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Abstract. This paper gives sufficient conditions for a class of bang-bang ex-
tremals with multiple switches to be locally optimal in the strong topology.
The conditions are the natural generalizations of the ones considered in [4, 11]
and [12]. We require both the strict bang-bang Legendre condition, a non
degeneracy condition at multiple switching times, and the second order con-
ditions for the finite dimensional problems obtained by moving the switching
times of the reference trajectory.

1. Introduction

We consider a Bolza problem on a fixed time interval [0, T ], where the control
functions are bounded and enter linearly in the dynamics. Namely:

minimize C(ξ, u) := β(ξ(T )) +

∫ T

0

(
f0
0 (ξ(t)) +

m∑

i=1

uif
0
i (ξ(t))

)
dt(1a)

subject to ξ̇(t) = f0(ξ(t)) +
m∑

i=1

uifi(ξ(t))(1b)

ξ(0) = x̂0; u = (u1, . . . , um) ∈ L∞([0, T ], [−1, 1]m).(1c)

The state space is a n–dimensional manifold M , x̂0 is a given point, the vector
fields f0, f1, . . . , fm and the functions f0

0 , f
0
1 , . . . , f

0
m, β are C∞.

Optimal control problems in Economics with the above structure have been
considered in [6] and references therein.

The authors aim at giving second order sufficient conditions for a reference bang-

bang couple (ξ̂, û) to be a local optimizer in the strong topology; the strong topology
being the one induced by C([0, T ],M) on the set of the admissible trajectories.
Therefore optimality is with respect to neighboring trajectories, independently of
the values of the associated controls.

Recall that a control û (a trajectory ξ̂) is bang-bang if there is a finite number
of switching times 0 < t̂1 < · · · < t̂r < T such that each control function ûi is
constantly either −1 or 1 on each interval (t̂k, t̂k+1). A switching time t̂k is called
simple if only one control function changes value at t̂k, while it is called multiple if
at least two control functions change value.

Second order conditions for the optimality of a bang-bang extremal with simple
switches only are given in [4, 8, 11, 12], and references therein, while in [13] the
author gives sufficient conditions, in the case of the minimum time problem, for L1–
local optimality of a bang bang extremal having both simple and multiple switches
with the extra assumption that the Lie brackets of the switching vector fields is
annihilated by the adjoint covector.

1



2 LAURA POGGIOLINI AND MARCO SPADINI

Here we consider the problem of local strong optimality in the case of a Bolza
problem, when at most one double switch occurs, but there are finitely many simple
ones. More precisely we extend the conditions in [4, 11, 12] requiring the sufficient
second order conditions for the finite dimensional sub–problems obtained by al-
lowing the switching times to move. We remark that, while in the case of simple
switches the only variables are the switching times, each time when a double switch
occurs we have to consider the two possible combinations of the switching controls.
In order to complete the proof, the investigation of the invertibility of some Lip-
schitz continuous, piecewise C1 operators has been done via topological methods
described in the Appendix. To apply such methods it is necessary to assume a
“non–degeneracy” condition at the double switching time.

2. The result

The result is based on some regularity assumption on the vector fields asso-
ciated to the problem and on a second order condition for a finite dimensional
sub–problem.

2.1. Notation and regularity. Assume we are given an admissible reference cou-

ple
(
ξ̂, û
)

satisfying Pontryagin maximum principle (PMP) with adjoint covector λ̂.
Remark that, since no constraint is given on the final point of admissible trajecto-

ries, then (ξ̂, û) must satisfy PMP in normal form. We assume the reference control

is regular bang–bang with a finite number of switching times t̂1, . . . , t̂K such that
only two kinds of switchings appear:

• simple switching time: only one of the control functions û1, . . . , ûm switches
at time t̂i;

• double switching time: two of the control functions û1, . . . , ûm switch at
time t̂i.

We assume that there is just one double switching time, which we denote by τ̂ .
Without loss of generality we may assume that the controls switching at time τ̂
are û1 and û2. In the interval (0, τ̂ ), J0 simple switches occur (if no simple switch
occurs in(0, τ̂ ), then J0 = 0), while J1 simple switches occur in the interval (τ̂ , T )
(if no simple switch occurs in (τ̂ , T ), then J1 = 0). We denote the simple switching

times by θ̂ij , j = 1, . . . , Ji, i = 0, 1 with a self–evident meaning of the double index.

In order to simplify the notation, we also define θ̂00 := 0, θ̂0,J0+1 := θ̂10 := τ̂ ,

θ̂1,J1+1 := T , i.e. we have

θ̂00 := 0 < θ̂01 < . . . < θ̂0J0
< τ̂ := θ̂0,J0+1 := θ̂10 < θ̂11 < . . . < θ̂1J1

< T

For any m–uple u = (u1, . . . , um) ∈ R
m let us denote

hu : ` ∈ T ∗M 7→ 〈` , f0(π`) +
m∑

i=1

uifi(π`)〉 −
(
f0
0 (π`) +

m∑

i=1

uif
0
i (π`)

)
∈ R

and let f̂t, f̂
0
t and Ĥt be the reference vector field, the reference running cost and

the reference Hamiltonian function, respectively, i.e.

f̂t(x) := f0(x) +

m∑

i=1

ûi(t)fi(x) f̂0
t (x) := f0

0 (x) +

m∑

i=1

ûi(t)f
0
i (x)

Ĥt(`) := 〈` , f̂t(π`)〉 − f̂0
t (π`) = hbu(t)(`)
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Throughout the paper, for any Hamiltonian function K : T ∗M → R,
−→
K will denote

the associated Hamiltonian vector field. Also, let x̂d := ξ̂(τ̂ ) and x̂f := ξ̂(T ). In
our situation PMP reads as follows:
There exists an absolutely continuous function λ̂ : [0, T ] → T ∗M such that

πλ̂(t) = ξ̂(t) ∀t ∈ [0, T ] λ̂(T ) = − dβ(x̂f )

˙̂
λ(t) =

−→
Ĥ t(λ̂(t)) a.e. t ∈ [0, T ],

Ĥt(λ̂(t)) = max
{
hu(λ̂(t)) : u ∈ [−1, 1]m

}
∀t ∈ [0, T ](2)

Maximality condition (2) implies ûi(t)
(
〈λ̂(t) , fi(ξ̂(t))〉 − f0

i (ξ̂(t))
)
≥ 0 for any

t ∈ [0, T ]. We assume the following regularity condition holds:
Regularity. If t is not a switching time for the control ûi, then

(3) ûi(t)
(
〈λ̂(t) , fi(ξ̂(t))〉 − f0

i (ξ̂(t))
)
> 0.

Notice that this implies that argmaxhu(λ̂(t)) = û(t) for any t that is not a switch-
ing time. Let

kij = f̂t|(bθij ,bθi,j+1), k0
ij = f̂0

t |(bθij ,bθi,j+1)
i = 0, 1 j = 0, . . . , Ji

be the restrictions of f̂t, and f̂0
t to each of the time intervals where the reference

control û is constant. Let Kij(`) := 〈` , kij(π`)〉− k0
ij(π`) be the associated Hamil-

tonian function. Then, from maximality condition (2) we get

d

dt
(K10 −K0J0

) ◦ λ̂|bτ ≥ 0 and
d

dt
(Kij −Ki,j−1) ◦ λ̂|bθij

≥ 0

for any i = 0, 1, j = 1, . . . , Ji. We assume that the strong inequality holds at

each simple switching time θ̂ij :
Strong bang–bang Legendre condition for simple switching times.

