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1 Introduction

In this paper, we prove a result which gives information about the structure of
the set of harmonic solutions of the parametrized differential equation

ẋ = g(x) + λf(t, x), (1)

where g : M → Rk and f : R × M → Rk are continuous vector fields, tangent
to a (not necessarily closed) boundaryless differentiable manifold M ⊂ Rk, with
f T -periodic with respect to the first variable. We investigate the structure of
the set of solution pairs of (1); i.e. of those pairs (λ, x) ∈ [0,∞) × CT (M) such
that x is a (necessarily T -periodic) solution of (1).

We give conditions ensuring the existence of a non-compact connected com-
ponent of solution pairs (λ, x) of (1) which emanates from the set of constant
solutions of the unperturbed equation

ẋ = g(x). (2)

In the case when M is closed, this component turns out to be unbounded. We
point out that the weaker assertion that this connected set emanates from the
set of T -periodic solutions of (2) has been previously obtained in [C1] and [C2]
under the additional assumption that the set of T -periodic solutions of (2) is
compact. For related results regarding continuation principles see [CMZ], [M2]
and references therein. The techniques used here are different from those of [C1]
and [C2]: we do not use infinite dimensional degree theories.

As an application, we describe the set of forced oscillations of a periodically
perturbed pendulum-like equation, providing also a multiplicity result. For a
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nice survey paper regarding forced oscillations for the pendulum equation we
suggest the reading of [M1].

2 Preliminaries

We recall first some basic facts and definitions that will turn out to be useful
throughout the present paper.

If M ⊂ Rk is a differentiable manifold, the metric subspace CT (M) of
CT (Rk) of all T -periodic continuous functions x : R → M is not necessar-
ily complete, unless M is closed in Rk. Anyway, CT (M) is always locally com-
plete. The reason is the following: since M is locally compact, given x ∈ CT (M),
there exists a relatively compact open set V ⊂ M containing the compact image
x ([0, T ]) of x.

A metric space K is said to be precompact, if its completion is compact.
Observe that K is precompact if and only if it is totally bounded. In fact, the
total boundedness of K is equivalent to the assertion that any sequence in K

has a Cauchy subsequence. Consequently K is compact if and only if it is both
totally bounded and complete.

The following version of Ascoli’s theorem will be useful in the sequel.

Theorem 2.1 Let X be a subset of Rk and B a bounded equicontinuous subset
of C ([a, b] , X). Then B is totally bounded. In particular, if X is closed, B is
relatively compact.

Let U be an open subset of the differentiable manifold M ⊂ Rk, and v :
M → Rk be a continuous tangent vector field such that the set v−1(0) ∩ U is
compact. Then, one can associate to the pair (v, U) an integer, often called
the Euler characteristic (or index) of v in U , which, roughly speaking, counts
(algebraically) the number of zeros of v in U (see e.g. [GP], [H], [Mi], [T], and
references therein), and which, for reasons that will became clear in the sequel,
we will call degree of the vector field v and denote by deg(v, U). If v−1(0)∩U is
a finite set, then deg(v, U) is simply the sum of the indices of the zeros of v. In
the general admissible case, i.e. when v−1(0) ∩ U is a compact set, deg(v, U) is
defined by taking a convenient smooth approximation of v having finitely many
zeros (provided that these zeroes are sufficiently close to v−1(0) ∩ U).

We stress that no orientability on M is necessary in order to define the degree
of a tangent vector field.

The celebrated Poincaré-Hopf theorem says that, if M is a compact manifold
(possibly with boundary ∂M), then deg(v, M \ ∂M) = χ(M) for any tangent
vector field v which points outward along ∂M .

In the flat case, namely if U is an open subset of Rk, deg(v, U) is just the
Brouwer degree (with respect to zero) of v in U .

Using the equivalent definition of degree given in [FP2], one can see that
all the standard properties of the Brouwer degree on open subsets of Euclidean
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spaces, such as homotopy invariance, excision, additivity, existence, etc., are
still valid in the more general context of differentiable manifolds.

3 Main results

We deal with the following differential equation

ẋ = g(x) + λf(t, x). (3)

where f : R × M → Rk and g : M → Rk are continuous tangent vector fields
defined on a (boundaryless) differentiable manifold M ⊂ Rk, with f T -periodic
in t ∈ R.

A pair (λ, p) ∈ [0,∞)×M is a starting point (for T -periodic solutions) if the
Cauchy problem

{

ẋ = g(x) + λf(t, x)
x(0) = p

(4)

has a T -periodic solution. A starting point (λ, p) is called trivial if λ = 0 and
p ∈ g−1(0). While the concept of starting point is essentially finite dimensional,
strictly related to this, one has the (infinite dimensional) notion of solution pair.
We say that (λ, x) ∈ [0,∞)×CT (M) is a solution pair if x satisfies (3). If λ = 0
and x is constant, then (λ, x) is said to be trivial.

