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HARMONIC SOLUTIONS TO PERTURBATIONS OF PERIODIC

SEPARATED VARIABLES ODES ON MANIFOLDS

MARCO SPADINI

Abstract. The set of harmonic solutions to perturbed periodic separated
varibles ODEs on manifolds is studied using topological arguments. A multi-
plicity result is deduced as an application.

1. Introduction

In this paper we shall investigate the structure of the set of harmonic solutions to
perturbed periodic separated variable ordinary differential equations on manifolds.
More precisely, let M be an m-dimensional boundaryless differentiable manifold
embedded in R

k. We consider equations of the form

(1.1) ẋ = a(t)g(x),

where g : M → R
k is a continuous tangent vector field and a : R → R is a continuous

T -periodic function, T > 0 given, with nonzero average

ā :=
1

T

∫ T

0

a(t) dt,

and investigate via topological methods the structure of the set of harmonic (i.e.,
T -periodic) solutions to perturbed equations of the form:

ẋ = a(t)g(x) + λφ(x), λ ≥ 0,

with φ : M → R
k a given tangent vector field. Speaking loosely, we shall prove,

under appropriate conditions, the existence of a connected “branch” of T -periodic
solution pairs (λ, x) of this equation, with the property that its closure is not
contained in any compact set and meets g−1(0) for λ = 0.

Actually, the methods discussed in this paper shall let us treat withouth any
additional effort the more general case when the perturbation is allowed to be time-
dependent and periodic with the same period of a. In other words, we shall consider,
for T > 0 given, the set of T -periodic solutions to the following parametrized
differential equation

(1.2) ẋ = a(t)g(x) + λf(t, x), λ ≥ 0,

where f : R×M → R
k and g : M → R

k are tangent vector fields on M , a : R → R

and f are T -periodic in t. Therefore, our discussion will be applicable to the
particular case of periodic perturbations of autonomous ODEs. This corresponds, in
our notation, to a(·) constant (and nonzero). The more general situation considered
in this paper yields a generalization of the results of [3, 4] in which a(t) ≡ 1.

2000 Mathematics Subject Classification. 34C25, 34C40.
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2 MARCO SPADINI

As an application we provide a multiplicity result for equation (1.2) on compact
boundaryless manifolds. Roughly speaking, we shall prove that when g has n − 1
zeros at which the linearized unperturbed equation satisfies an appropriate “non-
T -resonance” condition, and the sum of the indices of g at these zeros differs from
the Euler-Poincaré characteristic of M , then (1.2) has at least n solutions of period
T for λ > 0 sufficiently small. This fact will be proved via a combination of local
and global results about the set of T -periodic solutions of (1.2). The multiplicity
results so obtained are of topological nature: they could not, in general, be deduced
via implicit function or variational methods.

2. Notation and preliminary results

We begin by recalling some facts about the function spaces used in the sequel.
Let M ⊂ R

k be a differentiable manifold and T > 0 a given real number. The metric
subspace CT (M) of CT (Rk) consisting of all the T -periodic continuous functions
x : R → M is not complete unless M is closed in R

k. However, CT (M) is always
locally complete. This fact is a consequence of the following remark: since M is
locally compact, given x ∈ CT (M), there exists a relatively compact open subset
of M containing the image x([0, T ]) of x.

Notice that, since a(t) is not identically zero, a point p ∈ M corresponds to
a constant solution to (1.1) if and only if g(p) = 0. This motivates the ensuing
definitions.

Let f and g be as in (1.2). A pair (λ, p) ∈ [0,∞) × M is a starting point (of
T -periodic solutions) if the Cauchy problem

(2.1)

{

ẋ = a(t)g(x) + λf(t, x)
x(0) = p

has a T -periodic solution. A starting point (λ, p) is trivial if λ = 0 and p ∈ g−1(0).
Although the concept of starting point is essentially finite-dimensional, there is

an infinite-dimensional notion strictly correlated to it: that of T -pair. We say that
a pair (λ, x) ∈ [0,∞) × CT (M) is a T -pair if x satisfies (2.1). If λ = 0 and x is
constant, then (λ, x) is said trivial.