(4)
d

dt
(Kij −Ki,j−1) ◦ λ̂|bθij

> 0 i = 0, 1, j = 1, . . . , Ji.

We make a stronger assumption at the double switching time τ̂ . Denoting by
∆ν := ûν(τ̂+0)−ûν(τ̂−0), ν = 1, 2, the jumps at τ̂ of the two switching components,
we have

k10 = k0J0
+ ∆1f1 + ∆2f2 , k0

10 = k0
0J0

+ ∆1f
0
1 + ∆2f

0
2

Define the new vector fields and functions

kν := k0J0
+ ∆νfν , k0

ν := k0
0J0

+ ∆νf
0
ν , ν = 1, 2,

with associated hamiltonian functions Kν(`) := 〈` , kν(π`)〉 − k0
ν(π`). We assume

that all the following one–side derivatives are strictly positive:
Strong bang–bang Legendre condition for double switching times.

(5)
d

dt
(Kν −K0J0

) ◦ λ̂|bτ−0 > 0,
d

dt
(K10 −Kν) ◦ λ̂|bτ+0 > 0, ν = 1, 2.

Equivalently, conditions (4) and (5) can be expressed in terms of the canonical
symplectic structure σ (·, ·) on T ∗M :

σ

(−→
K i,j−1,

−→
K ij

)
(λ̂(θ̂ij)) > 0 i = 0, 1, j = 1, . . . , Ji,(6)

σ

(−→
K0J0

,
−→
Kν

)
(λ̂(τ̂ )) > 0, σ

(−→
Kν ,

−→
K10

)
(λ̂(τ̂ )) > 0 ν = 1, 2.(7)
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We also assume the following condition holds at the double switching time:
Non degeneracy.

(8)
∆1f1(x̂d)

σ

(−→
K0J0

,
−→
K1

)
(λ̂(τ̂ ))

6=
∆2f2(x̂d)

σ

(−→
K0J0

,
−→
K2

)
(λ̂(τ̂ ))

2.2. The finite dimensional sub–problem. By allowing the switching times
of the reference control function to move we can define a finite dimensional sub–
problem of the given one. In doing so we must distinguish between the simple

switching times and the double switching time. Moving a simple switching time θ̂i j
to time θi j := θ̂i j+δi j amounts to using the values û|(bθi,j−1,bθi,j) and û|(bθi,j ,bθi,j+1) of

the control function in the time intervals
(
θ̂i,j−1, θi j

)
and

(
θi j , θ̂i,j+1

)
, respectively.

On the other hand, when we move the double switching time τ̂ we change the
switching time of two different components of the reference control function and
we must allow for each of them to change its switching time independently of the
other. This means that between the values of û|(bθ0J0

,bτ) and û|(bτ,bθ01) we introduce

a value of the control function which is not assumed by the reference one at least in
a neighborhood of τ̂ , and which may assume two different values according to which
component switches first between the two available ones. Let τν := τ̂ +εν , ν = 1, 2.
We move the switching time of û1 from τ̂ to τ1 := τ̂ + ε1, and the switching time
of û2 from τ̂ to τ2 := τ̂ + ε2.

Defining θij := θ̂ij + δij , j = 1, . . . , Ji, i = 0, 1; θ0,J0+1 := min{τν , ν = 1, 2},
θ10 := max{τν , ν = 1, 2}, θ00 := 0 and θ1,J1+1 := T , we have two finite–dimensional
sub–problems Pν , ν = 1, 2 given by

minimize β(ξ(T )) +

1∑

i=0

Ji∑

j=0

∫ θi,j+1

θij

k0
ij(ξ(t)) dt +

∫ θ10

θ0,J0+1

k0
ν(ξ(t)) dt(Pνa)

subject to ξ̇(t) =





k0j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J0,

kν(ξ(t)) t ∈ (θ0,J0+1, θ10),

k1j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J1

(Pνb)

and ξ(0) = x̂0.(Pνc)

where kν = k1, k
0
ν = k0

1 if θ0,J0+1 = τ1, and kν = k2, k
0
ν = k0

2 if θ0,J0+1 = τ2.
We shall denote the solution, evaluated at time t, of (Pνb) emanating from

a point x ∈ R
n at time 0 as St(x, δ, ε). We remark that St(x, 0, 0) is the flow

associated to the reference control. We shall denote it by Ŝt(x).
Notice that P1 is defined only for ε1 ≤ ε2, while P2 is defined only for ε2 ≤ ε1,

and the reference control is the one we obtain when every δij and εk is zero, i.e.
in a point on the boundary of the domain of Pν . From PMP we get that the first
variation of both these problems at δij = 0, ε1 = ε2 = 0 is null, hence we can
consider the second variation for the constrained problems P1 and P2. We shall ask
for their second order variations to be positive and prove the following theorem:

Theorem 2.1. Let (ξ̂, û) be a bang–bang regular extremal (3) for problem (1) with

associated covector λ̂. Assume all the switching times of (ξ̂, û) but one are simple,

while the only non–simple switching time is double.

Assume the Legendre conditions (6) and (7) hold. Also, assume the non degener-

acy condition (8) holds at the double switching time. Assume also that each second
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variation J ′′
ν is positive definite on the kernel of the first variation of problem Pν .

Then (ξ̂, û) is a strict strong local optimizer for problem (1).

3. Proof of the result

The proof will be carried out by means of Hamiltonian methods. Namely we shall
define a time–dependent maximized Hamiltonian H in T ∗M with flow H : [0, T ]×
T ∗M → T ∗M and consider the restriction of H to a suitable Lagrangian manifold

Λ0 containing ̂̀0 := λ̂(0). We shall prove that ψ := id×π ◦H : (t, `) ∈ [0, T ]×Λ0 7→

(t, πHt(`)) ∈ [0, T ] ×M is locally invertible around [0, T ] × {̂̀0} and we will take
advantage of the exactness of ω := H∗ (p dq −H dt) on {(t,Ht(`)) , ` ∈ Λ0} (see
Section 3.4) to reduce our problem to a local optimization problem for a function
F defined in a neighborhood of x̂T . Finally we shall conclude the proof of Theorem
2.1 showing that such problem has a local minimum in x̂T . In proving both the
invertibility of ψ and the minimality of x̂T for F we shall exploit the positivity of
the second variations J ′′

ν . See [1, 2, 3] for a general introduction to Hamiltonian
methods.