Denote by X the subset of [0,∞) × CT (M) of all solution pairs and by S

the set of all starting points. Notice that X is locally complete, as a closed
subset of a locally complete space. The map h : X → S, which associates to
(λ, x) ∈ X the starting point (λ, x(0)), is continuous and onto. Notice that, if
(λ, x) is trivial, then the corresponding pair (λ, x(0)) ∈ S is trivial as well. The
converse is clearly true if g is C1.

The following global connectivity result of [FP3] will be crucial in the sequel.

Lemma 3.1 Let Y be a locally compact Hausdorff space and let Y0 be a compact
subset of Y . Assume that any compact subset of Y containing Y0 has nonempty
boundary. Then Y \Y0 contains a not relatively compact component whose clo-
sure (in Y ) intersects Y0.

For the sake of simplicity, according to [FP4], we make some conventions.
We will regard every space as its image in the following diagram of natural
inclusions

[0,∞) × M −→ [0,∞) × CT (M)
↑ ↑
M −→ CT (M) .

In particular, we will identify M with its image in CT (M) under the embedding
which associates to any p ∈ M the map p̂ ∈ CT (M) constantly equal to p.
Moreover we will regard M as the slice {0}×M ⊂ [0,∞)×M and, analogously,
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CT (M) as {0}×CT (M). We point out that the images of the above inclusions
are closed.

According to these identifications, if Ω is an open subset of [0,∞)×CT (M),
by Ω ∩ M we mean the open subset of M given by all p ∈ M such that the
pair (0, p̂) belongs to Ω. If U is an open subset of [0,∞) × M , then U ∩ M

represents the open set {p ∈ M : (0, p) ∈ U}. Moreover, S\g−1(0) stands for
the set S \

[

{0} × g−1(0)
]

of nontrivial starting points of (3).

Assume now that (4) has a unique solution for all p ∈ M . By known results
on differential equations, the set D ⊂ [0,∞)×M of all the pairs (λ, p) such that
the solution of (4) is defined in [0, T ] is open, thus locally compact. Obviously
the set S of all the starting points of (3) is a closed subset of D, even if it could
be not so in [0,∞)×M . This implies that S is locally compact. If U is an open
subset of D, the set S ∩ U is open in S, thus it is locally compact as well.

Theorem 3.2 below (see [FS], Theorem 3.1) plays a crucial role in the proof
of the main result of this paper.

Theorem 3.2 Let f : R × M → Rk and g : M → Rk be C1 tangent vector
fields defined on a (boundaryless) differentiable manifold M ⊂ Rk, with f T -
periodic in the first variable. If D and S are as above, U is an open subset of
D and deg(g, U ∩M) is well defined and nonzero, then the set (S ∩U) \ g−1(0)
of nontrivial starting points (in U) admits a connected subset whose closure in
S ∩ U meets g−1(0) and is not compact.

We are now in a position to state our main result. The proof is inspired by
[FP4].

Theorem 3.3 Let f : R × M → Rk and g : M → Rk be continuous tangent
vector fields defined on a (boundaryless) differentiable manifold M ⊂ Rk, with
f T -periodic in the first variable. Let Ω be an open subset of [0,∞) × CT (M),
and assume that deg(g, Ω∩M) is well defined and nonzero. Then there exists a
connected set Γ of nontrivial solution pairs in Ω whose closure in [0,∞)×CT (M)
meets g−1(0)∩Ω and is not contained in any compact subset of Ω. In particular,
if M is closed in Rk and Ω = [0,∞) × CT (M), then Γ is unbounded.

Proof. Let X denote the set of solution pairs of (3). Since X is closed, it is
enough to show that there exists a connected set Γ of nontrivial solution pairs
in Ω whose closure in X ∩ Ω meets g−1(0) and is not compact.

Assume first that f and g are smooth vector fields. Denote by S the set of
all starting points of (3), and take

S̃ = {(λ, p) ∈ S : the solution of (4) is contained in Ω} .

