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1 Introduction

In this paper, we prove a result which gives information about the structure of
the set of harmonic solutions of the parametrized differential equation

T = g(CE) + )‘f(tvx)v (1)

where g : M — R* and f : R x M — R” are continuous vector fields, tangent
to a (not necessarily closed) boundaryless differentiable manifold M C R*, with
f T-periodic with respect to the first variable. We investigate the structure of
the set of solution pairs of (1); i.e.of those pairs (A, z) € [0,00) x Cr(M) such
that z is a (necessarily T-periodic) solution of (1).

We give conditions ensuring the existence of a non-compact connected com-
ponent of solution pairs (A, x) of (1) which emanates from the set of constant
solutions of the unperturbed equation

= g(z). (2)

In the case when M is closed, this component turns out to be unbounded. We
point out that the weaker assertion that this connected set emanates from the
set of T-periodic solutions of (2) has been previously obtained in [C1] and [C2]
under the additional assumption that the set of T-periodic solutions of (2) is
compact. For related results regarding continuation principles see [CMZ], [M2]
and references therein. The techniques used here are different from those of [C1]
and [C2]: we do not use infinite dimensional degree theories.

As an application, we describe the set of forced oscillations of a periodically
perturbed pendulum-like equation, providing also a multiplicity result. For a
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nice survey paper regarding forced oscillations for the pendulum equation we
suggest the reading of [M1].

2 Preliminaries

We recall first some basic facts and definitions that will turn out to be useful
throughout the present paper.

If M c RF is a differentiable manifold, the metric subspace Cp(M) of
Cr(RF) of all T-periodic continuous functions z : R — M is not necessar-
ily complete, unless M is closed in R*. Anyway, C7(M) is always locally com-
plete. The reason is the following: since M is locally compact, given x € Cp (M),
there exists a relatively compact open set V' C M containing the compact image
x ([0,T]) of a.

A metric space K is said to be precompact, if its completion is compact.
Observe that K is precompact if and only if it is totally bounded. In fact, the
total boundedness of K is equivalent to the assertion that any sequence in K
has a Cauchy subsequence. Consequently K is compact if and only if it is both
totally bounded and complete.

The following version of Ascoli’s theorem will be useful in the sequel.

Theorem 2.1 Let X be a subset of RF and B a bounded equicontinuous subset
of C(la,b] , X). Then B is totally bounded. In particular, if X is closed, B is
relatively compact.

Let U be an open subset of the differentiable manifold M c R*, and v :
M — R* be a continuous tangent vector field such that the set v=1(0) N U is
compact. Then, one can associate to the pair (v,U) an integer, often called
the Euler characteristic (or index) of v in U, which, roughly speaking, counts
(algebraically) the number of zeros of v in U (see e.g. [GP], [H], [Mi], [T], and
teferences therein), and which, for reasons that will became clear in the sequel,
we will call degree of the vector field v and denote by deg(v, U). If v=1(0)NU is
a finite set, then deg(v,U) is simply the sum of the indices of the zeros of v. In
the general admissible case, i.e. when v~1(0) N U is a compact set, deg(v,U) is
defined by taking a convenient smooth approximation of v having finitely many
zeros (provided that these zeroes are sufficiently close to v=1(0) N U).

We stress that no orientability on M is necessary in order to define the degree
of a tangent vector field.

The celebrated Poincaré-Hopf theorem says that, if M is a compact manifold
(possibly with boundary OM), then deg(v, M \ OM) = x(M) for any tangent
vector field v which points outward along OM.

In the flat case, namely if U is an open subset of R¥, deg(v,U) is just the
Brouwer degree (with respect to zero) of v in U.

Using the equivalent definition of degree given in [FP2|, one can see that
all the standard properties of the Brouwer degree on open subsets of Euclidean



spaces, such as homotopy invariance, excision, additivity, existence, etc., are
still valid in the more general context of differentiable manifolds.

3 Main results

We deal with the following differential equation

&= g(x) + Af(t; ). 3)

where f : R x M — R* and g : M — RF are continuous tangent vector fields
defined on a (boundaryless) differentiable manifold M C RF, with f T-periodic
inteR.

A pair (A, p) € [0,00) x M is a starting point (for T-periodic solutions) if the

Cauchy problem
& =g(z)+ Af(t,x)
{ w0) = p @

has a T-periodic solution. A starting point (A, p) is called trivial if A = 0 and
p € g~1(0). While the concept of starting point is essentially finite dimensional,
strictly related to this, one has the (infinite dimensional) notion of solution pair.
We say that (A, z) € [0,00) x Cp(M) is a solution pair if = satisfies (3). If A =0
and z is constant, then (A, z) is said to be trivial.