3.1. The maximized flow. We are now going to define the maximized Hamilton-
ian and the flow of its associated Hamiltonian vector field. Such flow will turn out
to be Lipschitz continuous and piecewise–C1. Define

θ00(`) := 0 ϕ00(`) := `

for j = 1, . . . , J0

θ0j(`) :=

{
θ0j(̂̀0) = θ̂0j

(K0j −K0,j−1) ◦ exp θ0j(`)
−→
K0,j−1 (ϕ0,j−1(`)) = 0

(10a)

ϕ0j(`) := exp
(
− θ0j(`)

−→
K0j

)
◦ exp θ0j(`)

−→
K0,j−1 (ϕ0,j−1(`))(10b)

for ν = 1, 2

τν(`) :=

{
τν(̂̀0) = τ̂

(Kν −K0J0
) ◦ exp τν(`)

−→
K0J0

(ϕ0J0
(`)) = 0

(10c)

θ0,J0+1(`) := min {τ1(`), τ2(`)}(10d)

K ′(`) :=

{
K1(`) if θ0,J0+1(`) = τ1(`)

K2(`) if θ0,J0+1(`) = τ2(`)

ϕ′(`) := exp
(
− θ0,J0+1(`)

−→
K ′
)
◦ exp θ0,J0+1(`)

−→
K0J0

(ϕ0J0
(`))(10e)

θ10(`) :=

{
θ10(̂̀0) = θ̂10 = τ̂

(K10 −K ′) ◦ exp θ10(`)
−→
K ′ (ϕ′(`)) = 0

(10f)

ϕ10 := exp
(
− θ10(`)

−→
K10

)
exp θ10(`)

−→
K ′ (ϕ′(`))(10g)

for j = 1, . . . , J1

θ1j(`) :=

{
θ1j(̂̀0) = θ̂1j

(K1j −K1,j−1) ◦ exp θ1j(`)
−→
K1,j−1 (ϕ1,j−1(`)) = 0

(10h)

ϕ1j(`) := exp
(
− θ1j(`)

−→
K1j

)
exp θ1j(`)

−→
K 1,j−1 (ϕi,j−1(`))(10i)

θ1,J1+1(`) = T(10j)
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To prove that such flow is well defined, we need to show that the switching times
θij(`), τ(`) are themselves well defined and that they are ordered as follows

θ0,j−1(`) < θ0j(`) . . . < θ0J0
(`) < θ0,J0+1(`) ≤ θ10(`) < θ11(`) < . . .

The proof that the switching times θ0j , are well defined can be carried out as in
[4]. Here we show that θ0,J0+1 and θ10 are also well defined. Let

Ψν(t, `) = (Kν −K0J0
) ◦ exp t

−→
K0J0

◦ ϕ0J0
(`)

then
∂Ψν

∂t

∣∣∣∣
(bτ,b̀0)

= σ

(−→
K0J0

,
−→
Kν

)
(λ̂(τ̂ )) which is positive by (7). Now, let

Φ10(t, `) = (K10 −K ′) ◦ exp t
−→
K ′ ◦ ϕi(`)

then
∂Φ10

∂t

∣∣∣∣
(bτ,b̀0)

= σ

(−→
K ′,

−→
K10

)
(λ̂(τ̂ )) which is positive by (7).

Since, by assumption θ̂i,j−1 < θ̂ij and θ̂0J0
< τ̂ , then, by continuity, θi,j−1(`) <

θij(`) and θ0J0
(`) < θ0,J0+1(`) for any ` in a sufficiently small neighborhood of ̂̀0.

Therefore, it suffices to show that θ0,J0+1(`) ≤ θ10(`). Notice that if τ1(`) = τ2(`),
then θ10(`) = θ0,J0+1(`), so there is nothing to prove and the choice of K ′(`) either
as K1(`) or as K2(`) gives no contribution to the flow of such `’s, since for these
`’s the interval (θ0,J0+1(`), θ10(`)) is empty.

Let us assume θ0,J0+1(`) = τ1(`) < τ2(`); at time θ0,J0+1(`) we have

0 = (K1 −K0J0
) ◦ exp θ0,J0+1(`)

−→
K0J0

◦ ϕ0J0
(`)(11)

0 > (K2 −K0J0
) ◦ exp θ0,J0+1(`)

−→
K0J0

◦ ϕ0J0
(`).(12)

Since K2 −K0J0
= K10 −K1, equation (12) can be written as

0 > (K10 −K1) ◦ exp 0
−→
K1 ◦ exp θ0,J0+1(`)

−→
K0J0

◦ ϕ0J0
(`),

i.e. θ10(`) − τ1(`) > 0. Analogous proof holds if θ0,J0+1(`) = τ2(`) < τ1(`). The
proof for the θ1j ’s can again be done as in [4].

The maximized flow is thus defined as follows:

H : (t, `) ∈ [0, T ]× T ∗M 7→ Ht(`) ∈ T ∗M

Ht(`) :=





exp t
−→
K0j(ϕ0j(`)) t ∈ (θ0j(`), θ0,j+1(`)], j = 0, . . . , J0

exp t
−→
K ′(ϕ′(`)) t ∈ (θ0,J0+1(`), θ10(`)]

exp t
−→
K1j(ϕ1j(`)) t ∈ (θ1j(`), θ1,j+1(`)], j = 0, . . . , J1

(13)

3.2. The second variations. In order to write the second variations of the finite
dimensional sub–problems Pν we write them in Mayer form introducing an auxiliary
variable x0, as in [11]. The new state space is R×M whose elements we denote by
x̃ := (x0, x). Let

k̃ij :=

(
k0
ij

kij

)
i = 0, 1, j = 0, . . . , Ji, k̃ν :=

(
k0
ν

kν

)
ν = 1, 2.
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Then problem Pν is equivalent to

minimize β(ξ(T )) + ξ0(T ) subject to(14a)

˙̃
ξ(t) =

(
ξ̇0(t)

ξ̇(t)

)
=





k̃0j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J0,

k̃ν(ξ(t)) t ∈ (τ, θ10),

k̃1j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J1

(14b)

ξ̃(0) = (0, x̂0).(14c)

We denote the solutions of (14b) evaluated at time t, emanating from a point

x̃ = (x0, x) at time 0, as S̃t(x̃, δ, ε) =
(
S0
t (x

0, x, δ, ε), St(x, δ, ε)
)

and by
˜̂
St(x̃) =(

Ŝ0
t (x

0, x), Ŝt(x)
)

=
(
S0
t (x

0, x, 0, 0), St(x, 0, 0)
)

we denote the flow associated to

the reference control. Define

a00 := δ01; aij := δij+1 − δij i = 0, 1 j = 1, . . . , Ji − 1;

a0J0
:= ε1 − δ0J0

; b := ε2 − ε1; a10 := δ11 − ε2; a1J1
:= −δ1J1

.

Then b+

1∑

i=0

Ji∑

j=0

aij = 0. Let

gij(x) =
(
DŜbθij

)−1
kij ◦ Ŝbθij

(x), g0
ij(x) = k0

ij ◦ Ŝbθij
(x) − gij · S

0
bθij

(x),

hν(x) =
(
DŜbτ

)−1
kν ◦ Ŝbτ (x), h0

ν(x) = f0
ν ◦ Ŝbτ (x) − hν · Ŝ

0
bτ (x)

and put β̂(x) := β ◦ ŜT (x), B̂0(x) :=

∫ T

0

f̂t(Ŝt(x)) dt, α := −β̂ and γ̂ := α+ β̂+B̂0.