Obviously S̃ is an open subset of S, thus we can find an open subset U of D

such that S ∩U = S̃ (recall that D is the set of all the pairs (λ, p) such that the
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solution of (4) is defined in [0, T ]). We have that

g−1(0) ∩ Ω = g−1(0) ∩ S̃ = g−1(0) ∩ U,

thus deg(g, U ∩ M) = deg(g, Ω ∩ M) 6= 0. Applying Theorem 3.2, we get the
existence of a connected set Σ ⊂ (S ∩ U) \ g−1(0) such that its closure in S∩U is
not compact and meets g−1(0). Let h : X → S be the map which assigns to any
solution pair (λ, x) the starting point (λ, x(0)). Observe that h is continuous,
onto and, since f and g are smooth, it is also one to one. Furthermore, by the
continuous dependence on initial data, we get the continuity of h−1 : S → X .
Thus h maps X ∩ Ω homeomorphically onto S ∩ U , and the trivial solution
pairs correspond to the trivial starting points under this homeomorphism. This
implies that Γ =h−1 (Σ) satisfies the requirements.

Let us remove the smoothness assumption on g and f . Take Y0 = g−1(0)∩Ω
and Y = X ∩ Ω. We have only to prove that the pair (Y, Y0) satisfies the
hypothesis of Lemma 3.1. Assume the contrary. We can find a relatively open
compact subset C of Y containing Y0. Thus there exists an open subset W of Ω
such that the closure W of W in [0,∞)×CT (M) is contained in Ω, W ∩Y = C

and ∂W ∩ Y = ∅. Since C is compact and [0,∞) × M is locally compact, we
can choose W in such a way that the set

{(λ , x(t)) ∈ [0,∞) × M : (λ, x) ∈ W, t ∈ [0, T ]}

is contained in a compact subset K of [0,∞) × M . This implies that W is
bounded with complete closure in Ω and W ∩ M is a relatively compact subset
of Ω ∩ M . In particular g is nonzero on the boundary of W ∩ M (relative to
M). By well known approximation results on manifolds, we can find sequences
{gi} and {fi} of smooth tangent vector fields uniformly approximating g and
f , with fi T -periodic in the first variable. For i ∈ N large enough, we get

deg(gi, W ∩ M) = deg(g, W ∩ M).

Furthermore, by excision,

deg(g, W ∩ M) = deg(g, Ω ∩ M) 6= 0.

Therefore, given i large enough, the first part of the proof can be applied to the
equation

ẋ = gi(x) + λfi(t, x). (5)

Let Xi denote the set of solution pairs of (5). There exists a connected subset
Γi of Ω ∩ Xi whose closure in Ω meets g−1

i (0) ∩ W and is not contained in any
compact subset of Ω. Let us prove that, for i large enough, Γi ∩ ∂W 6= ∅. It is
sufficient to show that Xi ∩W is compact. In fact, if (λ , x) ∈ Xi ∩W we have,
for any t ∈ [0, T ],

‖ẋ(t)‖ ≤ max {‖g(p) + µf(τ, p)‖ : (µ, p) ∈ K , τ ∈ [0, T ]} .
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Hence, by Ascoli’s theorem, Xi ∩W is totally bounded and, consequently, com-
pact, since Xi is closed and W is complete. Thus, for i large enough, there exists
a solution pair (λi, xi) ∈ Γi ∩ ∂W of (5). Again by Ascoli’s theorem, we may
assume that xi → x0 in CT (M) and λi → λ0 with (λ0, x0) ∈ ∂W . Therefore

ẋ0(t) = g (x0(t)) + λ0f (t, x0(t)) , t ∈ R.

Hence (λ0, x0) is a solution pair in ∂W . This contradicts the assumption ∂W ∩
Y = ∅.

It remains to prove the last assertion. Let M be closed. There exists a
connected set Γ of solution pairs of (3) whose closure is not compact and meets
g−1(0). Let Z be the closure in [0,∞)×Rk (or, equivalently, in [0,∞)×M) of
the set

{(λ , x(t)) : (λ , x) ∈ Γ , t ∈ [0, T ]} .

We need to show that Z is unbounded. Assume the contrary. Hence Z is
compact. Thus, by Ascoli’s theorem, Γ is totally bounded. Consequently, since
[0,∞) × CT (M) is complete, its closure is compact. 2

To understand the meaning of Theorem 3.3, consider for example the case
when M = Rm. If g−1(0) is compact and deg(g,Rm) 6= 0, then there exists
an unbounded connected set of solution pairs in [0,∞)×CT (Rm) which meets
g−1(0). The existence of this unbounded branch cannot be destroyed by a
particular choice of f . However this branch is possibly contained in the slice
{0} × CT (M), as in the following simple two dimensional example:

{

ẋ = y

ẏ = −x + λ sin t .