Denote by X ⊂ [0,∞) × CT (M) the set of the T -pairs of (2.1) and by S ⊂
[0,∞)×M the set of the starting points. Notice that, as a closed subset of a locally
complete space, X is locally complete.

One can show that, no matter whether or not M is closed in R
k, the subset X

of [0,∞)×CT (M) consisting of all the T -pairs of (1.2) is always closed and locally
compact. Moreover, by the Ascoli-Arzelà Theorem, when M is closed in R

k, any
bounded closed set of T -pairs is compact.

As in [4], we tacitly assume some natural identifications. That is, we will regard
every space as its image in the following diagram of closed embeddings:

(2.2)

[0,∞) × M −−−−→ [0,∞) × CT (M)
x





x





M −−−−→ CT (M),

where the horizontal arrows are defined by regarding any point p in M as the
constant map p̂(t) ≡ p in CT (M), and the two vertical arrows are the natural
identifications p 7→ (0, p) and x 7→ (0, x).



D
ip

ar
tim

en
to

 d
i M

at
em

at
ic

a 
A

pp
lic

at
a 

- 
G

en
na

io
 2

00
3,

 n
. 4

0
U

ni
ve

rs
ita

’ 
de

gl
i s

tu
di

 d
i F

ir
en

ze
HARMONIC SOLUTIONS. . . 3

According to these embeddings, if Ω is an open subset of [0,∞) × CT (M), by
Ω ∩ M we mean the open subset of M given by all p ∈ M such that the pair (0, p)
belongs to Ω. If U is an open subset of [0,∞)×M , then U ∩M represents the open
set {p ∈ M | (0, p) ∈ U}.

Observe that any p ∈ g−1(0) can be seen –in the sense specified above– as a
T -periodic solution of the unperturbed equation (1.1).

Remark 2.1. The map h : X → S given by (λ, x) 7→
(

λ, x(0)
)

is continuous and

onto. Notice that, if (λ, x) is trivial, then so is
(

λ, x(0)
)

.

In case f and g are C1, h is also one to one. Furthermore, by the continuous
dependence on initial data, we get the continuity of h−1 : S → X. Clearly trivial
solution pairs correspond to trivial starting points under this homeomorphism.

We now recall some basic facts about the topological degree of tangent vector
fields on manifolds and about the fixed point index.

Let w : M → R
k be a continuous tangent vector field on M , and let V be an

open subset of M in which we assume w admissible for the degree, that is w−1(0)∩
V compact. Then, one can associate to the pair (w, V ) an integer, deg(w, V ),
called the degree (or characteristic) of the vector field w in V , which, roughly
speaking, counts (algebraically) the number of zeros of w in V (see e.g. [5, 6]
and references therein). When M = R

k, deg(w, W ) is just the classical Brouwer
degree, deg(w, W, 0), of w at 0 in any bounded open neighborhood W of w−1(0)∩V
whose closure is in V . Moreover, when M is a compact manifold, the celebrated
Poincaré-Hopf Theorem states that deg(w, M) coincides with the Euler-Poincaré
characteristic of M and, therefore, is independent of w.

We recall that when p is an isolated zero of w, the index i(w, p) of w at p is
defined as deg(w, V ), where V is any isolating open neighborhood of p. If w is C1

and p is a non-degenerate zero of w (i.e. the Fréchet derivative w′(p) : TpM → R
k

is injective), then p is an isolated zero of w, w′(p) maps TpM onto itself, and
i(w, p) = sign det w′(p) (see e.g. [6]).

Let V be an open subset of M , and let Ψ : V → M be continuous. The map Ψ
is said to be admissible (for the fixed point index) on V if its set of fixed points is
compact. In these conditions it is defined an integer, called the fixed point index of
Ψ in V and denoted by ind(Ψ, V ), which satisfies all the classical properties of the
Brouwer degree: solution, excision, additivity, homotopy invariance, normalization
etc. A detailed exposition of this matter can be found, for example, in [7] and
references therein. The following fact deserves to be mentioned: if M is an open
subset of R

m, then ind(Ψ, V ) is just the Brouwer degree of I −Ψ in V at 0, where
I − Ψ is defined by (I − Ψ)(x) = x − Ψ(x).