Denote by X the subset of [0,00) x Cp(M) of all solution pairs and by S
the set of all starting points. Notice that X is locally complete, as a closed
subset of a locally complete space. The map h : X — S, which associates to
(A, z) € X the starting point (A, 2(0)), is continuous and onto. Notice that, if
(A, x) is trivial, then the corresponding pair (A, z(0)) € S is trivial as well. The
converse is clearly true if g is C*.

The following global connectivity result of [FP3] will be crucial in the sequel.

Lemma 3.1 LetY be a locally compact Hausdorff space and let Yy be a compact
subset of Y. Assume that any compact subset of Y containing Yy has nonempty
boundary. Then Y\Yy contains a not relatively compact component whose clo-
sure (in'Y') intersects Yp.

For the sake of simplicity, according to [FP4], we make some conventions.
We will regard every space as its image in the following diagram of natural
inclusions

[0,00) x M — [0,00) x Cp(M)
T T

In particular, we will identify M with its image in Cp(M) under the embedding
which associates to any p € M the map p € Cp(M) constantly equal to p.
Moreover we will regard M as the slice {0} x M C [0, 00) x M and, analogously,



Cr(M) as {0} x Cr(M). We point out that the images of the above inclusions
are closed.

According to these identifications, if € is an open subset of [0, 00) x Cp (M),
by 2 N M we mean the open subset of M given by all p € M such that the
pair (0,p) belongs to Q. If U is an open subset of [0,00) X M, then U N M
represents the open set {p € M : (0,p) € U}. Moreover, S\g~1(0) stands for
the set S\ [{0} x g71(0)] of nontrivial starting points of (3).

Assume now that (4) has a unique solution for all p € M. By known results
on differential equations, the set D C [0, 00) x M of all the pairs (), p) such that
the solution of (4) is defined in [0, 7] is open, thus locally compact. Obviously
the set S of all the starting points of (3) is a closed subset of D, even if it could
be not so in [0,00) x M. This implies that S is locally compact. If U is an open
subset of D, the set SN U is open in S, thus it is locally compact as well.

Theorem 3.2 below (see [FS], Theorem 3.1) plays a crucial role in the proof
of the main result of this paper.

Theorem 3.2 Let f : R x M — RF and g : M — RF be C! tangent vector
fields defined on a (boundaryless) differentiable manifold M C R¥, with f T-
periodic in the first variable. If D and S are as above, U is an open subset of
D and deg(g,U N M) is well defined and nonzero, then the set (SNU)\ g—*(0)
of montrivial starting points (in U) admits a connected subset whose closure in
SNU meets g~1(0) and is not compact.

We are now in a position to state our main result. The proof is inspired by
[FP4].

Theorem 3.3 Let f : R x M — RF and g : M — RF be continuous tangent
vector fields defined on a (boundaryless) differentiable manifold M C R, with
f T-periodic in the first variable. Let Q be an open subset of [0,00) x Cr(M),
and assume that deg(g, QN M) is well defined and nonzero. Then there ezists a
gonnected set I of nontrivial solution pairs in  whose closure in [0, 00)x Cp (M)
meets g~1(0)NQ and is not contained in any compact subset of Q. In particular,
if M is closed in R* and Q = [0,00) x Cp(M), then T is unbounded.

Proof. Let X denote the set of solution pairs of (3). Since X is closed, it is
enough to show that there exists a connected set I' of nontrivial solution pairs
in ) whose closure in X N meets ¢~1(0) and is not compact.

Assume first that f and g are smooth vector fields. Denote by S the set of
all starting points of (3), and take

S ={(\p) € S : the solution of (4) is contained in Q} .

Obviously S is an open subset of S, thus we can find an open subset U of D
such that SNU = S (recall that D is the set of all the pairs (A, p) such that the



solution of (4) is defined in [0, 7). We have that
g ONQ=g"0)NS=4"'(0)NT.

thus deg(g, U N M) = deg(g, 2N M) # 0. Applying Theorem 3.2, we get the
existence of a connected set ¥ C (SNU) \ g~1(0) such that its closure in SNU is
not compact and meets g~1(0). Let h : X — S be the map which assigns to any
solution pair (A, x) the starting point (A, 2(0)). Observe that h is continuous,
onto and, since f and g are smooth, it is also one to one. Furthermore, by the
continuous dependence on initial data, we get the continuity of h=! : § — X.
Thus h maps X N Q homeomorphically onto S N U, and the trivial solution
pairs correspond to the trivial starting points under this homeomorphism. This
implies that I' =h~! (¥) satisfies the requirements.

