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1. INTRODUCTION

We consider the problem of strong local optimality for
a Pontryagin extremal in the minimum time problem
between two fixed end–points.

We assume that the state space is a n–dimensional
smooth manifold M while the dynamics is assumed
to be affine with respect to the control. The control
space is some convex compact polyhedron in Rm and
the vector fields fi : M → TM , i = 0, 1, . . . ,m are
C∞. Namely, we consider the following problem

minimize T subject to

ξ̇(t) = f0(ξ(t)) +
m∑
i=1

ui(t)fi(ξ(t)) t ∈ [0, T ]

ξ(0) = x0 ξ(T ) = xf

u(t) ∈ Ω t ∈ [0, T ].

We assume we are given a reference triplet (T̂ , ξ̂, û)
satisfying Pontryagin Maximum Principle (PMP), in
normal form, with adjoint covector

λ̂ : t ∈ [0, T̂ ] 7→ λ̂(t) ∈ T ∗M

and show that under some regularity conditions and
the coercivity of a suitable second variation, then such
triplet is a strong local optimizer for the problem.

1 Partially supported by PRIN 2006019927 002, Controllabilità
stabilizzabilità e ottimizzazione di sistemi dinamici non lineari

By strong local optimizer we mean that we compare
the time T̂ with the time T of all those admissible
triplets (T, ξ, u) such that ξ is, in some sense, near
ξ̂, regardless of any distance between û and u. To
be more precise, we consider two different kinds of
strong local optimality:

• (T̂ , ξ̂, û) is optimal among all those triplets
(T, ξ, u) such that the graph of ξ belongs to a
neighbourhood of the graph of ξ̂ in R×M i.e. the
optimality is local with respect to both state and
final time. We call this type of local optimality
(time, state)–local.

• ξ̂ is optimal among all those triplets (T, ξ, u)
such that the range {ξ(t) : t ∈ [0, T ]} of ξ be-
longs to a neighbourhood of the range of ξ̂ in
M i.e. the optimality is local only with respect
to the state. We call this type of local optimality
state–local.

Note that state–local optimality implies (time, state)–
local optimality but the two notions are not equivalent,
see (Stefani and Zezza, 2003).

The regularity conditions we require take different
forms according to the possible different structure of
the reference control function û, while the second
variation changes both with the structure of û and
with the kind of strong local optimality one wishes to
prove. The proof of both kinds of optimality is carried



out by means of Hamiltonian methods which we are
now going to describe.

2. HAMILTONIAN METHODS

Let π : T ∗M → M be the canonical projection of the
cotangent bundle onto the state space. We denote by Ĥ
the Hamiltonian associated to the reference control:

Ĥ : (t, `) ∈ [0, T̂ ]× T ∗M 7→ Ĥt(`) =

= 〈` , f0(π`) +
m∑
i=1

ûi(t)fi(π`)〉 ∈ R

and by Hmax the maximized Hamiltonian of the con-
trol system:

Hmax : ` ∈ T ∗M 7→ Hmax(`) =

= max
u∈Ω
〈` , f0(π`) +

m∑
i=1

uifi(π`)〉 ∈ R

For any possibly time–dependent Hamiltonian Gt, we
denote by the symbol

−→
G t the associated Hamiltonian

vector field.

PMP says that λ̂ is an absolutely continuous lift of
the reference trajectory: πλ̂(t) = ξ̂(t), t ∈ [0, T̂ ],
which solves the Hamiltonian system defined by the
reference Hamiltonian

d
dt
λ̂(t) =

−→
Ĥ t(λ̂(t)), a.e. t ∈ [0, T̂ ]

and such that the maximality condition

Ĥt(λ̂(t)) = Hmax(λ̂(t))

holds for any t ∈ [0, T̂ ], i.e. for any t ∈ [0, T̂ ] we have

û(t) ∈ argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}
.

