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1. Introduction

This paper, which is the natural extension of [4] to the case of second order
differential equations, is devoted to investigate the structure of the set of forced
oscillations of periodic perturbations of second order autonomous ODE’s on differ-
entiable manifolds. Namely, we deal with the following parametrized differential
equation:

..
xπ = h(x, ẋ) + λf(t;x, ẋ) , λ ≥ 0,(1)

where h : TM → Rk and f : R × TM → Rk are continuous vector fields, tangent
to a differentiable manifold M embedded in some Euclidean space Rk and f is
T -periodic in t. Here

..
xπ represents the component of the acceleration parallel to

M .
This equation governs the motion of a constrained mechanical system with con-

figuration space M , acted on by the sum of two forces: an autonomous one h and a
periodic perturbation λf . This motion problem reduces to that of [3] and [2] when
h = 0. Nevertheless, our result do not include those of [3] unless the manifold M

is compact, as in [2].
We investigate the properties of the set X of T -pairs of (1); i.e. of those pairs

(λ, x) ∈ [0,∞) × C1
T (M) with x a T -periodic solution of (1). In particular we

give conditions ensuring the existence of a non-compact connected component of
T -pairs emanating from the set of equilibria for λ = 0, i.e. the zeros of h(·, 0). In
the case when M is complete, this component turns out to be unbounded. Our
result, beyond its intrinsic interest, turns out to be useful in establishing some
“topological” multiplicity results for forced oscillations that will be investigated in
a forthcoming paper.

2. Preliminaries

In what follows, if M is a differentiable manifold embedded in some Rk, we
will denote by Cn

T (M), n ∈ {0, 1}, the metric subspace of the Banach space(
Cn

T (Rk) , ‖·‖n

)
of all the T -periodic Cn maps x : R → M with the usual Cn

norm (when n = 0 we will simply write CT (M)). Observe that Cn
T (M) is not

complete unless M is complete (i.e. closed in Rk). Nevertheless, since M is locally
compact, Cn

T (M) is always locally complete.
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Let us recall some basic facts about second order differential equations on man-
ifolds.

Let M be a smooth submanifold of Rk. By

TM =
{
(p, v) ∈ Rk ×Rk : p ∈ M , v ∈ TpM

}

we mean the tangent bundle of M (given p ∈ M , TpM ⊂ Rk is the tangent space
to M at p).

Given an active force on M , that is a continuous map ϕ : R × TM → Rk such
that ϕ(t, p, v) ∈ TpM for all (t; p, v) ∈ R × TM , the motion equation associated
with ϕ can be written in the form

..
xπ = ϕ(t;x, ẋ).(2)

A solution of (2) is a C2 map x : J → M , defined on an interval J , such that
..
xπ(t) = ϕ (t;x(t), ẋ(t)) for all t ∈ J , where

..
xπ(t) denotes the orthogonal projection

on Tx(t)M of
..
x(t).

In what follows we deal with a parametrized second order equation of the fol-
lowing form:

..
xπ = h(x, ẋ) + λf(t;x, ẋ),(3)

where h : TM → Rk and f : R × TM → Rk are assumed to be continuous maps
such that h(p, v) and f(t; p, v) belong to TpM for any (t; p, v) ∈ R × TM and f is
T -periodic with respect to the first variable. A pair (λ, x) ∈ [0,∞) × C1

T (M) is a
T -pair for the second order equation (3), if x is a solution of (3) corresponding to
λ. In particular we will say that (λ, x) is trivial if λ = 0 and x is constant.

It is known that (3) can be written, in an equivalent way, as a first order equation
on the tangent bundle TM in the form

ξ̇ = ĥ(ξ) + λf̄(t, ξ),(4)

where ξ = (x, y),

ĥ(x, y) = (y, r(x, y) + h(x, y)) ,

f̄(t;x, y) = (0, f(t;x, y)) ,

and r : TM → Rk is a smooth map, quadratic in the second variable v ∈ TpM for
any p ∈ M , with values in (TpM)⊥. Such a map is strictly related to the second
fundamental form on M and may be interpreted as the reactive force due to the
constraint M . Actually r(p, v) is the unique vector in Rk which makes (v, r(p, v))

tangent to TM at (p, v). It is well known that ĥ, called the second order vector
field associated to h, is a tangent vector field on TM . It is also readily verified that
f̄ is tangent to TM ⊂ R2k (even if not a second order one); hence (4) is actually a
first order equation on TM .