Let γ : R×M → R
k be a time-dependent tangent vector field. We will denote by

P γ
τ , τ ∈ R, the local (Poincaré) τ -translation operator associated to the equation

(2.3) ẋ = γ(t, x).

One has P γ
τ (p) = P γ(τ, p) where the map P γ : W → M is defined on an open set

W ⊂ R×M containing {0}×M , with the property that, for any p ∈ M , the curve
t 7→ P γ(t, p) is the maximal solution of (2.3) such that P γ(0, p) = p. Therefore,
given τ ∈ R, the domain of P γ

τ is the open set consisting of those points p ∈ M for
which the maximal solution of (2.3), starting from p at t = 0 is defined up to τ .
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4 MARCO SPADINI

Let V be an open subset of M , and let T > 0 be given. Assume that the solutions
of (1.1) are defined in [0, T ] for any initial point p ∈ V , and that ind

(

P ag
T , V

)

is

well defined. This clearly implies that g−1(0) is compact, thus deg(g, V ) is defined
as well.

Notation. For the sake of simplicity, we shall often denote by Pt(λ, ·) (instead of

by P ag+λf
t ) the t-translation operator associated to (1.2).

We shall make use of the following result of [3]:

Theorem 2.2. Let γ : M → R
k be a tangent vector field on a boundaryless differ-

entiable manifold M ⊂ R
k and V a relatively compact open subset of M . Let T > 0

be given and assume that, for any p ∈ V , the solution of the Cauchy problem

ẋ = γ(x), x(0) = p,

is defined on [0, T ]. If the translation operator P γ
T associated to ẋ = γ(x) is fixed

point free on ∂V , then

ind(P γ
T , V ) = deg(−γ, V ).

Remark 2.3. Let g : M → R
k be a C1 tangent vector field, and let a : R → R be

continuous, T -periodic with 1/T
∫ T

0
a(t) dt = 1. Take any p ∈ M and consider the

Cauchy problems

(2.4a) ẋ = g(x), x(0) = p;

(2.4b) ẋ = a(t)g(x), x(0) = p.

Denote by x : I → M and ξ : J → M , I ⊂ R and J ⊂ R intervals, the (unique)
maximal solution of (2.4a) and of (2.4b) respectively. Clearly, if

∫ τ

0 a(s) ds ∈ I for
all τ ∈ [0, t], then

ξ(t) = x

(
∫ t

0

a(s) ds

)

;

hence, t ∈ J . Moreover, by a standard maximality argument, one can prove that

t ∈ J implies
∫ t

0 a(s) ds ∈ I. In particular, if T ∈ J , then
∫ T

0 a(s) ds = T ∈ I.
When this happens, one has ξ(T ) = x(T ). In other words, if P ag

T (p) is defined, then
so is P g

T (p) and, in this case, P g
T (p) = P ag

T (p).
Notice also that when a(t) > 0 for any t ∈ [0, T ] (or, equivalently, a(t) < 0

for any t ∈ [0, T ]) the function t 7→
∫ t

0
a(s) ds is monotone, hence invertible. In

particular, T ∈ J is equivalent to T ∈ I.

Using Remark 2.3 we obtain easily the following consequence of Theorem 2.2.

Corollary 2.4. Let g : M → R
k be a C1 tangent vector field, and let a : R → R

be continuous, T -periodic with 1/T
∫ T

0
a(t) dt = 1. Given an open subset U of M ,

if ind(P ag
T , U) is well defined, then so is ind(P g

T , U) and

ind(P ag
T , U) = ind(P g

T , U) = deg(−g, U).

