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Sunto — Si dà una formula per il calcolo dell’indice di punto fisso del flusso generato da

un campo vettoriale tangente ad una varietà differenziabile. Tale formula, applicata

allo studio delle perturbazioni periodiche di equazioni autonome, permette di provare

l’esistenza di connessi non limitati di soluzioni armoniche che intersecano i punti di

equilibrio dell’equazione non perturbata. Come conseguenza di questo si ottengono

alcuni risultati di molteplicità.

0. Introduction

Let M be an m-dimensional boundaryless differentiable manifold embedded in
some R

k, and g : M → R
k a continuous tangent vector field, such that the Cauchy

problem

(0.1)

{
ẋ = g(x),
x(0) = p,

admits a unique solution for each p ∈ M . Under these conditions it is defined a
local flow {Φt}t∈R over M . Assume that for some T > 0 the fixed point index of
ΦT , in a relatively compact open subset Ω of M , is well defined (i.e. ΦT is defined
on Ω and fixed point free on ∂Ω). In this paper we prove that

(0.2) ind(ΦT , Ω) = χ(−g, Ω),

where χ(−g, Ω) is the Euler characteristic (or index) of the vector field −g in Ω.
Consequently ind(ΦT , Ω), when defined, is independent of T . We point out that
this fact is not a trivial consequence of the homotopy property of the fixed point
index, since, in general, the map Φ : (x, t) 7→ Φt(x) is not an admissible homotopy
in Ω (unless t is sufficiently small). The above formula has been first proved by
Krasnosel’skii in [K] for the case M = R

n under the assumption that Φ is admissible
in (0, T ]×Ω (i.e. Φ is defined on [0, T ]×Ω and Φt(x) 6= x for all (t, x) ∈ (0, T ]×∂Ω).
It has been recently extended in [CMZ], still in the flat case, to any T > 0 such that
ind(ΦT , Rn) is well defined. The method used in [CMZ] is based on coincidence
degree theory and on a known result due to Kupka and Smale. An alternative
proof, which does not require the Kupka-Smale theorem, has been deduced in [M]
from a formula for computing the coincidence degree of S1-equivariant maps given
in [BM]. Our approach, which is still based on the Kupka-Smale result, is purely
finite dimensional and turns out to be very natural in the setting of differentiable
manifolds.

For the sake of simplicity, through this paper we consider only smooth vector
fields. This fact is not a serious restriction and could be replaced with the unique-
ness assumption of the Cauchy problem.
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We apply our formula to the study of perturbed problems of the type

(0.3) ẋ = g(x) + λf(t, x)

where f : R × M → R
k is a T -periodic (with respect to the first variable) tangent

vector field on M . We analyze, in particular, the structure of the set of starting
points of (0.3); that is, of those pairs (λ, p) ∈ [0, +∞)× M with the property that
the solution of (0.3) starting from p (at t = 0) is T -periodic.

Under reasonable assumptions we prove the existence of an unbounded connected
branch of starting points of (0.3) which emanates from the subset g−1(0) (the rest
points) of the set of T -periodic orbits of the unperturbed equation ẋ = g(x). We
provide a simple example of an equation where, in spite of the fact that the sufficient
conditions ensuring the existence of the emanating branch are satisfied, there are no
starting points for λ 6= 0. The meaning of this phenomenon, in this case, is that the
existing branch must be “purely vertical”, i.e. entirely contained in the slice λ = 0.
We point out that the weaker fact that the branch emanates merely from the set
of T -periodic orbits could also be deduced (still from (0.2)) by a method given in
[C, FP1] or [FP3], and under the additional assumption that the T -periodic orbits
lie in a compact set.

Our sharp assertion about the emanating set of the unbounded branch allows us
to deduce multiplicity results regarding the existence of T -periodic solutions of the
perturbed equation (0.3).

1. Preliminaries

Assume that M is an m-dimensional differentiable manifold embedded in some
R

k, Ω a relatively compact open subset of M , and Ψ : Ω → M a continuous
map. The map Ψ is said to be admissible on Ω if Ψ(x) 6= x for all x ∈ ∂Ω. In
these conditions it is defined an integer, called the fixed point index and denoted
by ind(Ψ, Ω), which satisfies all the classical properties of the Brouwer degree:
solution, excision, additivity, homotopy invariance, normalization etc. A detailed
exposition of this matter can be found, for example in [B, G, N] and references
therein. The following fact deserves to be mentioned: if M is an open subset of
R

m, then ind(Ψ, Ω) is just the Brouwer degree of I −Ψ, where I −Ψ is defined by
(I − Ψ)(x) = x − Ψ(x).