Also define Λ0 := {dα(x), x ∈M} . Let ζ̃t(x̃, δ, ε) :=
( ˜̂
St

)−1

◦ S̃t(x, δ, ε). We

consider the second–order variations of

Jν(x, a, b) := α(x) + β̂(ζνT (x, a, b)) + Ŝ0
T

(
ζ̃T (0, x, a, b)

)

at the reference triplet (x, a, b) = (x̂0, 0, 0). By assumption, for each ν = 1, 2, J ′′
ν is

positive definite on

N ν
0 :=

{
(δx, a, b) ∈ Tbx0

M × R
J0+J1 × R : δx = 0, b+

1∑

i=0

Ji∑

j=0

aij = 0
}
.

Possibly redefining α by adding a suitable second–order penalty at x̂0, we may as-
sume that each second variation J ′′

ν is positive definite on

N ν :=
{
(δx, a, b) ∈ Tbx0

M × R
J0+J1 × R : b+

1∑

i=0

Ji∑

j=0

aij = 0
}
.

Let Gij , Hν be the Hamiltonian functions associated to (gij , g
0
ij) and (hν , h

0
ν) re-

spectively, and introduce the anti–symplectic isomorphism i as in [4],

(15) i : (δp, δx) ∈ T ∗
bx0
M × Tbx0

M 7→ −δp+ d(−β̂ − B̂0)∗δx ∈ T (T ∗M) .

Defining
−→
G ′′
ij = i−1

(−→
G ij(̂̀0)

)
,
−→
H ′′
ν = i−1

(−→
H ν(̂̀0)

)
, we have that

−→
G ′′
ij and

−→
H ′′
ν

are the Hamiltonian vector fields associated to the following linear Hamiltonian
functions defined in T ∗

bx0
M × Tbx0

M

G′′
ij(ω, δx) = 〈ω, gij(x̂0)〉+δx ·

(
gij ·

(
β̂ + B̂0 − Ŝ0

bθij

)
+ g0

ij ◦ Ŝbθij

)
(x̂0)(16)
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H ′′
ν (ω, δx) = 〈ω , hν(x̂0)〉 + δx ·

(
hν ·

(
β̂ + B̂0 − Ŝ0

bτ

)
+ h0

ν ◦ Ŝbτ

)
(x̂0).(17)

Moreover L′′
0 := i−1Tb̀

0
Λ0 =

{
δ` =

(
−D2γ̂(x̂0)(δx, ·), δx

)
: δx ∈ Tbx0

M
}

and the

bilinear form J ′′
ν associated to the second variation can be written in a rather

compact form: for any δe := (δx, a, b) ∈ N ν let

ω0 := −D2γ̂(x̂0)(δx, ·), δ` := (ω0, δx) = i−1 (dα∗δx) ,

(ων , δxν) := δ`+

1∑

i=0

Ji∑

j=0

aij
−→
G ′′
ij + b

−→
H ′′
ν and δ`ν := (ων , δxν).

Then J ′′
ν can be written as

J ′′
ν

(
(δx, a, b), (δy, c, d)

)
= −〈ων , δy +

J0∑

s=0

c0sg0s + d hν +

J1∑

s=0

c1sg1s〉

+

J0∑

j=0

c0j G
′′
0j

(
δ`+

j−1∑

s=0

a0s
−→
G ′′

0s

)
+ dH ′′

ν

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s

)

+

J1∑

j=0

c1jG
′′
1j

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑

s=0

a1s
−→
G ′′

1s

)

(18)

We shall study the positivity of J ′′
ν as follows: consider the increasing sequence

of sub–spaces of

V ν :=
{
(δx, a, b) ∈ N ν : δx+

1∑

i=0

Ji∑

j=0

aijgij(x̂0) + b hν(x̂0) = 0
}
.

defined as

V ν0j := {(δx, a, b) ∈ V ν : a0s = 0 ∀s = j + 1, . . . , J0, a1s = 0

∀s = 0, . . . , J1, b = 0},

V ν1j := {(δx, a, b) ∈ V ν : a1s = 0 ∀s = j + 1, . . . , J1}.

Then V 1
0j = V 2

0j for any j = 0, . . . , J0, so we denote these sets as V0j . Moreover

dim
(
V0j ∩ V

⊥J′′
ν

0,j−1

)
= dim

(
V ν1k ∩ V

⊥J′′
ν

1,k−1

)
= 1, dim

(
V ν10 ∩ V

⊥J′′
ν

0J0

)
= 2

for any j = 2, . . . , J0 and any k = 0, . . . , J1.
Using the first order approximations of the quantities θij(`), ϕij(`), defined in

equations (10) and proceeding as in [4] we can prove the following lemmata

Lemma 3.1. δe = (δx, a, b) ∈ V0j ∩ V
⊥J′′

ν

0,j−1 if and only if δe ∈ V0j and

(19) G′′
0s(δ`+

s−1∑

µ=0

a0µ
−→
G ′′

0µ) = G′′
0,j−1(δ`+

j−2∑

s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , j − 2

i.e. a0s = d(θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , j − 2.

In this case J ′′[δe]2 = a0j σ

(
δ`+

j−1∑

s=0

a0s
−→
G ′′

0s,
−→
G ′′

0j −
−→
G ′′

0,j−1

)
.
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Lemma 3.2. δe = (δx, a, b) ∈ V ν10 ∩ V
⊥J′′

ν

0J0
if and only if δe ∈ V ν10 and

(20) G′′
0s(δ`+

s−1∑

µ=0

a0µ
−→
G ′′

0µ) = G′′
0,J0

(δ`+

J0−1∑

s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , J0 − 1

i.e. a0s = d(θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0 − 1.
In this case

J ′′[δe]2 = bσ

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s,
−→
H ′′
ν −

−→
G ′′

0,J0

)

+ a10 σ

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν ,
−→
G ′′

10 −
−→
H ′′
ν

)
.

Lemma 3.3. δe = (δx, a, b) ∈ V ν1j ∩ V
⊥J′′

ν

1,j−1 if and only if δe ∈ V ν1j and

G′′
0s(δ`+

s−1∑

i=0

a0i
−→
G ′′

0i) = H ′′
ν (δ`+

J0∑

i=0

a0i
−→
G ′′

0i)

= G′′
1k(δ`+

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑

i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , j − 2

i.e. if and only if δe ∈ V ν1j and

a0s = d(θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0

b = d(θ0,J0+1 − θ0J0
) (dα∗δx)

a1s = d(θ1,s+1 − θ1s) (dα∗δx) ∀s = 0, . . . , j − 2.

In this case

J ′′[δe]2 = a1j σ

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑

i=0

a1i
−→
G ′′

1i,
−→
G ′′

1j −
−→
G ′′

1,j−1

)
.