Remark 2.5. Observe that if p ∈ M is such that p = P ag
T (p), then any q in the

image of the map t 7→ P ag
t (p) is in the image of t 7→ P g

T (p). This means that it is
an initial point of a T -periodic orbit of ẋ = g(x). Therefore q has the property that
q = P g

T (q) = P ag
T (q).
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HARMONIC SOLUTIONS. . . 5

3. Main result

Let f : R × M → R
k, g : M → R

k and a : R → R be as in (1.2). In the sequel,
given X ⊂ R ×M and λ ∈ R, we will denote the slice {x ∈ M : (λ, x) ∈ X} by the
symbol Xλ.

By known properties of differential equations, the set V ⊂ [0,∞)×M , given by
{

(λ, p) : the solution x(·) of (1.2) satisfying
x(0) = p is defined in [0, T ]

}

,

is open. Thus it is locally compact. Clearly V contains the set S of all starting
points of (1.2). Observe that S is closed in V , even if it could be not so in [0, +∞)×
M . Therefore S is locally compact. Let U be an open subset of V . Since S ∩ U is
open in S, it is locally compact as well.

We will also use the following global connectivity result (see [1]).

Lemma 3.1. Let Y be a locally compact metric space and let Y0 be a compact
subset of Y . Assume that any compact subset of Y containing Y0 has nonempty
boundary. Then Y \ Y0 contains a not relatively compact component whose closure
(in Y ) intersects Y0.

We now prove a result that, when a is a nonzero constant, reduces to Theorem
3.1 in [3].

Theorem 3.2. Let a : R → R be a continuous function, and let f : R × M → R
k

and g : M → R
k be two C1 tangent vector fields on the boundaryless manifold

M ⊂ R
k. Assume also that f and a are T -periodic, and the average ā of a is

nonzero. Denote by S the set of the starting points for (1.2) and let U be an open
subset of [0,∞)×M . Assume that deg(g, U ∩M) is well defined and nonzero. Then
the set (S ∩ U) \

(

{0} × g−1(0)
)

of the nontrivial starting points (in U) of (1.2)

admits a connected subset whose closure in S ∩ U meets {0} × g−1(0) and is not
compact.

Proof. Since ā 6= 0, one has that

deg

(

1

ā
g(·), U ∩ M

)

= (sign ā)m deg(g, U ∩ M) 6= 0,

where m is the dimension of M . Hence, replacing if necessary g with āg and a with

a/ā, we shall assume 1/T
∫ T

0 a(s) ds = 1.

Since deg(g, U∩M) 6= 0,
(

{0}×g−1(0)
)

∩U is nonempty. Thus S∩U is nonempty
as well. The assertion follows applying Lemma 3.1 to the pair

(Y, Y0) =
(

S ∩ U,
(

{0} × g−1(0)
)

∩ U
)

.

In fact, if Σ is a component as in the assertion of Lemma 3.1 its closure (in S ∩U)
meets {0}×g−1(0) and is not compact. Assume by contradiction that there exists a
compact subset C of S∩U , containing

(

{0}×g−1(0)
)

∩U and with empty boundary
in S ∩U . Thus, C is a relatively open subset of S ∩U . As a consequence, S ∩U \C
is closed in S ∩U , so the distance, δ = dist(C, S ∩U \C), between C and S ∩U \C
is nonzero (recall that C is compact). Consider the set

W =

{

(λ, p) ∈ U : dist
(

(λ, p), C
)

<
δ

2

}

,
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6 MARCO SPADINI

which, clearly, does not meet S ∩ U \ C.
For simplicity, given s ∈ [0, +∞), we put

Ws =
{

p ∈ M : (s, p) ∈ W
}

.

Because of the compactness of S∩W = C, there exists λ0 > 0 such that Wλ0
= ∅.