Another direct consequence of Theorem 3.3 can be given when M ⊂ Rk is
a compact boundaryless manifold with χ(M) 6= 0 and Ω = [0,∞)×CT (M). In
this case, by the Poincaré-Hopf theorem, deg(g, M) = χ(M). Thus there exists
an unbounded connected set Γ of solution pairs in [0,∞)×CT (M) which meets
g−1(0). This extends a result of [FP1] where g is assumed to be identically
zero. We point out that, in the case when g and f are locally Lipschitzian in
x, the same assertion can be obtained by Theorem 3 in [C2]; where, instead of
differentiable manifolds the broader class of ANR’s is considered.

4 Applications

In order to enlighten the meaning of Theorem 3.3 we illustrate how the knowl-
edge of the structure of the set of solution pairs can lead to a result about forced
oscillations of a pendulum-type equation. Consider the following second order
differential equation

θ̈ = g(θ) + λf(t, θ), (6)
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where g : R → R and f : R×R → R are continuous functions, 2π-periodic with
respect to θ. Assume also that f is T -periodic in t. It is convenient to regard g

and f as defined on S1 and R× S1 respectively.
Clearly, (6) can be considered as a first order (non-autonomous) differential

equation on the tangent bundle TS1 = S1 ×R as follows:
{

ẋ1 = x2

ẋ2 = g(x1) + λf(t, x1) .
(7)

Assume that g takes both positive and negative values and it has exactly
two zeros θ1 and θ2 on S1 (for instance g(θ) = − sin θ). Hence (θ1, 0) and
(θ2, 0), which we identify with θ1 and θ2, are the unique zeros of the vector
field (x1, x2) 7→ (x2, g(x1)) (which can be regarded as a tangent vector field on
S1×R). In what follows, θ1 and θ2 will be also identified, respectively, with the

trivial solution pairs (0; θ̂1, 0), (0; θ̂2, 0), where θ̂i is the constant map t 7→ θi for
i ∈ {1, 2}.

The following theorem holds.

Theorem 4.1 Let f and g be as above. Denote by C1 and C2 the connected
components of the set of solution pairs of (7) containing θ1 and θ2 respectively.
Then C1 and C2 are bounded in any subset [0, µ] × CT (S1 × R) of [0,∞) ×
CT (S1 ×R). Moreover, just one of the following alternatives holds:

1. C1 = C2,

2. C1 and C2 are disjoint and both unbounded.

In particular, if the second alternative holds, there exist at least two distinct
T -periodic solutions of (6) for each λ ∈ [0,∞).

Proof. Let w : [0,∞)×CT (S1×R) → Z be the (continuous) function which
assigns to any (λ, x) = (λ; x1, x2) the number of turns that x1(t) makes, in a
period, around S1. More precisely, w associates to (λ, x) ∈ [0,∞)×CT (S1 ×R)
the winding number of the closed curve t ∈ [0, T ] 7→ x1(t) ∈ S1. Regarding θ1

and θ2 as solution pairs, we have w (θ1) = w (θ2) = 0. Thus, the continuity of w

implies that w must be identically zero on the connected sets C1 and C2. This
means that, given (λ; x1, x2) ∈ C1 ∪ C2, the T -periodic map x1 : R → S1 can
be viewed as a T -periodic real function; that is, x1 is actually a solution of (6).

Let (λ; x1, x2) be any solution pair of (7) with zero winding number. There
exists t0 ∈ [0, T ] such that x2(t0) = 0, therefore

x2(t) = x2(t) − x2(t0) =

∫ t

t0

g (x1(s)) + λf (s, x1(s)) ds,

hence

|x2(t)| ≤ T

[

max
θ∈R

|g(θ)| + λ max
(s,θ)∈R×R

|f(s, θ)|

]

. (8)
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The inequality (8), which holds for any solution pair in C1 ∪ C2, implies that
C1 and C2 are bounded in any set [0, µ] × CT (S1 ×R).

Define

Ω1 =
{

[0,∞) × CT (S1 ×R)
}

\ {θ2} ,

Ω2 =
{

[0,∞) × CT (S1 ×R)
}

\ {θ1} ,

and observe that θi, i = 1, 2, is the unique zero in Ωi ∩ (S1 × R) of the vector
field (x1, x2) 7→ (x2, g(x1)). Since g changes sign at θi, by homotopy arguments
one can prove that this vector field has nonzero index at θi. Therefore Theorem
3.3 with M = S1 ×R implies that Ci ∩ Ωi, i = 1, 2, cannot be compact.

We may assume C1 6= C2. In this case, C1 and C2, being connected compo-
nents, are disjoint and, consequently, Ci ⊂ Ωi for i = 1, 2. Since C1 and C2 are
closed non-compact subsets of the complete metric space [0,∞)×CT (S1 ×R),
they must be both unbounded. For, since M is closed, Ascoli’s theorem implies
that any bounded set of solution pairs is actually totally bounded.2

The above theorem leads to the following multiplicity result.