Finally recall that an admissible homotopy is a continuous map H : Ω× [0, 1] →
M such that H(x, λ) 6= x for all (x, λ) ∈ ∂Ω × [0, 1].

Let g : M → R
k be a continuous tangent vector field on M . If g−1(0) ∩ Ω is

compact, it is defined (see e.g. [H, Mi] and [T]) an integer χ(g, Ω), called the Euler
characteristic of g, which, in some sense, counts algebraically the number of zeros
of g. If g−1(0)∩Ω is a finite set, then χ(g, Ω) is simply the sum of the indices of the
(obviously isolated) zeros of g. In the general case, χ is defined taking a sufficiently
close approximation of g with only isolated zeros (such an approximation exists by
the Sard’s Lemma). It is known that if M is a compact boundaryless manifold,
then χ(g, M) is the same for all continuous tangent vector fields and coincides with
χ(M), the Euler-Poincaré characteristic of M . Moreover in the flat case, that is
if M is an open subset of R

m, χ(g, Ω) coincides with the Brouwer degree (with
respect to zero) of g. Using the equivalent definition of characteristic of vector
fields given in [FP2], one can see that all the standard properties of the Brouwer
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degree on open subsets of Euclidean spaces, such as homotopy invariance, excision,
additivity, existence, etc. are still valid in the context of differentiable manifolds.

2. The fixed point index of the flow

Let M be an m-dimensional differentiable boundaryless manifold embedded in
some R

k, and g : M → R
k a tangent vector field on it. Consider the following

differential equation

(2.1) ẋ = g(x).

We will denote by {Φt}t∈R the local flow associated to the equation (2.1), that
is the map Φ : W → M defined on an open set W of R × M containing {0} × M ,
with the property that, for any p ∈ M , the curve t 7→ Φt(p) is the maximal solution
of ẋ = g(x) such that Φ0(p) = p. Therefore, given τ ∈ R, the domain of Φτ is the
open set consisting of those points p ∈ M for which the maximal solution of (2.1),
starting from p at t = 0 is defined up to τ .

In what follows, by an orbit we mean the image of a periodic solution of (2.1).
Given T > 0, with AT we denote the union of all τ -periodic orbits with 0 < τ ≤ T .
Note that g−1(0) ⊂ AT for all T > 0.

Lemma 2.1. Given T > 0, let O ⊂ M be a nontrivial isolated orbit of (2.1) in
AT . There exist an open neighborhood S of O such that, for all 0 < τ ≤ T , Φτ is
defined on S, admissible on S, and ind(Φτ , S) = 0.

Proof. Since O is a periodic orbit, Φt is defined on O for all t ∈ R; thus Φt

is defined on some neighborhood S of O. Observe that, since O is isolated in AT ,
one can choose S such that Φτ is fixed point free on ∂S for all τ ∈ (0, T ]. This
implies, by the homotopy property, that ind(Φτ , S) is independent of τ ∈ (0, T ].
Moreover, by the non triviality of O, there exists a positive minimal period σ of O.
Thus ind(Φσ/2, S) = 0 since Φσ/2 is fixed point free on S.

Lemma 2.2. Assume ΦT is defined on a relatively compact open subset Ω of M .
Suppose that all the orbits with period in (0, T ] which meet Ω are isolated in AT .
Given τ, σ ∈ (0, T ] such that Φτ and Φσ are fixed point free on ∂Ω, we have

ind(Φτ , Ω) = ind(Φσ , Ω).

Proof. As a consequence of our assumption, since Ω is compact, there are
only finitely many orbits of period in (0, T ] which meet Ω. Let O1 . . . On be all
the nontrivial ones. Applying Lemma 2.1, there exist open subsets of M , S1 . . . Sn,
such that Oi ⊂ Si and

ind(Φτ , Si) = ind(Φσ , Si) = 0,

for all i = 1 . . . n. We can clearly assume Si ∩ Sj = ∅ when i 6= j. Define

Ω1 = Ω \
n⋃

i=1

Si .