Moreover, the set
{

(λ, p) ∈ W : PT (λ, p) = p
}

is compact. Then from the generalized homotopy property of the fixed point index
(see e.g. [7]),

0 = ind
(

PT (λ0, ·), Wλ0

)

= ind
(

PT (λ, ·), Wλ

)

,

for all λ ∈ [0, λ0]. Observe that our contradictory assumption implies that P ag
T

is fixed point free on the boundary of W0, therefore ind
(

P ag
T , W0

)

is well defined.
Applying the excision property of the degree and Corollary 2.4, we get

ind
(

P ag
T , W0

)

= ind
(

P g
T , W0

)

= (−1)m deg(g, W0) = (−1)m deg(g, U ∩ M) 6= 0,

contradicting the previous formula. �

We are now in a position to state and prove our main result. It is, basically,
an infinite-dimensional version of Theorem 3.2 that, when a is a nonzero constant,
reduces to Theorem 3.3 in [4].

Theorem 3.3. Let a : R → R be a continuous function and let f : R×M → R
k and

g : M → R
k be two continuous tangent vector fields on the boundaryless manifold

M ⊂ R
k. Assume that f and a are T -periodic, with average ā 6= 0. Let Ω be

an open subset of [0,∞) × CT (M), and assume that the degree deg(g, Ω ∩ M) is
well-defined and nonzero. Then there exists a connected set Γ of nontrivial T -pairs
in Ω whose closure in [0,∞)×CT (M) meets g−1(0)∩Ω and is not contained in any
compact subset of Ω. In particular, if M is closed in R

k and Ω = [0,∞)×CT (M),
then Γ is unbounded.

Proof. As in the proof of Theorem 3.2 we shall assume, without loss of generality,

that 1/T
∫ T

0 a(s) ds = 1.
Let X denote the set of T -pairs of (1.2). Since X is closed, it is enough to show

that there exists a connected set Γ of nontrivial T -pairs in Ω whose closure in X∩Ω
meets g−1(0) and is not compact.

Assume first that f and g are smooth. Denote by S the set of all starting points
of (1.2), and take

S̃ =
{

(λ, p) ∈ S : the solution of (2.1) is contained in Ω
}

.

Obviously S̃ is an open subset of S, thus we can find an open subset U of V such
that S ∩ U = S̃, where V is the set of all the pairs (λ, p) such that the solution of
(2.1) is defined in [0, T ]. We have that

g−1(0) ∩ Ω = g−1(0) ∩ S̃ = g−1(0) ∩ U,

thus deg(g, U ∩ M) = deg(g, Ω ∩ M) 6= 0. Applying Theorem 3.2, we get the
existence of a connected set Σ ⊂

(

S ∩ U
)

\ g−1(0) such that its closure in S ∩ U is

not compact and meets g−1(0). Let h : X → S be the map which assigns to any
T -pair (λ, x) the starting point

(

λ, x(0)
)

. By Remark 2.1, h is a homeomorphism
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HARMONIC SOLUTIONS. . . 7

and trivial T -pairs correspond to trivial starting points under h. This implies that
Γ = h−1(Σ) satisfies the requirements.

Let us remove the smoothness assumption on a, g and f . Take Y0 = g−1(0) ∩Ω
and Y = X∩Ω. We have only to prove that the pair (Y, Y0) satisfies the hypothesis
of Lemma 3.1. Assume the contrary. We can find a relatively open compact subset
C of Y containing Y0. Thus there exists an open subset W of Ω such that the
closure W of W in [0,∞)×CT (M) is contained in Ω, W ∩Y = C and ∂W ∩Y = ∅.
Since C is compact and [0,∞)×M is locally compact, we can choose W in such a
way that the set

{

(

λ, x(t)
)

∈ [0,∞) × M : (λ, x) ∈ W, t ∈ [0, T ]
}

is contained in a compact subset K of [0,∞)×M . This implies that W is bounded
with complete closure in Ω and W ∩ M is a relatively compact subset of Ω ∩ M .
In particular g is nonzero on the boundary of W ∩ M (relative to M). By known
approximation results, there exist sequences {gi} of smooth tangent vector fields
uniformly approximating g on M . For i ∈ N large enough, we get

deg(gi, W ∩ M) = deg(g, W ∩ M).