2.1 (Time, state)–local optimality

The Hamiltonian approach to prove (time, state)–local
optimality is based on the construction of a new,
possibly time dependent, Hamiltonian

H : (t, `) ∈ [0, T̂ ]× T ∗M 7→ Ht(`) ∈ R

having the following properties

• Ht ≥ Hmax,

• Ht(λ̂(t)) = Ĥt(λ̂(t)),

• d
dt
λ̂(t) =

−→
H t(λ̂(t)),

• the Hamiltonian vector field
−→
H t exists and its

flow

H : (t, `) ∈ [0, T̂ ]× T ∗M 7→ Ht(`) ∈ T ∗M

is well defined locally around λ̂(0)

and on the definition of a horizontal Lagrangian man-
ifold defined in a neighborhood O(x0) of x0 in M

Λ = {dα(x) : x ∈ O(x0)}

such that

• dα(x0) = λ̂(0)
• the one–form ω := H∗(p dq−Ht dt) is exact on

[0, T̂ ]× Λ
• id×πH : (t, `) ∈ [0, T̂ ] × Λ 7→ (t, πHt(`)) ∈

[0, T̂ ] ×M is one–to–one onto a neighborhood
of the graph of ξ̂.

Remark that (t, ξ̂(t)) = (id×πH)(t, λ̂(0)).

Let us show how this construction leads to the result.
Define

V := (id×πH)([0, T̂ ]× Λ)

ψ := (id×πH)−1 : V → [0, T̂ ]× Λ

and let (T, u, ξ) be an admissible triplet such that
the graph of ξ is in V . Assume, by contradiction, that
T < T̂ . We can obtain a closed path in V with a
concatenation of the following paths:

• Ξ: t ∈ [0, T ] 7→ (t, ξ(t)) ∈ V ,
• Φ: t ∈ [T, T̂ ] 7→ (t, xf ) ∈ V ,
• Ξ̂ : t ∈ [0, T̂ ] 7→ (t, ξ̂(t)) ∈ V , ran backward in

time.

Since, the one–form ω := H∗(p dq − Ht dt) is exact
on V , then we have

0 =
∮
ω =

∫
ψ(Ξ)

ω +
∫
ψ(Φ)

ω −
∫
ψ(Ξ̂)

ω.

From the over–maximality properties of Ht we get∫
ψ(Ξ̂)

ω = 0
∫
ψ(Ξ)

ω ≤ 0

so that ∫
ψ(Φ)

ω ≥ 0. (1)

Since ∫
ψ(ϕ)

ω =
∫ T̂

T

H∗(−Ht dt)

and

Ht(Ht(ψ(t, xf ))) =

H
T̂

(H
T̂

(ψ(T̂ , xf ))) +O(1) = 1 +O(t− T̂ ),
(2)

inequality (1) and Taylor expansion (2) yield

0 ≤
∫ T̂

T

−
(

1 +O(t− T̂ )
)

dt

= T − T̂ +O
(

(T − T̂ )2
)

which implies T = T̂ or T much smaller than T̂ .



2.2 State–local optimality

In order to prove state–local optimality, one still has to
construct a Hamiltonian with the properties described
above, but the Lagrangian manifold Λ has to be re-
placed with a (n − 1)–dimensional manifold, say Λ̃,
contained in {` ∈ T ∗M : H(`) = 1} and which is
still horizontal:

Λ̃ := {` ∈ T ∗M : H(`) = 1, ` = dα̃(x),

x ∈ O(x0)}, dim Λ̃ = n− 1.

Λ̃ must also satisfy the following properties:

• dα̃(x0) = λ̂(0)
• the one–form ω̃ := H∗(p dq) is exact on [0, T̂ ]×

Λ̃
• πH : (t, `) ∈ [0, T̂ ]× Λ̃ 7→ πHt(`) ∈M is one–

to–one onto a neighborhood of the range of ξ̂.

Remark that ξ̂(t) = πH(t, λ̂(0)) and that a necessary
condition for the invertibility of πH : [0, T ]× Λ̃→M

is the injectivity of ξ̂, a condition which is not needed
to prove (time, state)–local optimality.

Let us show how this construction leads to the result.
Define

Ṽ := πH([0, T̂ ]× Λ̃)

ψ := (πH)−1 : Ṽ → [0, T̂ ]× Λ̃

and let (T, u, ξ) be an admissible triplet such that the
range of ξ is in Ṽ . Assume, by contradiction, that T <
T̂ . We can obtain a closed path in Ṽ concatenating
ξ and ξ̂ ran backward in time. Since the one–form
ω̃ := H∗(p dq) is exact on Ṽ , then we have

0 =
∮
ω =

∫
ψ̃(ξ)

ω̃ −
∫
ψ̃(ξ̂)

ω̃

=
∫ T

0

〈H(ψ̃(ξ(t))) , ξ̇(t)〉dt− (T̂ − 0)

≤
∫ T

0

H(H(ψ̃(ξ(t)))) dt− T̂ = T − T̂ .

which implies T = T̂ .