By the additivity and the excision properties,

ind(Φτ , Ω) = ind(Φτ , Ω1),

and

ind(Φσ , Ω) = ind(Φσ, Ω1).
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Using the homotopy invariance, we can write

ind(Φτ , Ω1) = ind(Φσ, Ω1),

and the claim follows.

Let Ω be an open relatively compact subset of M , and let T > 0 be given.
Consider a continuous tangent vector field g : M → R

k, such that the solution of
the Cauchy problem (0.1) is defined in [0, T ], for all p ∈ Ω. Suppose that ind(ΦT , Ω)
is well defined. This clearly implies that there are no zeros of g on ∂Ω, so χ(g, Ω)
is defined as well.

Using a corollary of the Kupka-Smale theorem (see [CM]), one can show that
there exists a sequence {gk} of C1 tangent vector fields on M , uniformly converging
to g on compact sets, and such that, for every k ∈ N, the equation ẋ = gk(x), in any
given compact set, admits finitely many periodic orbits with period in (0, T ]. We
will denote by {Ψk

t }t∈R the local flow associated to the equation ẋ = gk(x). Since
the flow is a continuous map of the twofold variable (t, x) ∈ R×M , the “attainable

set” Ω̂T = Φ[0,T ](Ω) is a compact subset of M . Let B be a relatively compact open

set containing Ω̂T . Let c be the distance (in R
k) between Ω̂T and ∂B. One can

choose a sufficiently large k such that ‖Φt(x)−Ψk
t (x)‖ ≤ c/2 for all x ∈ Ω, t ∈ [0, T ]

and k > k. This implies that, if k > k, any solution of ẋ = gk(x), which meets Ω, is
contained in B. By the choice of the sequence {gk}, B contains only finitely many
periodic orbits of ẋ = gk(x) with period in (0, T ].

It is well known that there exist ε > 0 such that ind(Ψt, Ω) is well defined and
constant for 0 < t ≤ ε. More precisely (see [FP2]) we know that, for 0 < t ≤ ε,

(2.2) ind(Φt, Ω) = (−1)mχ(g, Ω) = χ(−g, Ω).

Using the continuous dependence on data and the compactness of ∂Ω we can assume
Ψk

T (x) 6= x and Ψk
ε(x) 6= x for all x ∈ ∂Ω. Moreover, using the homotopy invariance

property of the index, we get

ind(Ψk
T , Ω) = ind(ΦT , Ω),(2.3)

ind(Ψk
ε , Ω) = ind(Φε, Ω), ,(2.4)

provided that k is large enough. Applying Lemma 2.2,

ind(Ψk
T , Ω) = ind(Ψk

ε , Ω),

and, using (2.2), (2.3) and (2.4) we obtain

ind(ΦT , Ω) = ind(Φε, Ω) = χ(−g, Ω).

We have proved the following result

Theorem 2.1. Let g : M → R
k be a tangent vector field on a boundaryless differ-

entiable manifold M ⊂ R
k and Ω a relatively compact open subset of M . Let T > 0

and assume that, for any p ∈ Ω, the solution of the Cauchy problem (0.1) is defined
on [0, T ]. If ΦT is fixed point free on ∂Ω, then

ind(ΦT , Ω) = χ(−g, Ω).

In spite oif the fact that the restriction to Ω of the Poicaré operator ΦT may be
strongly influenced by the behaviour of g outside Ω, this is not so for its fixed point
index.
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Corollary 2.1. Let M , g, Ω and T be as in the above theorem. Let h : M → R
k

be a tangent vector field and denote by {Ψt}t∈R its local flow. If g |Ω= h |Ω, then

ind(ΦT , Ω) = ind(ΨT , Ω),

provided that they are both well defined.

Note also that Theorem 2.1 is not a trivial consequence of the homotopy property
because, in general, the map (p, t) 7→ Φt(p) is not an admissible homotopy on Ω.
Consider, for example, the following differential equation in M = R

2

(ẋ, ẏ) = (y,−x)

and let Ω = B(0, 1) be the unit open disk in R
2. A direct computation shows that

ind(Φt, Ω) is well defined and equal to 1 for any t 6= 2kπ, and it is not defined for
t = 2kπ) (k ∈ Z. Therefore if t is considered in an interval containing one of these
values, the flow does not give an admissible homotopy.