Furthermore, by excision,

deg(g, W ∩ M) = deg(g, Ω ∩ M) 6= 0.

Therefore, given i large enough, the first part of the proof can be applied to the
equation

(3.1) ẋ = a(t)gi(x) + λfi(t, x),

where {fi} is a sequence of smooth T -periodic tangent vector fields uniformly ap-
proximating f on K.

Let Xi denote the set of T -pairs of (3.1). There exists a connected subset Γi of
Ω ∩ Xi whose closure in Ω meets g−1

i (0) ∩ W and is not contained in any compact
subset of Ω. Let us prove that, for i large enough, Γi ∩ ∂W 6= ∅. It is sufficient to
show that Xi∩W is compact. In fact, if (λ, x) ∈ Xi∩W we have, for any t ∈ [0, T ],

‖ẋ(t)‖ ≤ max
{

‖a(τ)g(p) + µf(τ, p)‖ : (µ, p) ∈ K , τ ∈ [0, T ]
}

.

Hence, by Ascoli’s theorem, Xi∩W is totally bounded and, consequently, compact,
since Xi is closed and W is complete. Thus, for i large enough, there exists a
T -pair (λi, xi) ∈ Γi ∩∂W of (3.1). Again by Ascoli’s theorem, we may assume that
xi → x0 in CT (M) and λi → λ0 with (λ0, x0) ∈ ∂W . Therefore

ẋ0(t) = a(t)g
(

x0(t)
)

+ λ0f
(

t, x0(t)
)

, t ∈ R.

Hence (λ0, x0) is a T -pair in ∂W . This contradicts the assumption ∂W ∩ Y = ∅.
It remains to prove the last assertion. Let M be closed. There exists a connected

set Γ of T -pairs of (1.2) whose closure is not compact and meets g−1(0). We need
to show that Γ is unbounded. Assume the contrary. As we already observed, when
M is closed any bounded closed set of T -pairs is compact. Thus the closure of Γ in
[0,∞) × CT (M) is compact. This yields a contradiction. �

Notice that the connected set of T -pairs of Theorem 3.3 can be completely con-
tained in the slice {0}×CT (M), as in the following simple example where M = R

2,
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8 MARCO SPADINI

T = 2π, a(t) ≡ 1 and Ω = [0,∞) × C2π(R2):
{

ẋ = y,
ẏ = −x + λ sin t

Corollary 3.4. Let M ⊂ R
k be a compact boundaryless manifold with χ(M) 6= 0.

Take a, g and f as in Theorem 3.3. Then there exists an unbounded connected set
Γ of T -pairs whose closure meets g−1(0) and is such that

(3.2) π1(Γ) = [0,∞),

where π1 denotes the projetion onto the first factor of [0,∞) × CT (M).

Proof. Take Ω = [0,∞) × CT (M), so that Ω ∩ M = M . By the Poincaré-Hopf
theorem

deg(g, Ω ∩ M) = deg(g, M) = χ(M) 6= 0.

Theorem 3.3 yields the existence of an unbounded connected set Γ of T -pairs whose
closure meets g−1(0). Since CT (M) is bounded, (3.2) holds. �

4. Applications to multiplicity results

Notice that in the previous section, where only “global” properties of the set of
T -pairs were studied, we merely require the average of the function a to be nonzero.
In this section, where we look also at “local” behaviour, we will need to require
explicitly that

1

T

∫ T

0

a(s) ds = 1.

As we have seen in the proof of Theorem 3.2, this can be assumed without any loss
of generality.

Below, we shall obtain a multiplicity result. In order to do that we will need to
consider also the behavior of the set of T -pairs near g−1(0). Loosely speaking, in
order to find multiplicity results for the periodic solutions of (1.2) it is necessary
to avoid the somehow degenerate situation when the “branch” of T -pairs “sticks”
to the manifold. We first tackle this problem from an abstract viewpoint.