In order to simplify the statements regarding second order differential equations,
it is convenient to identify any space with its image in the following commutative
diagram of closed embeddings:
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where:
s1 : p 7→ (0, p), that is M is identified with the slice {0} ×M,

s2 : (p, v) 7→ (0; p, v),
s3 : x 7→ (0, x),
s4 : (x, y) 7→ (0;x, y),

j1 : p 7→ (p, 0), i.e. M is identified with the null section of TM ,
j2 : (λ, p) 7→ (λ; p, 0),
j3 : x 7→ (x, ẋ),
j4 : (λ, x) 7→ (λ;x, ẋ),

i1 : p 7→ p̄, where p̄(t) ≡ p,

i2 : (λ, p) 7→ (λ, p̄),
i3 : (p, v) 7→ q̄, where q̄(t) ≡ (p, v),
i4 : (λ; p, v) 7→ (λ, q̄).

Since in the above diagram any space can be identified with its image, it makes
sense to consider expressions that otherwise would be meaningless. For instance if
Ω is open in [0,∞) × C1

T (M), Ω ∩M consists of the open subset of M made up of
all the p ∈M such that the pair (0, p̄) belongs to Ω. Moreover Ω∩C1

T (M) consists
of those functions x ∈ C1

T (M) such that (0, x) ∈ Ω. We observe, in particular, that
it makes sense to consider the intersections of a given subset A of the “big” space
[0,∞) × CT (TM) with any other space in the diagram. Clearly, if A is open, all
these intersections turn out to be open as well.

Let us define the notion of T -pair for a general first order differential equation
on a manifold M . This is important because, as shown below, there is a very
strict correlation between the set of T -pairs of (3) and the corresponding set for
the associated first order equation (4).

Consider the following first order differential equation on a manifold N ⊂ Rs:

ẋ = γ(x) + λψ(t, x),(6)

where γ : N → Rs and ψ : R×N → Rs are (continuous) tangent vector fields on
N with ψ T -periodic in t. We say that (λ, x) ∈ [0,∞) × CT (N) is a T -pair if x
satisfies (6). If λ = 0 and x is constant, then (λ, x) is said to be trivial. Clearly one
may have nontrivial T -pairs even with λ = 0.

Denote by Y the set of all the T -pairs of (6). Known properties of the set of
solutions of differential equations imply that Y is closed, hence it is locally complete,
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as a closed subset of a locally complete space. We will use the following fact from
[5].

Lemma 2.1. The set Y is locally compact. Moreover, if N is complete, any
bounded subset of Y is actually totally bounded. As a consequence, in this case,
closed and bounded sets of T -pairs are compact.

Denote by X ⊂ [0,∞) × C1
T (M) and by X̂ ⊂ [0,∞) × CT (TM) the set of all

the T -pairs of equations (3) and (4), respectively. The diagram (5) establishes a

correspondence between the sets X̂ and X which “preserves” the notion of triviality
for a T -pair. More precisely:

Remark 2.2. Let X∗ ⊂ X and X̂∗ ⊂ X̂ denote the sets of the trivial T -pairs of (3)
and (4) respectively. The map j4 of (5), when restricted to X, is a homeomorphism

of X onto X̂ under which X∗ corresponds to X̂∗. Furthermore, j4 is a homeomor-
phism of [0,∞) × C1

T (M) onto its image; thus, as a restriction of a linear map
(defined on R × C1

T

(
Rk

)
), it is actually a Lipschitz map with Lipschitz inverse.

Consequently, under this homeomorphism, bounded sets correspond to bounded sets
and totally bounded sets correspond to totally bounded sets.

By this remark and Lemma 2.1, we get the local compactness of X . Moreover
we have the following useful property of the set X .

Remark 2.3. Assume M to be complete. If A ⊂ X is bounded, by Remark 2.2,
j4(A) is bounded as well. Since TM is complete, Lemma 2.1 implies that j4(A)
is totally bounded, thus, again from Remark 2.2, it follows that A = j−1

4 (j4(A))
is totally bounded. As a consequence, C1

T (M) being complete, closed and bounded
subsets of X are compact.