Let us remove the smoothness assumption on g and f. Take Yy = ¢~ (0)NQ2
and Y = X N Q. We have only to prove that the pair (Y,Y)) satisfies the
hypothesis of Lemma 3.1. Assume the contrary. We can find a relatively open
compact subset C' of Y containing Y. Thus there exists an open subset W of Q2
such that the closure W of W in [0, 00) x C(M) is contained in Q, WNY = C
and OW NY = (). Since C is compact and [0,00) x M is locally compact, we
can choose W in such a way that the set

{(X, z(t)) €0,00) x M : (A\,z) e W, t €[0,T]}

is contained in a compact subset K of [0,00) x M. This implies that W is
bounded with complete closure in 2 and W N M is a relatively compact subset
of QN M. In particular g is nonzero on the boundary of W N M (relative to
M). By well known approximation results on manifolds, we can find sequences
{gi} and {f;} of smooth tangent vector fields uniformly approximating g and
f, with f; T-periodic in the first variable. For ¢ € N large enough, we get

deg(g;, WN M) =deg(g, W N M).
Furthermore, by excision,
deg(g, WN M) =deg(g, 2N M) # 0.

Therefore, given i large enough, the first part of the proof can be applied to the
equation
z = gi(x) + Afi(t, ). (5)

Let X; denote the set of solution pairs of (5). There exists a connected subset
I; of 2N X; whose closure in 2 meets g; '(0) N W and is not contained in any
compact subset of . Let us prove that, for ¢ large enough, I'; N OW # (. It is
sufficient to show that X; N W is compact. In fact, if (X, z) € X; "W we have,
for any t € [0, T,

1&(8)]] < max{llg(p) + pf(r, ) : (n,p) € K, 7 €[0,T]}.



Hence, by Ascoli’s theorem, X; N W is totally bounded and, consequently, com-
pact, since X is closed and W is complete. Thus, for i large enough, there exists
a solution pair (\;,z;) € T'; N OW of (5). Again by Ascoli’s theorem, we may
assume that x; — zo in Cp(M) and A\; — Ao with (Ao, zg) € OW. Therefore

io(t) = g (20(t) + Nof (Lao(t)) , tER.

Hence (Ao, xo) is a solution pair in OW. This contradicts the assumption 0WW N
Y =0.

It remains to prove the last assertion. Let M be closed. There exists a
connected set T of solution pairs of (3) whose closure is not compact and meets
g~ 1(0). Let Z be the closure in [0,00) x R* (or, equivalently, in [0, 00) x M) of
the set

{A,z@): (A, 2)el, te[0,T]}.

We need to show that Z is unbounded. Assume the contrary. Hence Z is
compact. Thus, by Ascoli’s theorem, T" is totally bounded. Consequently, since
[0,00) x Cp(M) is complete, its closure is compact. O

To understand the meaning of Theorem 3.3, consider for example the case
when M = R™. If g~1(0) is compact and deg(g,R™) # 0, then there exists
an unbounded connected set of solution pairs in [0, 00) x Cr(R™) which meets
g 1(0). The existence of this unbounded branch cannot be destroyed by a
particular choice of f . However this branch is possibly contained in the slice
{0} x Cr(M), as in the following simple two dimensional example:

T=1y
y=—x+ Asint.

Another direct consequence of Theorem 3.3 can be given when M C R* is
a compact boundaryless manifold with x(M) # 0 and Q = [0, 00) x Cp(M). In
this case, by the Poincaré-Hopf theorem, deg(g, M) = x(M). Thus there exists
an unbounded connected set I' of solution pairs in [0, c0) X Cp (M) which meets
g~ 1(0). This extends a result of [FP1] where g is assumed to be identically
zero. We point out that, in the case when g and f are locally Lipschitzian in
x, the same assertion can be obtained by Theorem 3 in [C2]; where, instead of
differentiable manifolds the broader class of ANR’s is considered.

4 Applications

In order to enlighten the meaning of Theorem 3.3 we illustrate how the knowl-
edge of the structure of the set of solution pairs can lead to a result about forced
oscillations of a pendulum-type equation. Consider the following second order
differential equation

6= g(0) + A\f(t,0), (6)



where g : R — R and f : RxR — R are continuous functions, 27-periodic with
respect to 6. Assume also that f isT-periodic in ¢. It is convenient to regard g
and f as defined on S' and R x S! respectively.

Clearly, (6) can be considered as a first order (non-autonomous) differential
equation on the tangent bundle T'S* = S x R as follows:

o 7)

&y = g(x1) + Af(t,21).
Assume that g takes both positive and negative values and it has exactly
two zeros 61 and 6y on S (for instance g(f) = —sin6). Hence (61,0) and

(02,0), which we identify with #; and 6, are the unique zeros of the vector
field (x1,x2) — (22,9(x1)) (which can be regarded as a tangent vector field on
S1 x R). In what follows, ; and #3 will be also identified, respectively, with the
trivial solution pairs (0; 6, 0), (0; 0, 0), where 0; is the constant map t — 6; for
ie{l,2}.