3. THE PURE BANG–BANG CASE

The Hamiltonian approach was first used in (Agrachev
et al., 2002) where the authors prove strong optimality
for a Mayer problem on a fixed time interval, but
the proof can be adapted to prove (time, state)–local
optimality for the minimum time problem. Then in
(Poggiolini and Stefani, 2004) the authors prove state–
local optimality for the minimum time problem (the
procedure was then extended in (Poggiolini, 2006) to
cover a general Bolza problem). In all these papers the
reference control û has a pure bang–bang structure.
By pure bang–bang control we mean that the reference
control û is piecewise constant, takes values on the
vertexes of Ω and all its switches are simple, i.e. if t̂ is

a switching time for û, then convhull{û(t̂−0), û(t̂+
0)} is an edge of Ω.

In both papers the regularity assumptions the authors
ask for are the following

• û is a regular control i.e.
(1) if t is not a switching time for û, then

argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}

is the singleton {û(t)}.
(2) if t̂ is a switching time for û, then

argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}

is the edge of Ω convhull{û(t̂ − 0), û(t̂ +
0)}.

• the strong bang–bang Legendre condition holds:

d
dt

(
Ĥ
t̂+0
− Ĥ

t̂−0

)
◦ λ̂(t)

∣∣∣∣
t=t̂

> 0.

Remark that the maximality condition in PMP
implies that this derivative cannot be negative.

• In order to prove state–local optimality we also
make the obvious additional request that ξ̂ is a
simple curve

As previously said, the second variation one has to
consider is different according to which kind of op-
timality one wishes to prove i.e. even if one studies
the same quadratic form, nevertheless one asks for its
positivity on different linear spaces.

We consider a finite dimensional sub–problem of the
given one by allowing only for those controls that
have the same sequence of values of the reference one.
Namely let

0 := t̂0 < t̂1 < . . . < t̂r < t̂t+1 := T̂

be the switching times of û and let

vj := û|
(̂tj−1 ,̂tj)

j = 1, . . . , r + 1.

For any small perturbation (t1, . . . , tr+1) = (t̂1 +
ε1, . . . , t̂r+1 + εr+1) of the vector of switching times
let uε be the control function such that

uε|(tj−1,tj) := vj j = 1, . . . , r + 1

where t0 := 0. We consider the following sub–
problem

minimize tr+1 subject to (3)

ξ̇(t) = f0(ξ(t)) +
m∑
i=1

vji (t)fi(ξ(t))

t ∈ (tj−1, tj), j = 1, . . . , r + 1
(4)

ξ(0) = x0, (5)
ξ(tr+1) = xf . (6)



Introducing the reference time increments

θ̂j := t̂j − t̂j−1 j = 1, . . . , r + 1,

the perturbed time increments

θj := tj − tj−1 = θ̂j + εj − εj−1 j = 1, . . . , r+ 1,

ε0 := 0 and denoting by S(θ) the solution of (4)–(5),
then sub–problem (3)–(4)–(5)–(6) can be rewritten as

minimize T (θ) :=
r+1∑
j=1

θj subject to S(θ) = xf .

It is easily seen that PMP implies

∂

∂θj
T (θ)− 〈λ̂(T̂ ) ,

∂

∂θj
S(θ)〉

∣∣∣∣
θ=θ̂

= 0

for any j = 1, . . . , r + 1 i.e. the Lagrange multiplier
rule is satisfied, −λ̂(T̂ ) being the multiplier.

We define the second variation at the switching points
as the quadratic form

J ′′ : θ ∈ Ker DS(θ̂) 7→ −λ̂(θ̂) D2S(θ̂)[θ]2 ∈ R
In order to prove (time, state)–local optimality we ask
for the positivity of J ′′ on

W := {θ ∈ Rr+1 : θ ∈ Ker DS(θ̂), θr+1 = 0}
while, to prove state–local optimality we ask for the
positivity of J ′′ on the whole space Ker DS(θ̂).