Lemma 3.4. δe = (δx, a, b) ∈ N ν ∩ V
⊥J′′

ν

1J1
if and only if δe ∈ N ν and

G′′
0s(δ`+

s−1∑

i=0

a0i
−→
G ′′

0i) = H ′′
ν (δ`+

J0∑

i=0

a0i
−→
G ′′

0i)

= G′′
1k(δ`+

J0∑

i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑

i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , J1

i.e. if and only if δe ∈ N ν and

a0s = d(θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0

b = d(θ0,J0+1 − θ0J0
) (dα∗δx)

a1s = d(θ1,s+1 − θ1s) (dα∗δx) ∀s = 0, . . . , J1 − 1.
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In this case

J ′′[δe]2 = −〈ων , δx+
1∑

i=0

Ji∑

s=0

aisgis + b hν〉

= σ

((
0, δx+

1∑

i=0

Ji∑

s=0

aisgis + bhν

)
,−D2γ̂(δx, ·) +

1∑

i=0

Ji∑

s=0

ais
−→
G ′′
is + b

−→
H ′′
ν

)
.

3.3. The invertibility of the flow. Lemma 3.1 allows us to prove the following
property (whose proof can be found in [4]) for the linearization of the maximized
flow:

Lemma 3.5. Let j ∈ {1, . . . , J0} and δx1, δx2 ∈ Tbx0
M such that dθ0j(δx2) < 0 <

dθ0j(δx1). Then
(
π ◦ Hbθ0j

)
∗
dα∗δx1 6=

(
π ◦ Hbθ0j

)
∗
dα∗δx2.

Lemma 3.5 implies that the application

(21) ψ : (t, `) ∈ [0, T ]× Λ0 7→ (t, π ◦ Ht(`)) ∈ [0, T ]×M

is locally invertible around [0, τ̂ − ε]×
{̂̀

0

}
. In fact, ψ is locally one–to–one if and

only if π ◦ Ht is locally one–to–one in ̂̀0 for any t. On the other hand π ◦ Ht is

locally one–to–one for any t < τ̂ if and only if it is one–to–one at any θ̂0j . This
property is granted by Lemma 3.5.

We now want to show that such procedure can be carried out also on [τ̂ −

ε, T ] ×
{̂̀

0

}
, so that ψ will turn out to be locally invertible from a neighborhood

[0, T ]×O ⊂ [0, T ]×Λ0 of [0, T ]×
{̂̀

0

}
onto a neighborhood U ⊂ [0, T ]×M of the

graph Ξ̂ of ξ̂.

The first step will be proving the invertibility of π ◦Hbτ at ̂̀0. In a neighborhood

of ̂̀0, π ◦ Hbτ has the following piecewise representation

M1
min

˘
τ1(`), τ2(`)

¯
≥

bτ π exp bτ−→K 0J0
◦ ϕ0J0

(`)

M2
min

˘
τ1(`), τ2(`)

¯
=

τ1(`) ≤ bτ ≤ θ10(`)
π exp bτ−→K 1 ◦ exp(−τ1(`)

−→
K1) ◦ exp τ1(`)

−→
K 0J0

◦ ϕ0J0
(`)

M3
min

˘
τ1(`), τ2(`)

¯
=

τ2(`) ≤ bτ ≤ θ10(`)
π exp bτ−→K 2 ◦ exp(−τ2(`)

−→
K2) ◦ exp τ2(`)

−→
K 0J0

◦ ϕ0J0
(`)

M4
min

˘
τ1(`), τ2(`)

¯
=

τ1(`) ≤ θ10(`) ≤ bτ
π exp

`
bτ − θ10(`)

´−→
K10 ◦ exp θ10(`)

−→
K1 ◦ exp(−τ1(`)

−→
K 1) ◦

exp τ1(`)
−→
K0J0

◦ ϕ0J0
(`)

M5
min

˘
τ1(`), τ2(`)

¯
=

τ2(`) ≤ θ10(`) ≤ bτ
π exp

`
bτ − θ10(`)

´−→
K10 ◦ exp θ10(`)

−→
K2 ◦ exp(−τ2(`)

−→
K 2) ◦

exp τ2(`)
−→
K0J0

◦ ϕ0J0
(`)

The invertibility of π ◦ Hbτ will be proved by the means of Theorem 4.1 in the
Appendix. Notice that the non degeneracy condition (8) implies that the second
order penalty on α can be chosen so that dτ1(dα∗(·)) 6= dτ2(dα∗(·)). In order to
apply Theorem 4.1 we write the piecewise linearized map (π ◦ Hbτ )∗.
(π ◦ Hbτ )∗δ` is given by

M1′ if min{dτ1(δ`), dτ2(δ`)} ≥ 0

(22a) exp(τ̂
−→
K0J0

)∗ϕ0J0
δ`

M2′ if dτ1(δ`) ≤ 0 ≤ dθ10(`), dτ1(δ`) ≤ dτ2(δ`)

(22b) − dτ1(δ`)
[
exp(τ̂

−→
K1)∗

−→
K1 −

−→
K0J0

]
+ exp(τ̂

−→
K0J0

)∗ϕ0J0∗δ`
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M3′ if dτ2(δ`) ≤ 0 ≤ dθ10(δ`), dτ2(δ`) ≤ dτ1(δ`)

(22c) − dτ2(δ`)
[
exp(τ̂

−→
K2)∗

−→
K2 −

−→
K0J0

]
+ exp(τ̂

−→
K0J0

)∗ϕ0J0∗δ`

M4′ if dτ1(δ`) ≤ dθ10(δ`) ≤ 0, dτ1(δ`) ≤ dτ2(δ`)

(22d) dθ10(δ`)
(−→
K10 + dθ10(δ`) exp(τ̂

−→
K10)∗

−→
K1

)

+ exp(τ̂
−→
K1)∗

(
− dτ1(δ`)

−→
K 1 + exp(−τ̂1

−→
K1)∗ dτ1(δ`)

−→
K0J0

+ exp(−τ̂
−→
K1)∗ exp(τ̂

−→
K0J0

)ϕ0J0∗δ`
)

M5′ if dτ2(δ`) ≤ dθ10(δ`) ≤ 0, dτ2(δ`) ≤ dτ1(δ`)

(22e) dθ10(δ`)
(−→
K10 + dθ10(δ`) exp(τ̂

−→
K10)∗

−→
K2

)

+ exp(τ̂
−→
K2)∗

(
− dτ2(δ`)

−→
K 2 + exp(−τ̂2

−→
K2)∗ dτ2(δ`)

−→
K0J0

+ exp(−τ̂
−→
K2)∗ exp(τ̂

−→
K0J0

)ϕ0J0∗δ`
)

According to Theorem 4.1, in order to prove the invertibility of our map it is
sufficient to prove that both the map and its linearization are continuous in a

neighborhood of ̂̀0 and of 0 respectively, that they mantain the orientation and
that there exists a point δx whose preimage is a singleton not belonging to the
above boundaries.

Notice that the continuity of π ◦ Hbτ follows from the very definition of the
maximized flow. Discontinuities of (π ◦ Hbτ )∗ may occur only at the boundaries
described above. A direct computation in formulas (22) shows that this is not the
case. Let us now prove the last assertion.