Consider the differential equation

(2.5) ẋ = λg(x) λ ∈ [0, 1],

where g is as in Theorem 2.1, and denote by Φt(λ, ·) the flow associated to this
equation. Observe that

(2.6) ΦT (λ, ·) = ΦλT (1, ·).

In particular, any T -periodic solution of ẋ = g(x) corresponds to a (T/λ)-periodic
one of (2.5). Assume that ΦT (λ1, ·) and ΦT (λ2, ·) are fixed point free on ∂Ω
(λ1, λ2 ∈ (0, 1]); then, by Theorem 2.1 we have

ind(Φλ1T (1, ·), Ω) = ind(Φλ2T (1, ·), Ω).

Therefore, by (2.6), we get

(2.7) ind(ΦT (λ1, ·), Ω) = ind(ΦT (λ2, ·), Ω).

Let now f : R × M be a T -periodic tangent vector field on M ; assume that the
solutions of ẋ = λf(t, x) are continuable on [0, T ] for any λ ∈ [0, 1]. One could ask
if a formula like (2.7), is still true for the for the parametrized differential equation

(2.8) ẋ = λf(t, x(t)) λ ∈ [0, 1].

More precisely, denote by PT (λ, ·) : Ω → M the translation operator, which asso-
ciates to any point p the value at time T of the solution of (2.8), satisfying x(0) = p.
Assuming that PT (λ1, ·) and PT (λ2, ·) are fixed point free on ∂Ω (λ1, λ2 ∈ (0, 1]),
the question is if one could write

(2.9) ind (PT (λ1, ·), Ω) = ind (PT (λ2, ·), Ω) .

The answer is affirmative in the case when Ω = M is a compact, boundaryless
manifold (this is an easy consequence of the homotopy property of the fixed point
index), but it is false in general. To see this put M = R

2 and let Ω be the unit
open disk in R

2. Consider the following equation in R
2

(2.10)

{
ẋ1 = λx2

ẋ2 = −λx1 + λ sin t
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For λ = 1, (2.10) does not admit 2π-periodic solution. Thus ind(P2π(1, ·), Ω) =
0. On the other hand, for sufficiently small λ, it is known that (see [FP2]) that
ind(P2π(λ, ·), Ω) = χ(−w, Ω) = 1, where w : Ω → R

2 is defined by

w(x1, x2) =
1

2π

∫ 2π

0

(x2,−x1 + sin t) dt = (x2,−x1),

contradicting (2.9).

Let f : R ×M → R
k be as above and Ω a relatively compact open subset of M ,

and assume that, for each p ∈ Ω, the solution of the Cauchy problem

(2.11)

{
ẋ = f(t, x),
x(0) = p,

is defined on [0, T ]. Denote by PT : Ω → M the Poincaré T -translation operator
which associates to any point p the value at time T of the solution x(·, p) of (2.11).
Following Krasnosel’skii (see [K]) a point p ∈ M is said to be of T -irreversibility if
x(t, p) 6= p ∀t ∈ (0, T ]. Using the homotopy property of the degree, Krasnosel’skii
proves a formula for computing the fixed point index of the operator of translation
along trajectories of a nonautonomous differential equation; his result (reformulated
in the framework of differentiable manifolds) is the following.

Theorem 2.2. Suppose that all points of ∂Ω are of T -irreversibility and that
f(0, x) 6= 0 on ∂Ω. Then

ind(PT , Ω) = χ(−f(0, ·), Ω).

Theorem 2.1 shows that, at least in the case of autonomous differential equations,
the hypothesis of T -irreversibility can be removed: the essential fact is the absence
of fixed points for PT on ∂Ω (i.e. the admissibility on Ω of the Poincaré T -translation
operator). Now, the question is if one can eliminate the T -irreversibility hypothesis
also for the nonautonomous case. Equation (2.10), with λ = 1, shows that this is
not possible. In fact, let Ω be the open unit disk in R

2. A direct computation gives
χ(−f(0, ·), Ω) = 1 and ind(P2π , Ω) = 0 (since (2.10) has no 2π-periodic orbits for
λ = 1).