4. THE BANG–BANG CASE WITH MULTIPLE
SWITCHES

A second step in considering this problem is the pres-
ence of multiple switches i.e. û is still bang–bang but
it is no longer pure, that is, at some switching time t̂
convhull{û(t̂ + 0), û(t̂ − 0)} is not an edge of Ω.
To our knowledge only the problem of L1–weak local
optimality has been addressed in the general case, see
(Sarychev, 1997), but in proving strong local optimal-
ity (and in the very close field of sensitivity analysis,
see (Felgenhauer, 2007)) studies are still at an early
stage.

We can study the case when Ω is a box: Ω = [−1, 1]m,
so that the multiplicity of each switching time t̂ can
be determined just by counting the number of com-
ponents of û that switch at time t̂) and only one
double switch occurs, all the other switches being
simple. The problem of (time, state)–local optimality
for a minimum time trajectory can be recovered from
(Poggiolini and Spadini, to appear) where the authors
study a Bolza problem on a fixed time interval. In this
talk we are going to face the problem of state–local
optimality. As in the pure bang–bang case the regu-
larity hypotheses one needs are the same for proving
both kinds of strong local optimality. Let

0 := θ̂00 < θ̂01 < . . . < θ̂0J0 < τ̂ <

< θ̂11 < . . . < θ̂1,J1 < θ̂1,J1+1 := T̂

be the sequence of the switching times, τ̂ being the
only double switching time. To simplify the notation

define θ̂0,J0+1 = θ̂10 := τ̂ . We assume the following
regularity conditions

• û is a regular control i.e.
(1) if t is not a switching time for û, then

argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}

is the singleton {û(t)}.
(2) if t = θ̂ij is a simple switching time for û,

then

argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}

is the edge of Ω given by
convhull{û(θ̂ij − 0), û(θ̂ij + 0)}.

(3) if t = τ̂ is the double switching time for û,
then

argmax
{
〈λ̂(t) , (f0 +

m∑
i=1

uifi)(ξ̂(t))〉,

u = (u1, . . . , um) ∈ Ω
}

is the 2–dimensional face of Ω that contains
convhull{û(τ̂ − 0), û(τ̂ + 0)}.

• the strong bang–bang Legendre condition holds
at the simple switching times:

d
dt

(
Ĥ
θ̂ij+0

− Ĥ
θ̂ij−0

)
◦ λ̂(t)

∣∣∣∣
t=θ̂ij

> 0

Remark that the maximality condition in PMP
implies that this derivative cannot be negative.

• the strong bang–bang Legendre condition for
double switching times holds at the double
switching time. Let us introduce this new notion:
without loss of generality we may assume that
the switching components of û at time τ̂ are the
first and the second one. Denote by ∆ν , ν = 1, 2
their jumps:

∆ν := ûν(τ̂ + 0)− ûν(τ̂ − 0) ν = 1, 2.

Then

Ĥ
τ̂+0

(`) = Ĥ
τ̂−0

(`)

+ ∆1〈` , f1(π`)〉+ ∆2〈` , f2(π`)〉.

Define

Kν(`) = Ĥ
τ̂−0

(`)+∆ν〈` , fν(π`)〉, ν = 1, 2.

We assume
d
dt

(
K̂ν − Ĥτ̂−0

)
◦ λ̂(t)

∣∣∣∣
t=τ̂−0

> 0

d
dt

(
Ĥ
τ̂+0
− K̂ν

)
◦ λ̂(t)

∣∣∣∣
t=τ̂+0

> 0
ν = 1, 2.

Remark that, as for simple switching times, the
maximality condition in PMP implies that these
one-side derivatives cannot be negative.



• non–degeneracy condition at the double switch-
ing point
We assume

∆1f1(ξ̂(τ̂))

σ
(−→
Ĥ
τ̂−0

,
−→
K1

)
(λ̂(τ̂))

6= ∆2f2(ξ̂(τ̂))

σ
(−→
Ĥ
τ̂−0

,
−→
K2

)
(λ̂(τ̂))

Differently from the other regularity hypotheses,
the non–degeneracy condition cannot be consid-
ered a strengthening of some necessary condi-
tion, but it is needed to construct the manifolds Λ
and Λ̃ with the requested properties. To be more
precise, the presence of a double switching time
compels the authors to prove the invertibility of
the projected flow with some differential topol-
ogy technique and some transversality assump-
tion is needed. Such transversality can be granted
only if the non–degeneracy condition holds.
• As in the case of simple switches, in order to

prove state–local optimality we also make the
additional obvious request that ξ̂ is a simple
curve

Also, the presence of a double switch gives rise to two
different second variation, and each one of them is
assumed to be positive (each on different spaces and,
as in the case of a pure bang–bang reference control,
also according to which kind of strong optimality one
wishes to prove).