3. The degree of a second order vector field

Let U be an open subset of the differentiable manifold M ⊂ Rk, and v : M → Rk

be a continuous tangent vector field such that the set v−1(0)∩U is compact. Then,
one can associate to the pair (v, U) an integer, often called the Euler characteristic
(or Hopf index) of v in U , which, roughly speaking, counts (algebraically) the
number of zeros of v in U (see e.g. [6], [7], [8], and references therein), and which,
for reasons that will became clear in the sequel, we will call degree of the vector
field v and denote by deg(v, U). If v−1(0) ∩ U is a finite set, then deg(v, U) is
simply the sum of the indices at the zeros of v. In the general admissible case,
i.e. when v−1(0) ∩ U is a compact set, deg(v, U) is defined by taking a convenient
smooth approximation of v having finitely many zeros (provided that these zeroes
are sufficiently close to v−1(0) ∩ U).

The celebrated Poincaré-Hopf theorem says that, if M is a compact manifold
(possibly with boundary ∂M), then deg(v,M \∂M) = χ(M) for any tangent vector
field v which points outward along ∂M .

In the flat case, namely if U is an open subset of Rk, deg(v, U) is just the
Brouwer degree (with respect to zero) of v in U . Using the equivalent definition
of degree given in [1], one can see that all the standard properties of the Brouwer
degree on open subsets of Euclidean spaces, such as homotopy invariance, excision,
additivity, existence, etc., are still valid in the more general context of differentiable
manifolds.
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Let M be a boundaryless differentiable manifold embedded in Rk, and let h :
TM → Rk be (continuous and) tangent to M ; that is, assume h(p, v) ∈ TpM for
any (p, v) ∈ TM . As in section 2, we associate to h the second order tangent vector

field ĥ on TM ⊂ R2k.
We want to show that the degree of the vector field ĥ can be expressed in terms

of the degree of h(·, 0) (Lemma 3.2 below). The following Lemma of [3] is in order.

Lemma 3.1. Let γ : M → Rk be a tangent vector field on M and let γ̂ : TM →
Rk × Rk, γ̂(p, v) = (v , r(p, v) + γ(p)), be the second order vector field associated
to γ. Then, given an open subset U of TM , γ̂ is admissible on U if and only if γ
is so on U ∩M , and

deg(γ̂, U) = deg(−γ, U ∩M).

In addition to h, let us consider the vector field h|M , tangent to M , given by
the restriction of h to the zero section of TM that, according to (5), is identified
with M . In other words, let h|M : M → Rk be h|M (p) = h(p, 0).

The following result is an extension of Lemma 3.1.

Lemma 3.2. Let h : TM → Rk be tangent to a differentiable manifold M and let
U be an open subset of TM . Then, h|M is admissible on U ∩M if and only if the

second order vector field ĥ associated to h is admissible on U , and

deg(ĥ, U) = deg (− h|M , U ∩M) .

Proof. Since [
(h|M )

−1
(0)

]
× {0} = ĥ−1(0) ,

h|M is admissible on U ∩M if and only if ĥ is so on U . It remains to show that

the claimed relation between the degrees of ĥ and − h|M holds.

Let ĥ|M : TM → Rk × Rk be the second order vector field associated to h|M .
That is

ĥ|M (p, v) = (v , r(p, v) + h|M (p)) .

Assume that h|M is admissible on U ∩M (or, equivalently, ĥ is admissible on U).

Then, by Lemma 3.1, also ĥ|M is so on U , and

deg( ĥ|M , U) = deg(− h|M , U ∩M).(7)

Consider the homotopy of vector fields H : TM × [0, 1] → Rk ×Rk defined by

H(p, v;λ) = λĥ|M (p, v) + (1 − λ)ĥ(p, v)

= (v , r(p, v) + λh(p, 0) + (1 − λ)h(p, v)) .

Observe that H is an admissible homotopy, i.e. the set H−1(0) = ĥ−1(0)× [0, 1] is
compact. Hence, by the homotopy invariance

deg( ĥ|M , U) = deg(ĥ, U),(8)

and, finally, from (7) and (8) we get

deg(ĥ, U) = deg
(
ĥ|M , U

)
= deg (− h|M , U ∩M) .
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In the case when M is a compact boundaryless manifold, if U is an open subset
of TM such that U ∩M = M , by the Poincaré-Hopf Theorem we have

deg (− h|M ,M) = χ(M).

Thus, from Lemma 3.2 we immediately get.

Corollary 3.3. Let M ⊂ Rk be a compact boundaryless manifold and let h :
TM → Rk be tangent to M . If U is an open subset of TM such that U ∩M = M ,
then

deg(ĥ, U) = χ(M).