We need some notation. Let Y be a metric space and C a subset of [0,∞)× Y .
Given λ ≥ 0, we denote by Cλ the slice

{

y ∈ Y | (λ, y) ∈ C
}

. In what follows, Y
will be identified with the subset {0} × Y of [0,∞) × Y .

Definition 4.1 ([2]). Let C be a subset of [0,∞)×Y . We say that a subset A of C0

is an ejecting set (for C) if it is relatively open in C0 and there exists a connected
subset of C which meets A and is not included in C0.

We shall simply say that q ∈ C0 is an ejecting point if {q} is an ejecting set. In
this case, {q} being open in C0, it is clearly isolated in C0.

In [2] the following theorem which relates ejecting sets and multiplicity results
was proved.

Theorem 4.2. Let Y be a metric space and let C be a locally compact subset of
[0,∞)×Y . Assume that C0 contains n pairwise disjoint ejecting sets, n−1 of which
are compact. Then, there exists δ > 0 such that the cardinality of Cλ is greater than
or equal to n for any λ ∈ [0, δ).
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Let p be a zero of g. We give a condition which ensures that p (regarded as the
trivial T -pair (0, p̂), where p̂ denotes the function p̂(t) ≡ p) is an ejecting point for
the set X of the T -pairs of (1.2).

Definition 4.3. A point p ∈ g−1(0) is said T -resonant provided that

(1) g is C1 in a neighborhood of p;
(2) the only T -periodic solution of the linearized equation at p (on TpM)

(4.1) ξ̇ = a(t)g′(p)ξ

is trivial (i.e., ξ(t) ≡ 0).

Remark 4.4. If g is C1 in a neighborhood of p ∈ g−1(0), the T -resonancy condition
at p can be read on the spectrum σ

(

g′(p)
)

of the endomorphism g′(p) : TpM → TpM .
In fact, as one can easily check,

ξ(t) = e
�

t

0
a(s) ds g′(p)u

is the solution of (4.1) with initial condition ξ(0) = u, u ∈ TpM . Therefore,
u ∈ TpM is a starting point for a periodic solution of (4.1) if and only if

u ∈ ker
(

I − eTg′(p)
)

,

where I : TpM → TpM denotes the identity (we are assuming 1/T
∫ T

0 a(t) dt = 1).
Thus p is T -resonant if and only if, for some n ∈ Z

2nπi

T
∈ σ

(

g′(p)
)

.

Observe also that if p ∈ g−1(0) is non-T -resonant then the fixed point index
of the Poincaré T -translation operators associated to the two following linearized
equations at p: ẏ = a(t)g′(p)y and ẏ = g′(p)y, coincide with i(−g, p).

Lemma 4.5. Assume that g is C1 in a neighborhood of a non-T -resonant p ∈
g−1(0). Then, p (regarded as a trivial T -pair) is an ejecting point for the set X of
the T -pairs of (1.2).

Proof. Observe first that, since p is non-T -resonant, it is an isolated zero of g, and
there exists a neighborhood V of p such that g−1(0) ∩ V = {p} and

deg(g, V ) = i(g, p) = sign det g′(p) 6= 0.

Therefore, taking

Ω = [0,∞) × CT (V ) ⊂ [0,∞) × CT (M),

one has deg(g, Ω ∩ M) = deg(g, V ) 6= 0. Thus, Theorem 3.3 yields the existence
of a connected set Γ of T -pairs for (1.2) whose closure in Ω contains p and is not
compact.

We now prove that, for V small enough and with compact closure V , no T -
periodic solution to (1.1) touches the boundary ∂V of V .

Assume by contradiction that this is not the case. Take a sequence {Vn} of open
neighborhoods of p such that

⋂

n∈N
Vn = {p} and Vn+1 ⊂ Vn for all n ∈ N. Then,

there exists a sequence {xn} of T -periodic solutions to (1.1) with the property that
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xn([0, T ]) ∩ ∂Vn 6= ∅. By Remark 2.5 we can assume xn(0) ∈ ∂Vn. Clearly, due to
Remark 2.3, it is also not restrictive to assume xn(0) 6= xm(0) for m 6= n. Put

pn = xn(0), and un =
pn − p

|pn − p|
.