As in the pure bang–bang case we allow for the
switching times of the reference control function to
move but now, in doing so we must distinguish be-
tween the simple switching times and the double
switching time. Moving a simple switching time θ̂i j
to time θi j := θ̂i j + δi j amounts to using the
value vij := û|(

θ̂i,j−1,θ̂i,j

) and the value vi,j+1 :=

û|(
θ̂i,j ,θ̂i,j+1

) of the control function in the time inter-

vals
(
θ̂i,j−1, θi j

)
and

(
θi j , θ̂i,j+1

)
, respectively. On

the other hand, when we move the double switching
time τ̂ we must keep in mind that we are moving
the switching time of two different components of the
reference control function and we therefore allow for
two different perturbations of τ̂ . We call τ1 := τ̂ + ε1

the perturbed switching time of û1 and τ2 := τ̂ + ε2

the perturbed switching time of û2. Also, let us define

θ0,J0+1 := min{τ1, τ2} θ10 := max{τ1, τ2}

and

w1 := v0,J0+1 + (∆1, 0, 0, . . . , 0)

w2 := v0,J0+1 + (0,∆2, 0, . . . , 0)

In each simply perturbed interval of time we do as in
the pure bang–bang case, setting

u(ε,δ)

∣∣
(θi,j−1,θij)

:= vij i = 1, . . . , Ji + 1, i = 0, 1

while we set

u(ε,δ)

∣∣
(θ0,J0+1,θ10)

:=

{
w1 if ε1 < ε2

w2 if ε2 < ε1

This procedure gives rise to two different finite–
dimensional sub–problems Pν , ν = 1, 2 given by

minimize θ1,J1+1 subject to (Pνa)

ξ̇(t) =



(f0 +
m∑
k=1

v0j
k fk)(ξ(t))

t ∈ (θ0,j−1, θ0,j)
j = 1, . . . , J0 + 1

(f0 +
m∑
k=1

wνkfk)(ξ(t))

t ∈ (θ0,J0+1, θ10)

(f0 +
m∑
k=1

v0j
k fk)(ξ(t))

t ∈ (θ0,j−1, θ0j)
j = 1, . . . , J1 + 1

(Pνb)

and ξ(0) = x0 ξ(θ1,J1+1) = xf . (Pνc)

We shall denote the solution, evaluated at time t, of
(Pνb) emanating from x0 at time 0 as Sνt (δ, ε).

Notice that P1 is defined only for ε1 ≤ ε2, while P2

is defined only for ε2 ≤ ε1, and the reference control
is the one we obtain when every δij and εk is zero, i.e.
in a point on the boundary of the domain of Pν . But
from PMP we still have that the Lagrange multiplier
rule is satisfied with −λ̂(T̂ ) as multiplier, hence we
can consider the second variation for the constrained
problems P1 and P2. We shall ask for their second
order variations to be positive (on proper spaces) and
prove the following theorems:

Theorem 1. ((Time, state)–local optimality). Assume
(T̂ , ξ̂, û) is a bang–bang normal Pontryagin extremal
for the minimum time problem with associated covec-
tor λ̂. Assume all the switching times of û but one are
simple, while the only non–simple switching time is
double.
Assume the Legendre conditions for simple and for
double switching times hold. Also, assume the non
degeneracy condition holds at the double switching
time. Assume also that the second variation J ′′ν of each
problem Pν is positive definite on

{(δ, ε) ∈ KerDSν(0, 0), δ1,J1+1 = 0}.

Then (T̂ , ξ̂, û) is a strict (times, state)–local optimizer
for the minimum time problem.