Corollary 4.2 Let g : R → R be a 2π-periodic continuous function whose
image contains 0 in its interior. Assume that g has exactly two zeros θ1, θ2 ∈
[0, 2π). Then, given a continuous function (t, θ) 7→ f(t, θ), T -periodic in t ∈ R

and 2π-periodic in θ, there exists λf > 0 such that the equation (6) has at least
two T -periodic solutions for each λ ∈ [0, λf ].

Proof. Let C1 and C2 be as in Theorem 4.1. Since the intersections of
C1 and C2 with the slice {0} × CT (S1 × R) are bounded, hence compact, it is
enough to show that there are no connected sets C of solution pairs with λ = 0
joining θ1 with θ2. Suppose such a C exists.

We may assume θ1 < θ2, g(θ) < 0 in (θ1, θ2) and g(θ) > 0 in (θ2, θ1 + 2π).
The connectedness of C, which is contained in {0}×CT (S1 ×R), ensures that
in the open neighborhood

W = [0,∞) × CT

(

(S1\θ1) ×R
)

of θ2 there exists a solution pair

(0; x̄1, x̄2) ∈ C ∩ W\ {θ2} .

The function x̄1 can be regarded as a nonconstant T -periodic solution of θ̈ = g(θ)
such that θ1 < x̄1(t) < θ1 + 2π for all t ∈ [0, T ]. Let τ0 and τ1 be, respectively,
a minimum and a maximum point of x̄1 in [0, T ]. Obviously

g (x̄1(τ1)) =
d2x̄1

dt2
(τ1) ≤ 0 ≤

d2x̄1

dt2
(τ0) = g (x̄1(τ0)) .
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By the properties of g and the fact that θ1 < x̄1(t) < θ1 + 2π, we get x̄1(τ1) ≤
θ2 ≤ x̄1(τ0), which is clearly impossible since x̄1 is nonconstant.2

We point out that, even in the case when g and f are smooth, the above
result cannot be proved by simply linearizing (3) about the zeros of g. In fact,
one of the two linearized equations could be the following:

θ̈ + θ = λ sin t.

References

[C1] A. Capietto, Continuation theorems for periodic boundary value prob-
lems, Ph. D. Thesis, SISSA, Trieste, 1990.

[C2] A. Capietto, Continuation Results for Operator Equations in Metric
ANRs, Boll. Un. Mat. Ital. (7) 8-B (1994), 135-150.

[CMZ] A. Capietto, J. Mawhin and F. Zanolin. Continuation theorems for peri-
odic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329
(1992), 41-72.

[FP1] M. Furi and M. P. Pera, Global branches of periodic solutions for forced
differential equations on nonzero Euler characteristic manifolds, Boll.
Un. Mat. Ital. 3-C (1984), 157-170.

[FP2] M. Furi and M. P. Pera, A continuation principle for forced oscillation
on manifolds, Pacific J. Math. 121 (1986), 321-338.

[FP3] M. Furi and M. P. Pera, A continuation principle for periodic solutions
of forced motion equations on manifolds and applications to bifurcation
theory, Pacific J. Math. 160 (1993), 219-244.

[FP4] M. Furi and M. P. Pera, Remarks on global branches of harmonic so-
lutions to periodic ODE’s on manifolds, To appear in Boll. Un. Mat.
Ital.

[FS] M. Furi and M. Spadini, On the fixed point index of the flow and appli-
cations to periodic solutions of differential equations on manifolds, Boll.
Un. Mat. Ital. (7) 10-A (1996), 333-346.

[GP] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1974.

[H] M. W. Hirsch, Differential Topology, Graduate Texts in Math., Vol. 33,
Springer-Verlag, Berlin 1976.

9



[M1] J. Mawhin, Forced oscillations for the pendulum equation: a paradigm
for nonlinear analysis, Exp. Math. 6 (1988), 271-287.

[M2] J. Mawhin, Topological degree and boundary value problems for nonlin-
ear differential equations, C.I.M.E. course on Topological Methods for
Ordinary Differential Equations, ed. M. Furi and P. Zecca, Lecture Notes
in Math. 1537, Springer Verlag 1991,143-205.

[Mi] J. W. Milnor, Topology from the differentiable viewpoint, Univ. Press of
Virginia, Charlottesville, 1965.

[T] A. J. Tromba, The Euler characteristic of vector fields on Banach man-
ifolds and a globalization of Leray-Schauder degree, Advances in Math.,
28 (1978), 148-173.

10