Throughout the rest of the section, all the Hamiltonian vector fields
−→
G ij and

−→
H ν are computed in ̂̀0. For “symmetry” reasons it is convenient to look for δx
among those which belong to the image of the set {δ` ∈ Tb̀

0
Λ0 : 0 < dτ1(δ`) =

dτ2(δ`)}. Observe that this implies that dθ10(δ`) = dτ1(δ`) = dτ2(δ`): Introducing

the quantity ηbτ (δ`) := Ĥ−1
bτ∗ exp(τ̂

−→
K0J0

)∗ϕ0J0∗(δ`), the assertion dτ1(δ`) = dτ2(δ`)
can be written as

σ

(
ηbτ (δ`),

−→
H 1 −

−→
G0J0

)

σ

(−→
G0J0

,
−→
H 1

) =
σ

(
ηbτ (δ`),

−→
H 2 −

−→
G0J0

)

σ(
−→
G 0J0

,
−→
H 2)

thus, dθ10(δ`)σ
(−→
H 2,

−→
G10

)
is given by

−σ

(
ηbτ (δ`),

−→
G10 −

−→
H 2

)
+ dτ2(δ`)σ

(−→
H 2 −

−→
G0J0

,
−→
G10 −

−→
H 2

)

and, using that dτ1(δ`) = dτ2(δ`) and
−→
G10 −

−→
H 2 =

−→
H 1 −

−→
G 0J0

, this is equal to

dτ1(δ`)σ
(−→
H 2,

−→
G10

)
.

Thus, we consider δx = π∗ exp(τ̂
−→
K0J0

)∗ϕ0J0∗δ`1 with 0 < dτ1(δ`1) = dτ2(δ`1).
Clearly δx has at most one preimage per each of the above sectors. Let us prove
that actually its preimage is the singleton {δ`1}.
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Assume by contradiction that there is δ`2 in sector M2′ such that

π∗ exp(τ̂
−→
K0J0

)∗ϕ0J0∗(δ`1) =π
(
exp τ̂

−→
K1)∗

(
− dτ1(δ`2)

−→
K 1

)

+ π∗ dτ1(δ`2)
−→
K0J0

+ π∗ exp(τ̂
−→
K0J0

)∗ϕ0J0∗(δ`2)

Taking the pull-back we get

δx1 − δx2 +

J0−1∑

s=1

d(θ0,s+1 − θ0s)
(
dα∗(δx1 − δx2)

)
g0s

−
(
dθ0J0

(
dα∗(δx1 − δx2)

)
+ dτ1(dα∗δx2)

)
g0J0

+ dτ1(dα∗δx2)h1 = 0.

Consider δe := (δx1 − δx2, a, b), where, for j = 0, . . . , J1, a1j = 0 and, for s =
0, . . . , J0,

a0s =

{
d(θ0,s+1 − θ0s)

(
dα∗(δx1 − δx2)

)
s = 0, . . . , J0 − 1

− dθ0J0

(
dα∗(δx1 − δx2)

)
+ dτ1(dα∗δx2) s = J0,

and b = dτ1(dα∗δx2) < 0. Thus δe ∈ V 1
10 ∩ V

⊥J′′

1

0J0
, therefore Lemma 3.2 applies:

σ

(
δ`+

J0∑

s=0

a0s
−→
G ′′

0s,
−→
H ′′

1 −
−→
G ′′

0J0

)
< 0

where δ` =
(
−D2γ̂(x0)(δx1 − δx2, ·), δx1 − δx2

)
. Thus, applying i,

σ

(
dα∗(δx1 − δx2) +

J0∑

s=0

a0s
−→
G0s,

−→
H 1 −

−→
G0J0

)
> 0

or, linearizing the formula for τ1(δ`) in (10),

σ

(
ηbτ (dα∗(δx1 − δx2)),

−→
H 1 −

−→
G0J0

)
− dτ1(dα∗δx2)σ

(−→
G0J0

,
−→
H 1

)
> 0

which implies − dτ1
(
dα∗(δx1 − δx2)

)
− dτ1(dα∗δx2) > 0 or dτ1(dα∗δx1) < 0 a

contradiction.
Let us now assume by contradiction that there is δ`4 in sector M4′ whose image

under the linearized map coincides with δx.
Thus, proceeding in the same way as between sectors M1′ and M2′, we get

δx1 − δx4 +

J0−1∑

s=1

d(θ0,s+1 − θ0s)
(
dα∗(δx1 − δx4)

)
g0s −

(
dθ0J0

(
dα∗(δx1 − δx4)

)

+ dτ1(dα∗δx4)
)
g0J0

− d(θ10 − τ1)(dα∗δx4)h1 + dθ10(dα∗δx4)g10 = 0.

Consider δe := (δx1−δx4, a, b), where, for j = 1, . . . , J1, a1j = 0, a10 = dθ10(δx4) <
0 and, for s = 0, . . . , J0,

a0s =

{
d(θ0,s+1 − θ0s)

(
dα∗(δx1 − δx4)

)
s = 0, . . . , J0 − 1

− dθ0J0

(
dα∗(δx1 − δx4)

)
+ dτ1(dα∗δx4) s = J0,
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and b = d(θ10 − τ1)(dα∗δx4) < 0. Thus δe ∈ V 1
10 ∩ V

⊥J′′

1

0J0
, and Lemma 3.3 applies

bσ

(
dα∗(δx1 − δx4) +

J0∑

s=0

a0s
−→
G0s,

−→
H 1 −

−→
G 0J0

)

+ a10 σ

(
dα∗(δx1 − δx4) +

J0∑

s=0

a0s
−→
G0s + b

−→
H1,

−→
G10 −

−→
H 1

)
< 0

The coefficient of b is equal to

σ

(
ηbτ (dα∗(δx1 − δx4)) − dτ1(δx4)

−→
G 0J0

,
−→
H 1 −

−→
G0J0

)

= − dτ1
(
dα∗(δx1 − δx4)

)
σ

(−→
G0J0

,
−→
H 1

)
− dτ1(dα∗δx4)σ

(−→
G0J0

,
−→
H 1

)

= − dτ1(dα∗δx1)σ
(−→
G 0J0

,
−→
H 1, )

)
< 0

On the other hand, taking the first order approximations in (10), one can show that
the coefficient of a10 is:
(
− dτ1(dα∗(δx1)) + dθ10(dα∗(δx4))

(
− dτ1(dα∗(δx1))

))
σ

(−→
G0J0

,
−→
H 2

)

− d(θ10 − τ1)(dα∗(δx4))
(
− dτ1(dα∗(δx1))

)
σ

(−→
G0J0

,
−→
H 1

)
< 0

which is impossible.
The orientation preserving condition can be proved by the means of Lemma

4.1: consider any pair of adjacent cones M ′
i and M ′

j . They are separated by a
hyperplane. A similar argument to the one used above shows that any pair of
points lying on opposite sides of the separating hyperplane have different images
under the maps used in M ′

i and M ′
j , extended to the corresponding half space.

This proves the invertibility of π ◦Hbτ , hence ψ is one–to–one in a neighborhood

of [0, θ̂10 − ε] ×
{̂̀

0

}
.

We only sketch the idea of the proof of the invertibility of π ◦Hbθ1j
, j = 1, . . . , J1.