The following theorem holds.

Theorem 4.1 Let f and g be as above. Denote by C1 and Cs the connected
components of the set of solution pairs of (7) containing 61 and 02 respectively.
Then Cy and Cy are bounded in any subset [0,u] x Cr(S x R) of [0,00) x
Cr(S* x R). Moreover, just one of the following alternatives holds:

1. Chy =0y,
2. C1 and Cy are disjoint and both unbounded.

In particular, if the second alternative holds, there exist at least two distinct
T-periodic solutions of (6) for each X € [0, 00).

Proof. Let w : [0,00) x Cr(S* xR) — Z be the (continuous) function which
assigns to any (A, z) = (\;z1,z2) the number of turns that x;(¢) makes, in a
period, around S*. More precisely, w associates to (), z) € [0, 00) x Cr(S* x R)
the winding number of the closed curve t € [0,T] — z1(t) € S'. Regarding 6,
and 05 as solution pairs, we have w (61) = w (62) = 0. Thus, the continuity of w
implies that w must be identically zero on the connected sets C; and C5. This
means that, given (\;x1,22) € C1 U Cy, the T-periodic map z; : R — St can
be viewed as a T-periodic real function; that is, x; is actually a solution of (6).

Let (X;z1,z2) be any solution pair of (7) with zero winding number. There
exists tg € [0, T] such that x5(tg) = 0, therefore

£2(t) = 2a(t) — 22(to) = / 0 (21(3)) + M (5,21()) ds,

to
hence

< .
a0 <7 el @) +3 g 1£06.6) ®)



The inequality (8), which holds for any solution pair in C; U Cs, implies that
C; and Cy are bounded in any set [0, 4] x C7(S* x R).
Define

Q1 = {[0,00) x Cr(S* xR)}\ {62},
Q= {[0,00) x Cp(S" x R)}\ {01},

and observe that 6;, i = 1,2, is the unique zero in Q; N (S* x R) of the vector
field (z1,z2) — (z2,9(x1)). Since g changes sign at ;, by homotopy arguments
one can prove that this vector field has nonzero index at #;. Therefore Theorem
3.3 with M = S' x R implies that C; N €);, i = 1,2, cannot be compact.

We may assume C7 # Cs. In this case, C; and C5, being connected compo-
nents, are disjoint and, consequently, C; C €; for i = 1,2. Since C7 and Cs are
closed non-compact subsets of the complete metric space [0, 00) x Cr (S x R),
they must be both unbounded. For, since M is closed, Ascoli’s theorem implies
that any bounded set of solution pairs is actually totally bounded.O

The above theorem leads to the following multiplicity result.

Corollary 4.2 Let g : R — R be a 2mw-periodic continuous function whose
image contains 0 in its interior. Assume that g has exactly two zeros 01,0y €
[0,27). Then, given a continuous function (¢,6) — f(t,0), T-periodic in t € R
and 2m-periodic in 8, there exists Ay > 0 such that the equation (6) has at least
two T-periodic solutions for each A € [0, A¢].

Proof. Let C; and C5 be as in Theorem 4.1. Since the intersections of
Cy and Cy with the slice {0} x Cr(S! x R) are bounded, hence compact, it is
enough to show that there are no connected sets C' of solution pairs with A =0
joining 61 with 6. Suppose such a C' exists.

We may assume 61 < 62, g(0) < 0 in (61,62) and g(f) > 0 in (62, 61 + 27).
The connectedness of C, which is contained in {0} x Cr(S! x R), ensures that
in the open neighborhood

W =1[0,00) x Cr ((S"\01) x R)
of 6 there exists a solution pair
(0; Iy, {fg) elCn W\ {92} .

The function Z; can be regarded as a nonconstant T-periodic solution of § = g(6)
such that 6; < Z1(t) < 61 4+ 2« for all ¢ € [0,T]. Let 79 and 71 be, respectively,
a minimum and a maximum point of Z; in [0,7]. Obviously

9@ (m) = Ty <0< L) = g @a(m)



1 11T

By the properties of g and the fact that 61 < Z1(t) < 01 + 27, we get T1(11) <
02 < Z1(79), which is clearly impossible since Z; is nonconstant.0

We point out that, even in the case when g and f are smooth, the above
result cannot be proved by simply linearizing (3) about the zeros of g. In fact,
one of the two linearized equations could be the following:

0+ 6= \sint.
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