3. Applications

Let f : R × M → R
k and g : M → R

k be two tangent vector fields on an m-
dimensional boundaryless manifold M ⊂ R

k, with f T -periodic. Let us give some
notation. In the sequel, given X ⊂ R × M and λ ∈ R, we will denote the slice
{x ∈ M : (λ, x) ∈ X} with the symbol Xλ. Any pair (λ, p) is said to be a starting
point (for (0.3)) if the equation (0.3) has a T -periodic solution satisfying x(0) = p.
We will use the following global connectivity result (see [FP4]).

Lemma 3.1. Let Y be a locally compact metric space and let Y0 be a compact
subset of Y . Assume that any compact subset of Y containing Y0 has nonempty
boundary. Then Y \ Y0 contains a not relatively compact component whose closure
(in Y ) intersects Y0.

By known properties of differential equations the set V ⊂ [0,∞) × M given by

{(λ, p) : the solution x(·) of (0.3) satisfying x(0) = p is defined in [0, T ]},

is open. Thus it is locally compact. Clearly V contains the set S of all starting
points of (0.3). Observe that S is closed in V , even if it could be not so in [0, +∞)×
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M . Therefore S is locally compact. Let U be an open subset of V and consider the
set SU = S ∩ U . Since SU is open in S, it is locally compact as well. The set SU

will be called the starting point set relative to U of (0.3).

Theorem 3.1. Let f : R × M → R
k and g : M → R

k be two tangent vector
fields on a boundaryless manifold M ⊂ R

k, with f T -periodic. Assume S and U
are as above. If g−1(0) ∩ U0 is compact and χ(g, U0) is nonzero, then SU admits
a connected subset which meets {0} ×

(
g−1(0) ∩ U0

)
and is not contained in any

compact subset of U .

Proof. Observe first that g−1(0) ∩ U0 is nonempty since χ(g, U0) is nonzero.
Thus SU is nonempty as well. The theorem follows applying Lemma 3.1 to the pair

(Y, Y0) =
(
SU , {0} × (g−1(0) ∩ U0)

)
.

In fact, if Σ is a component as in the assertion of Lemma 3.1, its closure satisfies
the requirement. Assume, by contradiction, that there exist a compact subset C
of SU , containing {0}× (g−1(0) ∩ U0) and with empty boundary in SU . Thus C is
a relatively open subset of SU . As a consequence, SU \ C is closed in SU , so the
distance, δ = dist(C, SU \ C), between C and SU \ C is nonzero (recall that C is
compact). Consider the set

W =

{
(λ, p) ∈ U : dist

(
(λ, p), C

)
<

δ

2

}
,

which, clearly, does not meet SU \C. Because of the compactness of SU ∩W = C,
there exists λ > 0 such that ({λ} × W{λ}) ∩ SU = ∅. Moreover, the set SU ∩ W

coincides with {(λ, p) ∈ W : PT (λ, p) = p}, where PT : V → M denotes the
translation operator which associates to any pair (λ, p) ∈ V the value at time T
of the solution of (0.3) satisfying x(0) = p. Then from the generalized homotopy
property of the index (see e.g. [N]),

0 = ind
(
PT (λ, ·), Wλ

)
= ind

(
PT (λ, ·), Wλ

)
,

for all λ ∈ [0, λ]. Observe that our contradictory assumption implies that PT (0, ·) is
fixed point free on the boundary of W0, therefore ind

(
PT (0, ·), W0

)
is well defined.

Applying the excision property of the Euler-Poincaré characteristic and Theorem
2.1

ind
(
PT (0, ·), W0

)
= (−1)mχ(g, W0) = (−1)mχ(g, U0) 6= 0,

contradicting the previous formula.

Below, we give some simple consequences of Theorem 3.1 which illustrate its
utility in describing the structure of the starting point set.

Corollary 3.1. Let f : R×R
m → R

m and g : R
m → R

m be two vector fields, with
f T -periodic. Assume that there exist constants a, b, c, d ∈ R such that ‖f(t, x)‖ ≤
a + b‖x‖ and ‖g(x)‖ ≤ c + d‖x‖ for each x ∈ R

m and t ∈ R. If g−1(0) is compact
and χ(g, Rm) 6= 0, then there exists an unbounded connected set of starting points
for T -periodic solutions of (0.3) which meets {0} × g−1(0).