Given j, there are four regions N1j , . . . , N4j in Λ0, characterized by the following
properties

(N1j) θ1j(`) ≥ θ̂1j and θ0,J0+1(`) = τ1(`),

(N2j) θ1j(`) ≥ θ̂1j and θ0,J0+1(`) = τ2(`),

(N3j) θ1j(`) < θ̂1j and θ0,J0+1(`) = τ1(`),

(N4j) θ1j(`) < θ̂1j and θ0,J0+1(`) = τ2(`);

as for π ◦Hbτ , π ◦Hbθ1j
turns out to be a Lipschitz continuous, piecewise C1 applica-

tion. Its invertibility can be proved applying again Theorem 4.1. We will consider
first the case j = 1 and the following linearization of π ◦Hbθ11

. Here, for the sake of
brevity we have already passed to the pullback

N ′
1j where dθ11(δ`) ≥ 0 and dτ1(δ`) ≤ dτ2(δ`),

− dθ10(δ`)g10 + d(θ10 − τ1)(δ`)h1 + dτ1(δ`)g0J0
+ ηbτ (δ`)

N ′
2j where dθ11(δ`) ≥ 0 and dτ2(δ`) ≤ dτ1(δ`),

− dθ10(δ`)g10 + d(θ10 − τ2)(δ`)h2 + dτ2(δ`)g0J0
+ ηbτ (δ`)
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N ′
3j where dθ11(δ`) ≤ 0 and dτ1(δ`) ≤ dτ2(δ`),

− dθ11(δ`)g11 + d(θ11 − θ10)(δ`)g10 + d(θ10 − τ1)(δ`)h1 + dτ1(δ`)g0J0
+ ηbτ (δ`)

N ′
4j where dθ11(δ`) ≤ 0 and dτ2(δ`) ≤ dτ2(δ`),

− dθ11(δ`)g11 + d(θ11 − θ10)(δ`)g10 + d(θ10 − τ2)(δ`)h2 + dτ2(δ`)g0J0
+ ηbτ (δ`)

As above, according to Theorem 4.1, we only have to prove that both the map and

its linearization are continuous in a neighborhood of ̂̀0 and of 0 respectively, that
the the linearized pieces are orientation preserving and that there exists a point δx
whose preimage is a singleton. The only nontrivial part is the last statement which
can be proved by picking δx ∈ N ′

11 ∩N
′
12.

3.4. Reduction to a finite–dimensional problem. In this section, in order to
shorten the notation, for any (t, `) ∈ [0, T ]×Λ0, let us define ψt(`) := π◦Ht(`). Also
we recall that the maximized Hamiltonian function is a lift: Ht(`) = 〈` , f(t, π`)〉−
f0(t, π`)

In the product space [0, T ]×M consider the path obtained with the concatenation
of the graph of a generic trajectory, Ξ := {(t, ξ(t)) : t ∈ [0, T ]} (ran backward)

contained in U and the graph of the reference trajectory Ξ̂ := {(t, ξ̂(t)) : t ∈ [0, T ]}.
We can obtain a close circuit with a path γ from (T, x̂T ) to (T, ξ(T )) whose image
is contained in {T}×M .
Consider the following sets in [0, T ]× T ∗M :

O0j = {(t, `) : ` ∈ O, t ∈ [θ0,j−1(`), θ0j(`)]} j = 1, . . . , J0

and, for ν = 1, 2 define

Oν
0,J0+1 = {(t, `) : ` ∈ O, θ0,J0+1(`) = τν(`), t ∈ [θ0J0

(`), θ0,J0+1(`)]}

Oν
10 = {(t, `) : ` ∈ O, θ0,J0+1(`) = τν(`), t ∈ [θ0,J0+1(`), θ10(`)]}

Oν
ij = {(t, `) : ` ∈ O, θ0,J0+1(`) = τν(`),

t ∈ [θ1,j−1(`), θ1j(`)]} j = 1, . . . , J1 + 1.

The one–form ω := H∗(p dq−Ht dt) is closed on each of these sets, it is continuous
on [0, T ] × O hence it is exact on [0, T ] × O (without loss of generality we may
assume O to be simply connected) and we have

0 =

∮
ω =

∫

ψ−1(bΞ)

ω +

∫

ψ−1(γ)

ω −

∫

ψ−1(Ξ)

ω.

From the maximality properties of H we get

(23)

∫

ψ−1(bΞ)

ω =

∫ T

0

f̂0
t (ξ̂(t)) dt

∫

ψ−1(Ξ)

ω ≤

∫ T

0

f0(ξ(t), u(t)) dt;

so that ∫ T

0

f0(ξ(t), u(t)) dt−

∫ T

0

f̂0
t (ξ̂(t)) dt ≥

∫

ψ−1(γ)

ω

If we now evaluate the difference of the costs associated to the generic pair (ξ, u)

and to the reference pair (ξ̂, û) we have

(24) C(ξ, u) − C(ξ̂, û) ≥ β(ξ(T )) − β(x̂T ) +

∫

ψ−1(γ)

ω
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Evaluating this last integral we get

∫

ψ−1(γ)

ω = α(πψ−1
T (ξ(T )) − α(πψ−1

T (x̂T ))

+

∫ T

0

f0(ψ(r, ψ−1
T ξ(T ))) dr −

∫ T

0

f0(ψ(r, ψ−1
T x̂T )) dr.

Defining F : y ∈ M 7→ α(π ◦ψ−1
T (y)) +β(y) +

∫ T
0 f0(ψ(r, ψ−1

T (y))) dr equation (24)

simplifies to C(ξ, u) − C(ξ̂, û) ≥ F (ξ(T )) − F (x̂T ) i.e. we have reduced optimal

control problem (1) to a finite–dimensional one. Thus in order to prove that (ξ̂, û)
is a minimum it now suffices to prove that F has a local minimum in x̂T .

Theorem 3.1. F has a strict local minimum in x̂T .

Proof. It suffices to prove that

(25) dF (x̂T ) = 0 D2 F (x̂T ) > 0 .

The first equality in (25) is an immediate consequence of the definition of α and
PMP. Let us prove that also the second one holds.

Since d
(
α ◦ π ◦ ψ−1

T +
∫ T
0
f(r, ψr ◦ ψ

−1
T ) dr

)
= HT ◦ ψ−1

T , we also have

dF = HT ◦ ψ−1
T + dβ(26)

D2 F (x̂T )[δxT ]2 =
(
(HT ◦ ψ−1

T )∗ + D2 β
)
(x̂T )[δxT ]2

= σ

(
(HT ◦ ψ−1

T )∗δxT , d(−β)∗δxT
)(27)

From Lemma 3.4 we get

(28) 0 < σ

((
0, δx+

1∑

i=0

Ji∑

j=0

aijgij + bhν

)
,−D2 γ̂(δx, ·)+

1∑

i=0

Ji∑

j=0

aij
−→
G ′′
ij+b

−→
H ′′
ν

)

Applying ĤT∗ ◦ i−1 we get 0 < σ (HT∗ dα∗δx, d(−β)∗(ψT∗ dα∗δx)) which is exactly
(27) with δx := π∗ψ

−1
T∗δxT . Since π∗ψ

−1
T ∗ is one–to–one, such a choice is always

possible. �

To conclude the proof of Theorem 2.1 we have to prove that ξ̂ is a strict min-

imizer. Assume C(ξ, u) = C(ξ̂, û). Since x̂T is a strict minimizer for F , then
ξ(T ) = x̂T and equality must hold in (23):

〈Hs(ψ
−1
s (ξ(s))) , ξ̇(s)〉 − f0(ξ(s), u(s)) = Hs(Hs(ψ

−1
s (ξ(s)))).