4. The main result

Theorem 4.2 below, which is our main result, describes a property of the set of
T -pairs for a periodically perturbed second order autonomous differential equation.
It is based on an analogous result of [4] (Th. 4.1 below) for first order equations on
a differentiable manifold N ⊂ Rs.

For the sake of simplicity, in analogy with the diagram (5), we will regard every
space as its image in the following commutative diagram of natural inclusions:

N −→ CT (N)
↓ ↓

[0,∞) ×N −→ [0,∞) × CT (N)
(9)

In particular, we will identify N with its image in CT (N) under the embedding
which associates to any p ∈ N the map p̄ ∈ CT (N) constantly equal to p. Moreover
we will regard N as the slice {0} × N ⊂ [0,∞) × N and, analogously, CT (N) as
{0} × CT (N). We point out that the images of the above inclusions are closed.

According to these identifications, if Ω is an open subset of [0,∞) × CT (N), by
Ω ∩N we mean the open subset of N given by all p ∈ N such that the pair (0, p̄)
belongs to Ω. If U is an open subset of [0,∞)×N , then U ∩N represents the open
set {p ∈ N : (0, p) ∈ U}.

Theorem 4.1. Let ϕ : R×N → Rs and γ : N → Rs be continuous tangent vector
fields defined on a (boundaryless) differentiable manifold N ⊂ Rs, with ϕ T -periodic
in the first variable. Let Ω be an open subset of [0,∞) × CT (N), and assume that
deg(γ,Ω ∩N) is well defined and nonzero. Then Ω contains a connected set G of
nontrivial T -pairs for the equation

ẋ = γ(x) + λϕ(t, x),

whose closure in [0,∞) × CT (N) meets γ−1(0) ∩ Ω and is not contained in any
compact subset of Ω. In particular, if N is closed in Rs and Ω = [0,∞) × CT (N),
then G is unbounded.

Applying Lemma 3.2 and Theorem 4.1 we obtain our main result about the set
of T -pairs of equation (3).

Theorem 4.2. Let M ⊂ Rk be a boundaryless manifold, and let h : TM → Rk

and f : R × TM → Rk be tangent to M , with f T -periodic in the first variable.
Given an open subset Ω of [0,∞) × C1

T (M) such that deg (h|M ,Ω ∩M) is well
defined and nonzero, Ω contains a connected set Γ of nontrivial T -pairs for (3)
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whose closure meets Ω ∩ (h|M )
−1

(0) and is not contained in any compact subset

of Ω. In particular, if M is closed in Rk and Ω = [0,∞) × C1
T (M), then Γ is

unbounded.

Proof. Since Ω is relatively open in the subspace [0,∞) × C1
T (M) of [0,∞) ×

CT (TM), there exists an open subset Ω̂ of [0,∞) × CT (TM) such that

Ω̂ ∩
(
[0,∞) × C1

T (M)
)

= Ω

and, consequently, Ω̂ ∩M = Ω ∩M .

If ĥ is the second order vector field associated to h, by Lemma 3.2

deg
(
ĥ, TM ∩ Ω̂

)
= deg

(
− h|M , Ω̂ ∩M

)
= (−1)m deg

(
h|M , Ω̂ ∩M

)

= (−1)m deg (h|M ,Ω ∩M) 6= 0,

where m is the dimension of M .
By Theorem 4.1, Ω̂ contains a connected set G of nontrivial T -pairs for equation

(4) whose closure in [0,∞) × CT (TM) meets ĥ−1(0) ∩ Ω̂ and is not contained in

any compact subset of Ω̂. By Remark 2.2, the set

Γ = (j4|X )−1(G),

of T -pairs for (3), is connected and its closure intersects Ω∩ (h|M )
−1

(0). We claim
that Γ is not contained in any compact subset of Ω. Assume by contradiction
that there exists a compact set K ⊂ Ω containing Γ. Since X is closed, K ∩X is

compact. Thus its image j4(K ∩X) is a compact subset of Ω̂ containing G, which
is a contradiction.

Finally, if M is assumed to be complete, TM is complete as well; thus, the last
assertion follows from Remark 2.2 and Theorem 4.1.

A special case of Theorem 4.2 is when M = Rk. In this situation, if the degree
deg

(
h(·, 0),Rk

)
is well defined and nonzero, then there exists an unbounded con-

nected set of T -pairs of (3) which meets (h(·, 0))−1 (0), and the existence of such
a connected branch cannot be destroyed by a particular choice of f . However this
branch is possibly contained in the slice {0}×C1

T (M), as in the case of the resonant
harmonic oscillator (here M = R and T = 2π):

ẍ = −x+ λ sin t.