Clearly pn → p. We can assume un → u ∈ TpM .
Since g is C1, it is known that P ag

T (·) is differentiable. Define Φ : M → R
k by

Φ(q) = q − P ag
T (q). Clearly Φ is differentiable and Φ(pn) = 0, hence

Φ′(p)u = lim
n→∞

Φ(pn) − Φ(p)

|pn − p|
= 0.

On the other hand, Φ′(p)v = v− [P ag
T ]′(p)v for any v ∈ TpM . One can easily verify

that the map α : t 7→ [P ag
t ]′(p)v satisfies the following Cauchy problem:

{

α̇(t) = a(t)g′(p)α(t),
α(0) = u.

Since p is non-T -resonant, Φ′(p)u = α(0) − α(T ) 6= 0. This is a contradiction.

We now prove that p is an ejecting point for X . Clearly, if Γ is contained in
{0} × CT (M), then it must be contained into {0} × CT (V ) since no T -periodic
solution to (1.1) touches ∂V . Let us prove that this is impossible. Assume the
contrary. Then, Γ, as a bounded set of T -pairs is totally bounded. Moreover,
{0} × CT (V ) being complete, the closure of Γ is compact. This proves that Γ
cannot be contained in {0} × CT (M). The assertion follows. �

We are now in a position to establish a multiplicity result for forced oscillations.

Theorem 4.6. Let M be a compact boundaryless manifold, and take continuous
tangent vector fields f : R × M → R

k and g : M → R
k, a continuous function

a : R → R, and let f and a be T -periodic with 1/T
∫ T

0 a(t) dt = 1. Then, if g has
n − 1, n > 1, non-T -resonant zeros p1,. . . ,pn−1 with

n−1
∑

k=1

i(pk, g) 6= χ(M),

there are at least n solutions of period T of equation (1.2) for λ sufficiently small.

Proof. Since p1,. . . ,pn−1 are non-T -resonant, there exist neighborhoods V1,. . . ,Vn−1

such that

Vi ∩ g−1(0) = {pi} for i = 1, . . . , n − 1

Clearly, by excision, deg(g, Vi) = i(g, pi), for i = 1, . . . , n − 1. Define

V0 = M \
n−1
⋃

i=1

Vi.

By the Poincaré-Hopf Theorem, deg(g, M) = χ(M). The additivity property of the
degree yields

deg(g, V0) = χ(M) −
n−1
∑

i=1

i(pi, g) 6= 0

Define

Ω = [0,∞) × CT (V0) ⊂ [0,∞) × CT (M).
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Theorem 3.3 implies that g−1(0) ∩ V0 is an ejecting set of the set of T -pairs for
(1.2). The assertion now follows from Lemma 4.5 and Theorem 4.2. �

In the following example we exibit a tangent vector field g to the unit sphere
S2 centered at the origin of R

3 with the property that, for any T > 0, only one
of its two zeros can be T -resonant. Theorem 4.6 implies that any small enough
T -periodic perturbation of equation

ẋ = a(t)g(x),

where a : R → R is any T -periodic continuous function, has at least two T -periodic
solutions.

Example 4.7. Take M = S2 ⊂ R
3 and let g be the tangent vector field given by

(x, y, z) 7→ ez
(

−xz,−yz, 1− z2
)

.

That is, g is the gradient on the manifold M = S2 of the functional (x, y, z) 7→ ez.
Notice that g has the “poles” N = (0, 0, 1) and S = (0, 0,−1) as its only two

zeros, and σ
(

g′(N)
)

= {−e} and σ
(

g′(S)
)

= {e−1}.
Then, for any T > 0 for which N is T -resonant, S is non-T -resonant. Con-

sequently, for any T > 0, any T -periodic a : R → [0,∞) with ā = 1, and any
T -periodic f : R × M → R

3, there exists λ0 > 0 such that (1.2) admits two T -
periodic solutions for λ ∈ [0, λ0).
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