By regularity assumption, u(s) = û(s) for any s at least in a left neighborhood

of T , hence ξ(s) = ξ̂(s) and ψ−1
s (ξ(s)) = ̂̀

0 for any s in such neighborhood. u

takes the value û|(bθ1J1
,T ) until Hsψ

−1
s (ξ(s)) = Hs(̂̀0) = λ̂(s) hits the hyper-surface

K1,J1
= K1,J1−1, which happens at time s = θ̂1,J1

. At such time, again by regularity

assumption, u must switch to û(bθ1,J1−1,bθ1,J1
), so that ξ(s) = ξ̂(s) also for s in a left

neighborhood of θ̂1,J1
. Proceeding backward in time, with an induction argument

we finally get (ξ(s), u(s)) = (ξ̂(s), û(s)) for any s ∈ [0, T ].
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4. Appendix: Invertibility of piecewise C1 maps

The straightforward proof of the following fact is left to the reader.

Lemma 4.1. Let A and B be linear automorphisms of R
n. Assume that for some

v ∈ R
n, A and B coincide on the space {x ∈ R

n : 〈x, v〉 = 0}. Then, the map LAB
defined by x 7→ Ax if 〈x, v〉 ≥ 0, and by x 7→ Bx if 〈x, v〉 ≤ 0, is a homeomorphism

if and only if det(A) · det(B) > 0.

Let G : R
n → R

n be a continuous, piecewise linear map at 0, in the sense that G
is continuous and there exists a decomposition S1, . . . , Sk of R

n in closed polyhedral
cones (intersection of half spaces, hence convex) with common vertex in the origin
and such that ∂Si ∩ ∂Sj = Si ∩ Sj , i 6= j, and linear maps L1, . . . , Lk with

G(x) = Lix x ∈ Si

with Lix = Ljx for any x ∈ Si ∩ Sj .
It is easily shown that G is proper, and therefore deg(G,Rn, p) is well-defined

for any p ∈ R
n (the construction of [9] is still valid if the assumption on the

compactness of the manifolds is replaced with the assumption that G is proper).
Moreover deg(G,Rn, p) is constant with respect to p. So we shall denote it by
deg(G).

We shall also assume that detLi > 0 for any i = 1, . . . , k.

Lemma 4.2. If G is as above, then deg(G) > 0. In particular, if there exists q 6= 0
such that its preimage belongs to at most two of the convex polyhedral cones Si and

G−1(q) is a singleton, then deg(G) = 1.

Proof. Let us assume in addition that q /∈ ∪ki=1G
(
∂Si
)
. Observe that the set

∪ki=1G
(
∂Si
)

is nowhere dense hence A1 := G(S1) \ ∪ki=1G
(
∂Si
)

is non–empty.

Take x ∈ A1 and observe that if y ∈ G−1(x) then y /∈ ∪ki=1∂Si. Thus

(29) deg(G) =
∑

y∈G−1(x)

sign det dG(y) = #G−1(x).

Since G−1(x) 6= ∅ the first part of the assertion is proved. The second part of the
assertion follows taking x = q in (29).

Let us now remove the additional assumption. Let {p} = G−1(q) be such
that p ∈ ∂Si ∩ ∂Sj for some i 6= j. Thus one can find a neighborhood V of p,
with V ⊂ int (Si ∪ Sj \ {0}). By the excision property of the topological degree
deg(G) = deg(G, V, p). Let LLiLj

be a map as in Lemma 4.1. Observe that, the
assumption on the signs of the determinants of Li and Lj imply that LLiLj

is
orientation preserving. Also notice that LLiLj

|∂V = G|∂V . The multiplicativity,
excision and boundary dependence properties of the degree yield 1 = deg(LLiLj

) =
deg(LLiLj

, V, p) = deg(G, V, p). Thus, deg(G) = 1, as claimed. �

Let σ1, . . . , σr be a family of C1–regular pairwise transversal hyper-surfaces in
R
n with ∩ri=1σi = {x0} and let U ⊂ R

n be an open and bounded neighborhood of
x0. Clearly, if U is sufficiently small, U \ ∪ri=1σi is partitioned into a finite number
of open sets U1, . . . , Uk.

Let f : U → R
n be a continuous map such that there exist Fréchet differentiable

functions f1, . . . , fk in U with the property that

(30) f(x) = fi(x) x ∈ U i.
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with fi(x) = fj(x) for any x ∈ U i ∩ Uj . Notice that such a function is PC1(U),
hence locally Lipschitz continuous (see [7]).

Let S1, . . . , Sk be the tangent cones at x0 to the sets U1, . . . , Uk, (by the transver-
sality assumption on the hyper–surfaces σi each Si is a convex polyhedral cone with
non empty interior) and assume dfi(x0)x = dfj(x0)x for any x ∈ Si ∩ Sj . Define

(31) F (x) = dfi(x0)x x ∈ Si.

so that F is a continuous piecewise linear map (compare [7]).
One can see that f is Bouligand differentiable and that its B-derivative is the

map F (compare [7, 10]). Let y0 := f(x0). There exists a continuous function ε,
with ε(0) = 0, such that f(x) = y0 + F (x− x0) + |x− x0|ε(x− x0).

Lemma 4.3. Let f and F be as in (30)–(31), then there exists ρ > 0 such that

deg
(
f,B(x0, ρ), y0

)
= deg

(
F,B(0, ρ), 0

)
. In particular, if det dfi(x0) > 0, then F

is proper and deg
(
f,B(x0, ρ), y0

)
= deg(F ).

Proof. Consider the homotopy H(x, λ) = F (x−x0)+λ |x− x0| ε(x−x0), λ ∈ [0, 1]
and observe that m := inf{|F (v)| : |v| = 1} > 0, F being invertible. Thus,

|H(x, λ)| ≥
(
m− |ε(x− x0)|

)
|x− x0| .

This shows that in a conveniently small ball centered at x0, homotopy H is admissi-
ble. The assertion follows from the homotopy invariance property of the degree. �

Let f and F be as in (30)–(31) and assume det dfi(x0) > 0. Assume also that
there exists p ∈ R

n \ ∪ki=1F (∂Si) such that F−1(p) is a singleton. From Lemmas
4.2–4.3, it follows that deg(f,B(x0, ρ), y0) = 1 for sufficiently small ρ > 0. By
Theorem 4 in [10], we immediately obtain

Theorem 4.1. Let f and F be as in (30)–(31) and assume det dfi(x0) > 0. As-

sume also that there exists p ∈ R
n \ ∪ki=1F (∂Si) such that F−1(p) is a singleton.

Then f is a Lipschitzian homeomorphism in a sufficiently small neighborhood of

x0.
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