Proof. By the assumptions on f and g any solution of (0.3) is defined on the
whole real line. Thus, in this case taking U = [0, +∞) × R

m, by Theorem 3.1
there exists a connected set Σ of starting points for the equation (0.3) which meets
{0} × g−1(0) and is not contained in any compact subset of [0, +∞) × R

m. This
implies that Σ is unbounded.
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The following simple two dimensional example shows that, in some cases, the
unbounded set of starting points ensured by Corollary 3.1 may be contained in the
slice {0} × R

2. {
ẋ = y
ẏ = −x + λ sin t

The following is an extension of a result of [FP1] to the case g 6= 0.

Corollary 3.2. Assume M to be a compact boundaryless manifold with χ(M) 6= 0.
Let f : R × M → R

k and g : M → R
k be as in Theorem 3.1. Then there exists a

connected set of starting points Σ which meets {0}× g−1(0) and such that π1(Σ) =
[0, +∞), where π1 denotes the projection on the first factor of [0, +∞) × M .

Proof. By the compactness of M we have V = [0, +∞) × M . We apply
Theorem 3.1 to the open set U = V . By the Poincaré-Hopf theorem (see e.g. [Mi])
and the assumptions, we have

χ(M) = χ(g, U0) 6= 0.

Therefore there exists a connected set Σ of starting points for (0.3) which meets
{0} × g−1(0) and is not contained in any compact subset of U . In particular, for
each λ ≥ 0 fixed, Σ intersects {λ} × M , i.e. π1(Σ) = [0, +∞).

The fact that the global branch ensured by Theorem 3.1 emanates from the set
of zeros of g, and not merely from the set of all T -periodic orbits of ẋ = g(x), allows
us to obtain information about the starting point set of equation (0.3) also in the
case of a compact manifold with zero Euler-Poincaré characteristic.

Corollary 3.3. Let M ⊂ R
k be a compact boundaryless manifold. Assume that f

and g are as in Theorem 3.1 and, in addition, g has exactly two distinct zeros z1

and z2 with nonzero index. Denote by S1 and S2 the connected components of the
set of starting points of (0.3) which contain respectively z1 and z2. Then just one
of the following two possibilities holds:

1) S1 = S2,
2) S1 and S2 are disjoint and both unbounded (in [0, +∞) × M).

In particular, if 2) holds, there exist at least two distinct T -periodic solutions of
(0.3) for each λ ∈ [0, +∞).

Proof. Since M is compact, we have V = [0, +∞) × M . Take

U1 =[0, +∞) × M \ (0, z2),

U2 =[0, +∞) × M \ (0, z1).

Obviously (0, zi) ∈ Ui, and by the excision property χ(g, Ui) 6= 0 for i ∈ 1, 2. We
may assume S1 6= S2. In this case S1 and S2, being connected components, are
clearly disjoint and, consequently, S1 ⊂ U1 and S2 ⊂ U2. Because of Theorem 3.1
S1 and S2 are not contained in any compact subset of U1 and U2 respectively and,
in particular, they are not compact. Now S1 and S2 are closed in the set S of all
the starting points of (0.3). Since S is closed in V = [0, +∞)×M , which is closed
in R

k+1, the two components S1 and S2 must be unbounded.

Corollary 3.4. Let g : M → R
k be a tangent vector field on a compact boundaryless

manifold M ⊂ R
k and assume g has exactly two zeros z1 and z2 with nonzero index.

If z1 and z2 belong to different connected components of the set of all T -periodic
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orbits of ẋ = g(x), then for any T -periodic tangent vector field f : R × M → R
k

there exist λf > 0 such that the equation (0.3) has at least two T -periodic solutions
for all λ ∈ [0, λf ].

Proof. Let S1 and S2 be as in Corollary 3.3. It is enough to show that both S1

and S2 are not contained in the slice {0}×M . Assume, for example, S1 ⊂ {0}×M .
Thus, by the Corollary 3.3, the alternative 1) holds. This implies z1 and z2 belong
to the same connected component of T -periodic orbits of ẋ = g(x), a contradiction.

An infinite dimensional analogous of Theorem 3.1 and some extensions of the
results of this section will appear in a forthcoming paper.
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