As a straightforward consequence of Theorem 4.2 we get the following extension
of a result of [2] in which h is the zero vector field.

Corollary 4.3. Let M ⊂ Rk be a compact boundaryless manifold with χ(M) 6= 0
and let h : TM → Rk and f : R × TM → Rk be tangent to M , with f T -periodic
in the first variable. Then there exists an unbounded connected set of nontrivial

T -pairs for (3) whose closure in [0,∞) × C1
T (M) meets (h|M )

−1
(0).

In the case when M is a complete manifold, Theorem 4.2 provides the following
“geometric” property of the set T -pairs of (3).

Corollary 4.4. Let M , h and f be as in Theorem 4.2 and assume in addition M

to be closed in Rk. Let U be an open subset of M . If deg (h|M , U) is well defined
and nonzero, then (3) admits a connected set Γ of nontrivial T -pairs whose closure

Γ meets U ∩ (h|M )
−1

(0) and satisfies at least one of the following properties:
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1. Γ is unbounded;

2. Γ meets (h|M )
−1

(0) outside U .

In particular, if (h|M )−1 (0) ⊂ U , then (1) holds.

Proof. Consider the following open subset of [0,∞) × C1
T (M):

Ω =
(
[0,∞) × C1

T (M)
)
\

(
(h|M )

−1
(0) \U

)
.

Since Ω ∩ (h|M )
−1

(0) = U ∩ (h|M )
−1

(0), by the excision property of the degree,

deg (h|M ,Ω ∩M) = deg (h|M , U) 6= 0 .

Thus, by Theorem 4.2 we get the existence of a connected set Γ of nontrivial T -pairs
whose closure Γ in [0,∞) × C1

T (M) is not contained in any compact subset of Ω.
Assume that

Γ ∩
(
(h|M )

−1
(0) \U

)
= ∅,

in this case Γ ⊂ Ω. Since M is complete, by Remark 2.3, Γ cannot be both
bounded and complete. Thus Γ, being a closed subset of the complete metric space
[0,∞) × C1

T (M), must be unbounded.

A particular case of this corollary deserves to be mentioned:

Corollary 4.5. Let M , h and f be as in Corollary 4.4. If p ∈ h(·, 0)−1(0) is such
that h(·, 0)′(p) : TpM → Rk is injective, then (3) admits a connected set of T -pairs
which contains p and is either unbounded or meets h(·, 0)−1(0)\{p}.

Proof. Since h(p, 0) = 0, the derivative h(·, 0)′ maps TpM into itself. Thus p is
an isolated zero of h(·, 0) with index ±1. The assertion follows from Corollary 4.4
taking U a sufficiently small neighborhood of p.

In order to give insight into Corollary 4.4, we give an application. Consider for
example the following perturbed pendulum equation:

θ̈ = − sin θ + λf(t, θ),(10)

with f : R × R → R continuous, 2π-periodic in θ and T -periodic in t. Clearly
the functions θ 7→ − sin θ and f can be regarded as tangent vector fields on the
manifold S1. Thus (10) may be considered as a second order differential equation
on S1 ⊂ R2, with the “south pole” S = {θ = 0} and the “north pole” N = {θ = π}
as the unique zeros of the unperturbed vector field.

Let us show that, if (10) does not have forced oscillations for some λ0 > 0, then
the two poles are joined by a connected set of T -pairs.

Let C be the connected component of the set of T -pairs containing S. Corollary
4.5 implies that if C does not meet N, it is unbounded. Thus it is enough to show
that if (10) has no T -periodic solutions for λ0 > 0, then C must be bounded.
Consider the (continuous) map w : [0,∞) × C1

T (S1) → Z which associates to any
(λ, x) the winding number of the closed curve t ∈ [0, T ] → x(t) ∈ S1. Regarding
the poles S and N as T -pairs, we have that w(N) = w(S) = 0. By the continuity
of the winding number, w is identically zero on C. This means that, given any
T -pair (λ, x) ∈ C, the T -periodic map t 7→ x(t) may be seen as a T -periodic real
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function (that is x is actually a solution of (10)). This implies that the derivative
ẋ(t) vanishes for some t ∈ [0, T ]. Consequently one has

|ẋ(t)| ≤ T

(
1 + λ0 max

(s,θ)∈R×R

|f(s, θ)|

)
,

and this shows that C is bounded.
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