3 any onvex ombination of h1 and kν points inside π {ℓ ∈ T ∗
R
n : Hmax(ℓ) = Kν(ℓ)}. Analougously

one an exlude that the solution stiks to the manifold M2
ν by observing that, by Proposition 7.3 any onvex

ombination of h2 and kν points outside π {ℓ ∈ T ∗
R
n : Hmax(ℓ) = Kν(ℓ)}. Thus the solution ξ, run bakwards in

time enters the interior of the region π {ℓ ∈ T ∗
R
n : Hmax(ℓ) = H1(ℓ)}. Hene ξ(t) = ξ̂(t− T + T̂ ) for any t ∈ [0, T ].

If T = T̂ this immediately yields ξ ≡ ξ̂.

Sine ξ(T − T̂ ) = x̂0 ∈ M0 then, if p0 = 0, and h1 is not tangent to M0 in a neighborhood of x̂0, then, possibly

restriting V , we get that ξ an ross M0 only one. Hene T = T̂ , i.e. also in this ase ξ ≡ ξ̂.
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