Theorem 2. (State–local optimality). Let (T̂ , ξ̂, û) be
a bang–bang normal Pontryagin extremal for the min-
imum time problem with associated covector λ̂. As-
sume all the switching times of û but one are simple,
while the only non–simple switching time is double.
Assume the Legendre conditions for simple and for
double switching times hold. Also, assume the non
degeneracy condition holds at the double switching
time. Assume also that the second variation J ′′ν of each
problem Pν is positive definite on KerDSν(0, 0).
Then (T̂ , ξ̂, û) is a strict state–local optimizer for the
minim time problem.



4.1 A model case

In both the bang–bang cases presented here one can
actually construct a maximized Hamiltonian, that is
a Hamiltonian function which actually agrees with
Hmax. Such construction is based on the implicit
function theorem which can be applied thanks to the
regularity conditions. In this section we show how this
procedure is performed when only one switch occurs
and that switch is double.

Thanks to the regularity condition, in a neighborhood
of λ̂(t), t ∈ [0, τ̂), the maximized Hamiltonian is
given by

Ĥ
τ̂−0

(`) := 〈` , f0(π`) +
m∑
i=1

v01
i fi(π`)〉.

Let exp t
−→
Ĥ
τ̂−0

(`) be the flow of
−→
Ĥ
τ̂−0

(`) emanating
from ` at time 0.

We then consider the two implicit equations, ν = 1, 2{
τν(`) = τ̂

(Kν − Ĥτ̂−0
) ◦ exp τν(`)

−→
Ĥ
τ̂−0

(`) = 0

The strong bang–bang Legendre condition for double
switching times permits to define, in a neighborhood
O := O(λ̂(0)) of λ̂(0) in T ∗M two C1 functions:

τν : ` ∈ O 7→ τν(`) ∈ R.

Define ϑ01(`) := min{τν(`) : ν = 1, 2} and consider
the two implicit equations, ν = 1, 2{

ϑν10(`) = τ̂

(Ĥ
τ̂+0
−Kν) ◦ expϑν10(`)

−→
Kν(`) = 0.

Again, the strong bang–bang Legendre condition for
double switching times allows us to define, possibly
restricting O, two C1 functions:

ϑν10 : ` ∈ O 7→ τν(`) ∈ R

and we set

ϑ10(`) :=

{
ϑ1

10 if ϑ01(`) = τ1(`)
ϑ2

10 if ϑ01(`) = τ2(`)

The maximized Hamiltonian is thus given by

Ht(`) =


Ĥ
τ̂−0

(`) if 0 ≤ t < ϑ01(`)

Kν(`)
if ϑ01(`) < t < ϑ10(`)

and ϑ01(`) = τν(`)
Ĥ
τ̂+0

(`) if ϑ10(`) < t ≤ T̂

Let us show how to define Λ̃. The positivity of both
the second variations J ′′ν of problems Pν allows us
to remove the constraint on the initial point of the
trajectories and introduce a penalty α(ξ(0)) on this
point in such a way that the second variations J ′′α,ν of
the problems Pα,ν one thus obtain are positive definite
on a linear space containing Ker DS(0, 0). Namely
the problems Pα,ν are given by

minimize α(ξ(0)) + θ11 (Pα,νa)
subject to

ξ̇(t) =



(f0 +
m∑
k=1

v01
k fk)(ξ(t))

t ∈ (0, θ01)

(f0 +
m∑
k=1

wνkfk)(ξ(t))

t ∈ (θ01, θ10)

(f0 +
m∑
k=1

v11
k fk)(ξ(t))

t ∈ (θ10, θ11)

(Pα,νb)

and ξ(θ11) = xf . (Pα,νc)

We shall denote the solution, evaluated at time t, of
(Pα,νb) emanating from x at time 0 as Σνt (x, δ, ε).
α can be chosen so that the second variation J ′′α,ν of
Pα,ν is positive definite on V να := Ker DΣν

T̂
(x̂0, 0, 0).

The initial manifold which grants the invertibility of
πH : Λ̃→M is thus given by

Λ̃ := {` = dα(x), x ∈M, Ĥ
τ̂−0

(`) = 1}.
The positivity of the second variations J ′′α,ν grant both
the transversality of the manifold {` = dα(x), x ∈
M} and of the level set {` ∈ T ∗M, Ĥ

τ̂−0
(`) = 1}

and the invertibility of πH : [0, T̂ ]× Λ̃→M .
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